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Abstract

It is usual to rank the participant countries in the Olympic Games in accordance with the number of medals they

have won. An alternative ranking is suggested in this paper. This ranking is based on each country�s ability to win
medals in relation to its available resources. This is an efficiency that can be measured with the help of data envelopment

analysis (DEA) for which two models exist: the traditional DEA model, that takes into account variable returns to

scale, and a DEA model based on the premise that the sum of the gains is zero (constant sum of outputs). It is the latter

that is developed in this paper.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Data envelopment analysis; Zero sum gains; Olympic ranking

1. Introduction

The Olympic Games were born in ancient

Greece and were designed for individual contests.

However, the cities from where the winners

originated would grant them numerous preroga-

tives, clearly showing that the city felt it had won
as well. The modern Games, initiated in 1896 by

Baron Coubertin, tried to keep the initial spirit of

individual competition. That purpose clearly

failed. Ever since the very first modern Games, it

became usual to play the national anthem of the

winner�s country. During the Cold War the na-
tional character of the contest became ever more

noticeable and developed into a true battle be-
tween East and West. Even before that, the Third

Reich had tried to show the supremacy of the

Arian race in the Games of 1936, although the

results were quite different from those Hitler had

bargained for.

In spite of the real competition between na-

tions, the Olympic Committee has never published

an official ranking that would allow a country to
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be classed as the overall Olympic Games winner.

The media, however, did so in a way discussed

below and which has become the quasi-official

ranking.

Olympic rankings are traditionally published as
a table in which countries are ranked in accor-

dance with the number of gold, silver and bronze

medals their athletes have won. This type of

ranking is typical of the lexicographic multicrite-

ria method (Barba-Romero and Pomerol, 1997),

which, in this particular case, has the disadvantage

to overvalue the gold medal. In other words,

countries that win a high number of silver and
bronze medals but none of gold are ranked below

countries that have won a single gold medal. This

method assumes that the decision-maker has the

ability to rank criteria in accordance to their per-

ceived importance. So the ranking depends on

which criterion is thought to be the most impor-

tant regardless of the other criteria. Should there

be a tie, the ranking follows the second most im-
portant criterion and if a new tie obtains, it follows

the third until the ranking is completed. In the case

of the Olympic ranking, the first criterion is the

number of gold metals, the second those of silver

and, finally, those of bronze.

This paper proposes a different ranking based

on data development analysis and analyses the

results of Sidney 2000 Olympic Games. It consid-
ers the number of all types of medals won by each

country as outputs and the population and GDP

of that country as resources to win those medals.

The decision making units (DMUs) are those

countries that win at least one medal in Sidney

2000 Olympic Games. A new data envelopment

analysis (DEA) model is required because the total

number of medals to be won is constant. The
classic DEA model is used as starting point for the

development and use of the modified model that is

henceforth called the zero sum gains DEA model

(ZSG-DEA).

2. Olympic efficiency analysis: Use of traditional

data envelopment analysis

The aim of DEA, proposed by Charnes et al.

(1978), is to compare a certain number of DMUs

that perform similar tasks but which use a different

level of inputs to achieve different level of outputs.

Besides identifying efficient DMUs, DEA models

allow inefficiencies to be measured and diagnosed.

It also determines a piece-wise linear production
function that provides a benchmark for inefficient

DMUs.

In this paper, we use variable returns to scale

DEA model––DEA BCC––(Banker et al., 1984),

because there is no evidence of any proportionality

between inputs and outputs. An output-oriented

model has been adopted because the obvious aim

for every country is to win as many medals as
possible.

As for the choice of inputs, it has been as-

sumed that the greater the population of a

country the better are the chances to produce

good athletes and, therefore, to win medals. The

existence of good athletes per se may be insuf-

ficient; the proper conditions for their training

and improvement of their capacities have to be
provided as well. The richer the country the

easier it will be for these conditions to be met.

Thus, inputs are a country�s population and its
wealth.

While country populations are easily obtain-

able data, their wealth can be measured in ac-

cordance with several criteria. However, only a

couple of them allow adequate comparisons to
be made. The best known and most usual is

the country�s total production excluding exports
and imports that is called the gross domestic

product (GDP). The comparison between the

GDP of different countries provides a reasonably

approximate measure of their relative levels of

wealth. However, GDP as such presents some

distortions, one of them being that the level of
prices is different from country to country. To

compensate for this deficiency, a fictitious ex-

change rate is used that takes into account the

relative difference in prices and thus establishes

the rate of exchange at purchasing power parity

(PPP). Although GDP at PPP is available for

many countries, the authors have had to estimate

its value for some others.
In this paper, we have considered using ei-

ther GDP or GDP per capita, but ultimately

opted for GDP, given that the magnitude of
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governmental support to Olympic sports should be

better explained by the former. We realised that

a country with a large GDP per capita and a

small population could have enough rich people

but not big enough investments in sports. On
the other hand, a country with a small GDP per

capita but a large total GDP, could have more

resources to invest in sports, although its people

are poorer.

Another variable that could have been used as

input is the country�s investment in sports. This is
a difficult figure to have reliable access to and, for

that reason, was discarded.
Original DEA models (Cooper et al., 2000) al-

low each DMU to choose in complete freedom the

weight for each output. This may mean that the

efficiency score of some DMUs will depend on

having valued the silver or bronze medals more

highly than the gold one. To avoid this kind of

distortion, a model with weight restrictions is used

(Andersen and Petersen, 1993) that implies that
the weight assigned to the output ‘‘number of gold

medals’’ is higher than or equal to the one for the

‘‘number of silver medals’’. The same holds for

silver and bronze medals.

Let it be recalled that in the traditional DEA

models there is a number of reference units whose

inputs and outputs define the efficiency frontier.

The aim is to make the less efficient object unit at
least as efficient as the others by increasing its

output and, thus, join the frontier.

The BCC envelope model with weight restric-

tions as applied to the Olympic Games is here

represented by the set of expressions (I). In this

model, DMU0 is the object unit that is at-

tempting to increase its output; DMUj are the

reference units used to establish the efficiency fron-
tier for DMU0. The efficiency of DMU0 is 1=h0;
xPOPj and xGDPj are the population and GDP

PPP inputs for each DMUj; yGj, ySj and yBj are
the number of gold, silver and bronze medals

outputs for each DMUj; c1, and c2 are the de-
cision variables that express the weight restric-

tions (Lins and Silva, 2001). As DMU0 becomes

efficient it is projected on to the frontier. This is
DMU0�s target, and kj is each efficient DMUj�s
individual share in the definition of the target for

DMU0.

max h0

s:t:
X
j

kjxPOPj 6 xPOP0

X
j

kjxGDPj 6 xGDP0

h0yG06
X
j

kjyGj � c1

h0yS06
X
j

kjySj þ c1 � c2

h0yB06
X
j

kjyBj þ c2X
j

kj ¼ 1

kj; c1; c2 P 0

ðIÞ

Among the 80 countries that have won at least

one medal, 7 result efficient in this model, i.e., they
have won the number of medals compatible with

their potentialities: Australia, Bahamas, Barbados,

Cuba, United States, Macedonia and Russia. Of

these, Barbados and Macedonia did not win gold

medals and their inclusion among efficient coun-

tries is caused by a characteristic of the DEA

model (DMUs with fewer resources are considered

efficient regardless of their results).
The here above applied DEA model assumes

that there is complete output independence, i.e., the

output of any given DMU does not affect the out-

put of the others. When outputs are ranks in con-

tests, this independence does not exist: the higher

the position of any given competitor the more he

pushes down the positions of those below him. In

the case of the Olympic Games, a country that has
won more medals or obtained better medals auto-

matically makes other DMUs not to win those

medals, i.e., makes them lose output units.

To take this point in consideration, a new

model is proposed. Its theoretical development is

the object of the next section.

3. Zero sum gains DEA model

The ZSG-DEA assumes that the sum of outputs

is constant. This is similar to a zero sum game in

which whatever is won by a player is lost by one or

more of the others.
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The model is represented in the general set of

expressions (II), in which DMU0 is the object unit

that is attempting to increase its output. Thus, hR0
is the reciprocal of the DMU0 efficiency under

ZSG-DEA; xj are the original inputs values; yj are
the original outputs values; y0 and x0 are the out-
put and input values for DMU0; y0j are the new
outputs of the other DMUs resulting from the loss

of outputs caused by DMU0�s gains; kj is the share

defined in Section 2; z represents how much DMU0

should gain to reach the efficient frontier;

kj; hR0; y0j ¼ fjðhR0Þ are the decision variables.
max hR0

s:t:
X
j

kjxj 6 x0

hR0y06
X
j

kjy0jX
j

kj ¼ 1

kj P 0

ðIIÞ

There are different solutions for this problem

depending on the definitions of functions y 0j ¼
fjðhR0Þ. One case in which the frontier does not
change is one in which the object DMU wins units

of lost output by DMUs that are not in the fron-

tier. In other words, y0j ¼ yj; 8DMUj 2 efficient
frontier. However, this is a strategy that severely

limits DMU0�s ability to fulfil its target, i.e., to
reach the frontier of efficiency.

Two other strategies to reach the target and

their mathematical representation will be pre-

sented here below: a strategy that assumes equal

reductions of output for all DMUs and a strategy

in which the output reduction in each DMU is

proportional to the DMU�s very output. Algebraic
representation of these two strategies applies to
the general model without weight restrictions. The

ZSG-DEA model with weight restrictions will be

presented in Section 4.

3.1. Equal output reduction strategy for all DMUs

j; j 6¼ 0

Fig. 1 shows a segment of two efficient frontiers.
The upper line indicates the frontier of the tradi-

tional model; the lower line indicates the new fron-

tier if all DMUs undergo an equal reduction of out-

put with the exception of DMU0, which, to become

efficient, wins the sum of the losses of the others.

As the distance to frontier in the ZSG-DEA

model is shorter than the distance to the frontier

in the traditional DEA model, the DMU0�s ZSG-
DEA efficiency is higher than the traditional one.

To represent this strategy we start with the
general model set of expressions (II), in which the

DMU0�s output is y0. The outputs of the other
ðn� 1Þ DMUs are Y � y0, in which Y is the sum of

all available outputs for all DMUs.

Thus, DMU0 would need to win z units

of output and every other DMUj, j 6¼ 0, would

lose z=ðn� 1Þ output units. Therefore, y0j ¼ yj �
ðz=n� 1Þ.
Fig. 1 shows that the gain of DMU0 is z ¼

hRy0 � y0. Substituting the values of y0j and z in (II),
the model that represents the equal output reduc-

tion strategy is obtained (III).

max hR0

s:t:
X
j

kjxj 6 x0

hR0y06
X
j

kj yj

�
� y0ðhR0 � 1Þ

n� 1

�
X
j

kj ¼ 1

kj P 0

ðIIIÞ

The term y0ðhR0 � 1Þ=n� 1 represents the loss
that each DMUj, j 6¼ 0, must have for DMU0 to
win z ¼ y0ðhR0 � 1Þ output units.

O

I

o

hoyo

yo

z

hRoyo

O

I

o

hoyo

yo

z

hRoyo

Fig. 1. Graphical representation of the equal output reduction

strategy for all DMUs j; j 6¼ 0.
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This strategy has the following drawbacks:

1. It is a non-linear programming problem (the

second constraint is a multiplication of the

two decision variables kj and hR0: hR0y06P
j kjðyj � ðy0ðhR0 � 1Þ=n� 1ÞÞ).

2. This strategy might cause some DMUs to have

a negative output. So, this strategy can only be

used in the cases when ðz=n� 1Þ6 minðyjÞ.
Clearly, this is not the case of the Olympic

Games as there are DMUs with low output

such as, for instance, the efficient DMU Mace-

donia that won only a bronze medal.

To avoid this drawback, a new strategy that

reduces the losses in proportion to the original

output is proposed.

3.2. Proportional output reduction strategy for all

DMUs j; j 6¼ 0

To fulfil this strategy, DMU0 needs to win z
output units and the losses of the other DMUs are

proportional to their levels of output, i.e., the

lower the level of output the lower the loss and

vice-versa. The condition that the sum of the losses

is equal to the gains of DMU0 is still in force (the

sum of outputs is constant).

Fig. 2 represents the new frontier created by this
strategy. The thin line indicates the frontier of the

traditional model; the bold line indicates the new

frontier if all DMUs undergo a proportional re-

duction of output with the exception of DMU0

which wins the sum of the losses of the others to

achieve efficiency.

Fig. 3 shows what proportional reduction

would mean in the case of three DMUs. DMUs A
and B have a high level of output, respectively a
and b. Let c be the level of output of DMU C. For
DMU C to become efficient, it must have an out-

put gain of d units, thus reaching the ðcþ dÞ level.
Consequently, DMUs A and B lose output units a
and b, which are respectively proportional to the
initial a and b levels, their output levels going

down, consequently, to ða� aÞ and ðb� bÞ.
From Fig. 3 and making losses proportional to

output, comes a=a ¼ b=b. As gains must be equal to
the sum of losses, we have a þ b ¼ d. Algebraic ma-

nipulation renders a ¼ ad=aþ b (DMUA�s loss of
output) and b ¼ bd=aþ b (DMUB�s loss of output).
In general terms, the loss of output for any

given DMUj, j 6¼ 0, becomes yjz=
P

j 6¼0 yj. As z ¼
y0ðhR0 � 1Þ, the loss of output of DMUj is

yjy0ðhR0 � 1Þ=
P

j 6¼0 yj.
Substituting this expression in the general

model (II), model (IV) for the proportional output

reduction strategy can be written.

max hR0

s:t:
X
j

kjxj 6 x0

hR0y06
X
j

kjyj 1

 
� y0ðhR0 � 1ÞP

j 6¼0 yj

!
X
j

kj ¼ 1

kj P 0

ðIVÞ

O

I

o

hoyo

yo

z

hRoyo

O

I

o

hoyo

yo

z

hRoyo

Fig. 2. Graphical representation of proportional output re-

duction strategy for all DMUs j.

b-β

β

a-α

α

c

a

b

δ

c+δ

Fig. 3. Segment of an efficient frontier with the projection of

DMU C, and proportional output reduction strategy for

DMUs A and B.
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Term 1� ðy0ðhR0 � 1Þ=
P

j 6¼0 yjÞ shall be called
the reduction coefficient (RC).

Due to the constraint

hR0y06
X
j

kjyj 1

 
� y0ðhR0 � 1ÞP

j 6¼0 yj

!

this is still a non-linear programming problem.
Besides, in real conditions there may be DMUs

from which no proportional quantity of output

can be extracted. A case in point in the last

Olympic Games was Mozambique that won a

gold medal but nothing else. In similar cases,

strategies must be defined to withdraw an arbi-

trary number of units of output.

Non-linearity is not a difficulty in this case.
Both in ZSG and traditional models the efficient

frontier contains the same DMUs. On the other

hand, for any DMU that does not belong to the

DMU0 reference set, kj ¼ 0. So, the number of

variables becomes rather small and, in some cases,

the problem can be solved analytically with the use

of differential calculus tools.

4. The ZSG-DEA model applied to the Olympic

Games

4.1. ZSG-DEA model with weight restrictions

The previous paragraph makes it possible to

establish a ZSG-DEA model that incorporates
weight restrictions to the number of gold, silver

and bronze medals that were won. The combi-

nation of models (I) and (IV) begets model (V)

whose solution produces an Olympic ranking in

which output reduction is proportional to its

level.

max hR0

s:t:
X
j

kjxPOPj6xPOP0X
j

kjxGDPj6xGDP0

hR0yG06
X
j

kjyGj 1

 
� yG0ðhR0�1ÞP

j 6¼0 yGj

!
� c1

hR0yS06
X
j

kjySj 1

 
� yS0ðhR0�1ÞP

j 6¼0 ySj

!
þ c1� c2

hR0yB06
X
j

kjyBj 1

 
� yB0ðhR0�1ÞP

j6¼0 yBj

!
þ c2X

j

kj ¼ 1

kj;c1;c2P0

ðVÞ

Table 1 shows the efficiencies measured by this

model for DMUs Brazil, The Netherlands and

Kenya.

To obtain results in this model is very laborious
owing to its non-linearity and large number of

variables. The model would be greatly simplified if

only one output existed. For the Olympic Games

this means that the number of medals has to be

condensed in one meaningful indicator only.

The theoretical considerations applicable to a

single output ZSG-DEA model are shown herein

below.

4.2. Single output ZSG-DEA model solution

For a single output ZSG-DEA proportional

reduction strategy model the following theorem

can be proven.

Theorem. The target for a DMU to reach the effi-
ciency frontier in a ZSG-DEA proportional output
reduction strategy model equals the same target in
the traditional DEA BCC model multiplied by the
reduction coefficient.

The theorem is represented by Eq. (VI), in

which j
 is the DMU0 reference set, k

j and h
0 are

the optimal solutions of the traditional output
oriented DEA BCC model.

Table 1

Results for some DMUs measured by the ZSG-DEA model

with weight restrictions

DMU Efficiency (%)

Brazil 14.62

The Netherlands 85.56

Kenya 24.51
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hR0y0 ¼
X
j


k

j yj 1

 
� y0ðhR0 � 1ÞP

j 6¼0 yj

!

¼ h
0y0 1

 
� y0ðhR0 � 1ÞP

j 6¼0 yj

!
ðVIÞ

Proof. From the reduction/gain diagram shown in

Fig. 4 and the similarities of triangles ACd and
ABe, shown in Fig. 5(a), as well as those of tri-
angles, A0C0d 0 and A0B0e0, shown in Fig. 5(b), the
following relationships

yB � yA
yC � yA

¼ xB � xA
xC � xA

and
y 0B � y0A
y 0C � y0A

¼ xB � xA
xC � xA

can be deducted. From these ratios it follows that

yB � yA
yC � yA

¼ y0B � y0A
y 0C � y 0A

As y 0B ¼ RCyB and y0A ¼ RCyA, in which RC ¼
reduction coefficient, 1=ðyC�yAÞ¼RC=ðy0C�RCyAÞ
is obtained. So, ðyC�yAÞRC¼ y0C�RCyA, or rather,
y0C¼RCyC. �

Although the proof has been carried out only

for two dimensions, it is easy to generalise for a

larger number of dimensions if orthogonal pro-

jections on the co-ordinated planes are used and
similarity ratios are applied to the resulting trian-

gles.

Corollary. In a ZSG-DEA model in which a pro-
portional output reduction strategy has been adop-
ted, the value of the DMUs j contribution ðkjÞ,
j 6¼ 0, equals its value in the traditional DEA model.

Proof. Consider the DMU0ðoutput ¼ y0Þ reference
set which comprehends p DMUs, with y1; y2; . . . ; yp
outputs. DMU0�s target is h0y0 ¼ k1y1þ k2y2þ
� � � þ kpyp. Multiplying the equation by the reduc-
tion coefficient RC, RCh0y0 ¼ RCk1y1þ RCk2y2þ
� � � þRCkpyp. From the preceding theorem hR0y0 ¼
k1y 01 þ k2y02 þ � � � þ kpy0p, and the corollary is

proved. �

yA

y A

yB

y B

A

B

C

C

xA xBxC

A

B

o

yC

I

O

yA

y A

yB

y B

A

B

C

C

xA xBxC

A

B

o

yC

I

O

Fig. 4. Output reduction (DMU0 references DMUs A and B)
and output gain ðDMU0Þ for the proportional output reduction
strategy.
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Fig. 5. Triangle similarity ratios for the proportional output reduction strategy.
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4.3. Single output model used for Olympic rankings

It has already been mentioned that the aggre-

gation of the outputs ‘‘number of medals’’ into a
single indicator is required. This aggregation of

criteria defines the American Multicriteria School

(Keeney and Raiffa, 1976) and is easily obtainable

by means of a weighted sum in which the weights

are the measure of the importance of each type of

medal.

In Gomes et al. (2001), the weights were ob-

tained from the expression of the decision-makers�
preferences. This is very arbitrary and, so, prefer-

ence was given to use the very DEA model to

obtain the weights. The DEA BCC model with

weight restrictions (Section 2) was used. The av-

erage of the weights that each DMU assigned to

each type of medal was calculated from this model.

To standardise procedures each weight was di-

vided by the sum of weights the DMU assigned to
each type of medal.

This approach has the advantage of being ob-

jective and, thus, it does not depend on experts�
opinions. However, it does have the possible dis-

advantage of efficient DMUs not having a single

set of optimal weights (Rosen et al., 1998; Soares

de Mello et al., 2001). This is not a serious disad-

vantage in this case as the number of efficient
DMUs is small and, so, it has little influence in the

calculation of the average value. This technique

allows the three-output model to be replaced by a

single output model in which the aggregate output

is obtained from Eq. (VII).

single output ¼ 0:5814 goldþ 0:2437 silver
þ 0:1749 bronze ðVIIÞ

The use of this output prevents each DMU

from optimising its own weights. Despite this
drawback, it simplifies the problem greatly. The

fact that the frontier it determines is the same as

found by model (I) further vindicates its use.

The use of the aggregate output, of the theorem

and its corollary make it possible for efficiency to be

determined from the classical DEA model and the

resolution of Eq. (VI) when the sum of gains is zero.

The final Olympic ranking obtained from the
single output ZSG-DEA model is shown in Ap-

pendix A. It should be emphasised that the cal-

culation of these results requires the previous

calculation of the corresponding classical single

output DEA BCC model to determine reference

DMUs and their shares ðkÞ or efficiencies 1=h.
The results show that a number of countries are

tied at 100% efficiency. This is a common charac-

teristic of the majority of DEA models, in partic-

ular of the DEA BCC model. ZSG-DEA, as a

particular case of the DEA BCC model, suffers

from the same drawback. The literature provides

methods to overcome this difficulty (Adler et al.,

2002). Mention can be made of cross-evaluation
(Sexton et al., 1986; Doyle and Green, 1994), super

efficiency (Andersen and Petersen, 1993) and

benchmarking (Charnes et al., 1985), among others.

The latter states that the more an efficient DMU is

chosen as a target by the inefficient units, the better

it ranks. This means that those inefficient DMUs

have similar properties to the efficient one. Results

from this approach can be seen in Table 2.
Another property or DEA BCC model incor-

porated to the ZSG-DEA is that those DMUs with

the smallest input value and/or the biggest output

value are always efficient (Ali, 1994). In our case

study, these DMUs are Barbados, Macedonia

(smallest inputs) and United States (biggest out-

put). In Table 2 it can be seen, indeed, that these

DMUs belong to the peer groups of a small
number of inefficient DMUs.

It should also be pointed out that efficiencies

obtained from the multiple output ZSG-DEA

models with weight restrictions have lower values

than those obtained from the single output model.

Table 2

Ranking for the efficient countries based on the benchmarking

method

Efficient

DMU

Number of times the efficient DMU appear

in the peer groups of the inefficient ones

Australia 55

Cuba 50

Russia 35

Bahamas 34

Macedonia 5

United States 4

Barbados 0
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5. Conclusions

Olympic efficiency as analysed by DEA models

has been shown to be a useful tool to check whe-
ther each country has been obtaining results that

are compatible with its potentialities. It further

allows planning for realistic targets for future

Olympic Games. However, traditional models do

not take into consideration the limited number

of medals to be won and, thus, some refinements

are required. The ZSG-DEA model, weight con-

strained or otherwise, and the proposed strate-
gies are the first step to obtain more accurate

results.

The ZSG-DEA model with weight restrictions

is not at present as much developed as the single

aggregate output model. For this reason the latter

has been chosen to establish the final ranking.

The following are only some of the future

developments that can be envisaged for ZSG-
DEA:

• Strategies for co-operation and competition

among inefficient DMUs;

• Taking into account that the quantity of medals

is a integer leading to a non-linear and integer

programming problem;

• To determine a strategy that, besides maximis-
ing hR0, will also minimise z. This means deter-
mining the most efficient strategy that can be

obtained from the adequate choice of the

fjðhR0Þ. In such a case maximisation will require
decision functions instead of decision variables

and that will require the use of a dynamic pro-

gramming problem. This strategy leads to a

DEA model conceptually different from the ex-
isting ones, since the movement of an inefficient

DMU towards the frontier will affect its shape.
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Appendix A

Proposed ranking for winning medal countries

in Sidney 2000 Olympic Games

Country Gold Silver Bronze EffZSG-DEA � single output (%)
Australia 16 25 17 100.00

Cuba 11 11 7 100.00

Russia 32 28 28 100.00

Bahamas 1 1 0 100.00

Macedonia 0 0 1 100.00

United States 39 25 33 100.00

Barbados 0 0 1 100.00
Romania 0 4 3 76.20

Norway 11 6 9 74.59

China 4 3 3 73.05

Germany 28 16 15 71.05

Hungary 14 17 26 68.56

The Netherlands 8 6 3 63.93

France 12 9 4 60.14

Bulgaria 13 14 11 59.55
Yugoslavia 5 6 2 58.85

Italy 1 1 1 55.39

Estonia 13 8 13 52.10

Slovenia 1 0 2 48.61

United Kingdom 2 0 0 47.34

Belarus 11 10 7 45.50
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Country Gold Silver Bronze EffZSG-DEA � single output (%)
Sweden 3 3 11 45.12

Jamaica 4 5 3 44.65

Lithuania 2 0 3 44.31

South Korea 8 9 11 43.62

Greece 4 6 3 42.09

Ukraine 3 10 10 39.63

Denmark 2 3 1 36.74
Latvia 1 1 1 36.13

Poland 6 5 3 32.38

Switzerland 1 6 2 31.84

Moldova 0 1 1 30.51

Ethiopia 4 1 3 30.12

Finland 2 1 1 29.12

Slovakia 1 3 1 27.61

New Zealand 1 0 3 26.86
Czech Republic 2 3 3 24.65

Trinidad & Tobago 0 1 1 24.55

Kazakhstan 3 4 0 23.76

Kenya 2 3 2 22.16

Iceland 3 3 8 21.24

Georgia 0 0 6 21.00

Canada 0 0 1 20.91

Azerbaijan 2 0 1 18.73
Spain 2 1 0 17.39

Austria 1 0 1 17.07

Croatia 3 3 5 16.76

Qatar 0 0 1 15.70

Kyrgyzstan 0 0 1 11.53

Cameroon 1 0 0 10.82

Algeria 1 1 3 10.44

Mozambique 0 2 3 10.18
Iran 3 0 1 10.11

Belgium 1 0 0 10.05

Uzbekistan 1 1 2 9.99

Turkey 0 6 6 9.49

Costa Rica 0 0 2 9.12

Brazil 3 0 1 8.97

Morocco 0 0 1 8.39

Kuwait 0 1 4 8.04
North Korea 1 2 3 7.24

Uruguay 0 1 3 6.91

Mexico 0 1 0 6.77

South Africa 1 3 2 6.03

Nigeria 0 1 0 6.03

Ireland 5 8 5 6.02

Indonesia 0 3 0 5.99
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Country Gold Silver Bronze EffZSG-DEA � single output (%)
Japan 0 2 3 5.76

Taiwan 0 2 2 5.34

Armenia 0 0 1 4.74

Argentina 0 1 4 4.73

Thailand 1 0 2 4.64

Portugal 1 0 0 3.65

Colombia 0 0 2 3.58
Saudi Arabia 0 0 1 2.93

Israel 0 1 1 2.87

Vietnam 0 0 1 2.29

Sri Lanka 0 1 0 1.75

Chile 0 0 1 1.30

India 0 0 1 0.62
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