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Abstract

Many research projects require accurate delineation of different secondary succession (SS) stages over large regions/subregions of the

Amazon basin. However, the complexity of vegetation stand structure, abundant vegetation species, and the smooth transition between

different SS stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier

(MLC). Most of the time, classification distinguishes only between forest/non-forest. It has been difficult to accurately distinguish stages of

SS. In this paper, a linear mixture model (LMM) approach is applied to classify successional and mature forests using Thematic Mapper

(TM) imagery in the Rondônia region of the Brazilian Amazon. Three endmembers (i.e., shade, soil, and green vegetation or GV) were

identified based on the image itself and a constrained least-squares solution was used to unmix the image. This study indicates that the LMM

approach is a promising method for distinguishing successional and mature forests in the Amazon basin using TM data. It improved

vegetation classification accuracy over that of the MLC. Initial, intermediate, and advanced successional and mature forests were classified

with overall accuracy of 78.2% using a threshold method on the ratio of shade to GV fractions, a 7.4% increase over the MLC. The GV and

shade fractions are sensitive to the change of vegetation stand structures and better capture biophysical structure information.
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1. Introduction

The authors are engaged in a project on Amazon Forest

Regeneration and Landscape Structure that is part of the

Large-Scale Biosphere–Atmosphere Experiment in Amazô-

nia (LBA). Several of the major research foci of LBA

require an accurate delineation of different secondary suc-

cession (SS) stages over large regions/subregions of the

Amazon basin. Due to their rapid growth and increasing

areal extent, successional forests play an important role in

the global carbon budget. Moreover, they have significant

ecological functions within Amazonian ecosystems and

landscapes affecting soil fertility, vegetation structure and

composition, and faunal dispersion. The research focusing

on successional forests has attracted increasing attention

(Alves et al., 1997; Guariguata & Ostertag, 2001; Kimes,

Nelson, Salas, & Skole, 1999; Kimes, Nelson, Skole, &
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Salas, 1999; Lu, 2001; Lu, Mausel, Brondızio, & Moran,

2002b; Lucas et al., 1998; Lucas et al., 2000; Lucas,

Honzák, do Amaral, Curran, & Foody, 2002; Lucas, Hon-

zák, Foody, Curran, & Corves, 1993; Mausel, Wu, Li,

Moran, & Brondı́zio, 1993; Moran, Brondı́zio, & Mausel,

1994; Moran et al., 2000; Nelson, Kimes, Salas, & Routhier,

2000; Nelson et al., 1999). Previous studies by our research

group successfully classified multiple stages of vegetation

regrowth in Amazônia (Brondı́zio, Moran, Mausel,& Wu,

1994; Li, Moran, Brondı́zio, Mausel, & Wu, 1994; Mausel

et al., 1993; Moran, Brondı́zio, Mausel, & Wu, 1994).

During these efforts we have steadily improved accuracy

of SS classification through the integration of intensive field

data collection and remote sensing analyses.

The difficulty of accurately classifying stages of SS can

be related to many factors. The heterogeneity of the vege-

tation structure is a major problem, as is the limitation of

spatial resolution, i.e., where a single Landsat TM pixel

often contains more than one land-cover class. Even within

the same vegetation class there is often great variation in

plant species, plant geometry, vegetation structure and
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biomass. The complexity of vegetation stand structure, the

abundance of species, and the smooth transition between

different SS stages make digital classification difficult when

using traditional approaches, such as the maximum likeli-

hood classifier (MLC).

Traditional classifiers typically develop a signature by

combining the spectra of all pixels within a training set from

a given feature. The resulting signature contains the con-

tributions of all materials present in the training set (Hugue-

nin, Karaska, Blaricom, & Jensen, 1997). Therefore,

traditional classifiers cannot effectively handle the mixed-

pixel problem. In order to reduce mixed-pixel effects, a

variety of methods have been developed to unmix the pixels

into different proportions of the endmembers (Atkinson,

Cutler, & Lewts, 1997; Bastin, 1997; Erol, 2000; Ichoku &

Karnieli, 1996).

The linear mixture model (LMM) approach is one of the

most often used methods for handling the mixed pixel

problem. It evaluates each pixel spectrum as a linear

combination of a set of endmember spectra (Adams et al.,

1995; Roberts, Batista, Pereira, Waller, & Nelson, 1998).

The endmember spectra are selected to be as different as

possible from one another. The output is typically presented

in the form of fraction images for each endmember spec-

trum, which gives the derived fractions of each endmember

spectrum for each pixel. A residual image provides the root-

mean-square (RMS) of the fit for each pixel (Huguenin et

al., 1997). In remote sensing data applications, the LMM

approach has been used to

1. classify vegetation and land-use/land-cover (LULC)

classes (Aguiar, Shimabukuro, & Mascarenhas, 1999;

Cochrane & Souza, 1998; DeFries, Hansen, & Town-

shend, 2000; Theseira, Thomas, & Sannier, 2002; Ustin,

Hart, Duan, & Scheer, 1996; Ustin, Smith, Jacquemoud,

Verstraete, & Govaerts, 1999);

2. detect LULC changes (Adams et al., 1995; Elmore,

Mustard, Manning, & Lobell, 2000; Roberts et al., 1998;

Roberts, Green, & Adams, 1997; Roberts et al., 2002;

Rogan, Franklin, & Roberts, 2002; Shimabukuro,

Batista, Melio, Moreira, & Duarte, 1998; Ustin, Roberts,

& Hart, 1998);

3. measure sparse vegetation cover (Asner &Lobell, 2000;

McGwire, Minor, & Fenstermaker, 2000; Smith, Ustin,

Adams, & Gillespie, 1990; Sohn & McCoy, 1997) and

crop area (Maas, 2000; Quarmby, Townshend, Settle, &

White, 1992);

4. map floodplain habitats (Novo & Shimabukuro, 1997);

5. determine urban vegetation abundance (Small, 2001);

and

6. estimate biophysical parameters such as abundance in

heterogeneous canopies (Gilabert, Garcia-Haro, & Melia,

2000), leaf area index, biomass, and net primary

productivity (Garcia-Haro, Gilabert, & Melia, 1996;

Hall, Shimabukuro, & Huemmrich, 1995; Peddle, Hall,

& LeDrew, 1999; Peddle, Brunke, & Hall, 2001).
This article focuses on the application of LMM to

classify successional and mature forests in the Brazilian

Amazon with less dependence on intensive field data

collection as the means to achieve acceptable accuracy.
2. Brief characteristics of tropical successional forests

Amazon colonization has produced widespread defores-

tation but also a mosaic of secondary successional vegeta-

tion. Distinct regeneration patterns are affected by land-use

history and the various land management practices follow-

ing deforestation. Different SS stages have different stand

structures, species compositions, and biomass. Although it

is difficult to define regrowth classes in the Amazon, the use

of vegetation structure data and remote sensing techniques

improves the capability of distinguishing them. These

initiatives comply with the need to monitor LULC in the

region based on the rationale that secondary vegetation will

not preserve the total biodiversity of mature forests, but it

plays an important role in the Amazonian forest’s structure

and function (Smith et al., 1997).

Pioneer species such as light-demanding herbaceous

plants, grasses, vines, seedlings, and saplings dominate in

the initial secondary succession (SS1) stage. These species

have a short life cycle, high growth rate, and high repro-

ductive resource allocation (Gómez-Pompa & Vásquez-

Yanes, 1981). Some tree species become important after

the second or third year of regrowth. Besides palms, species

commonly associated with this period include Vismia sp.

and Cecropia sp. The density of saplings is higher than the

density of trees, indicating their importance within the

structural characteristics of SS1.

In intermediate secondary succession (SS2) stage, vege-

tation structure results from a mix of dense ground cover of

saplings and young trees with higher canopy than SS1 and

very small internal difference between canopy and under-

story individuals. Young trees are already present but

saplings still have a higher density. A more closed canopy

alters the microclimate, improving conditions for shade-

tolerant tree species and creating an unsuitable environment

for pioneer species. This profound change sets the path to a

more advanced stage of vegetation regrowth.

In advanced secondary succession (SS3), trees occupy

the canopy and vegetation structure presents obvious

stratification. Although large Cecropia are still present,

most pioneer species give way to slow-growing, shade-

tolerant forest species. The general appearance of this

vegetation type in terms of canopy layers is similar to a

forest. However, trees are still not as high or thick, as

explained below. In SS3, there is a major shift in structure

that differentiates understory from canopy individuals; that

is, the presence of saplings is less significant than that of

trees. One can find differences between the canopy and

understory in terms of height and density of individuals at

both levels. SS3 presents a less continuous vertical profile
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and a clear distinction between dominant trees and less

dense saplings.

In the mature forest, above-ground biomass and vegeta-

tion density can be significantly different depending on soil

conditions, species composition, and topography at the site.

Some mature forests have tree diameter at breast height

(DBH), tree height, and above-ground biomass similar to

SS3. In a typical mature forest, trees account for the

majority of above-ground biomass, often more than 90%.

Despite these variations, the vegetation formation comprises

relatively widely spaced tree individuals, sometimes includ-

ing palms, bamboo, and lianas. A more detailed description

about the vegetation stand structure of different SS stages

and mature forest can be found in Moran and Brondı́zio

(1998), Batistella (2001) and Lu (2001).
3. Evaluation of SS classification methods

Different approaches have been used to identify SS

stages in previous research. The most straightforward meth-

od is based on the vegetation age (Saldarriaga, West, Tharp,

& Uhl, 1988; Uhl, Buschbacher, & Serrao, 1988). However,

vegetation stands can be significantly influenced by land-

use history (Uhl et al., 1988), soil fertility (Moran et al.,

2000), original vegetation, and clearing size (Tucker, Bron-

dı́zio, & Moran, 1998). Age alone cannot be used to predict

SS stages since many factors can strongly affect structural

characteristics within the same age class. Moran and Bron-

dı́zio (1998) defined regrowth stages of Amazonian tropical

forest based on the analysis of average stand height and

basal area. They found that stand height was a significant

discriminator for SS1, SS2 and SS3. Tucker et al. (1998)

analyzed physiognomic characteristics in two different Am-

azonian sites to classify SS stages and found that the central

discriminating factor between stages of succession was the

contribution of saplings and trees to the fallow’s total basal

area. Sapling/tree basal area relations can help predict other

structural features and effectively differentiate SS stages in

the field. Lu (2001) used canonical discriminant analysis

(CDA) to identify different SS stages and mature forest in

the eastern Amazon based on field measurements. The ratio

of tree biomass to total biomass (RTB) was found to be a

good biophysical parameter in differentiating SS stages. The

vegetation samples were grouped as SS1 when RTB was

less than 15%, SS2 when RTB ranged from 16% to 45%,

SS3 when RTB ranged from 46% to 89%, and mature forest

when RTB was greater than 90%. As an alternative, a

combination of stand parameters can be used to identify

SS stages. Average stand diameter and height are more

appropriate in differentiating SS stages, and above-ground

biomass and average stand diameter are more suitable for

separating mature forest from SS stages (Lu, 2001).

Remotely sensed data have been applied extensively for

vegetation and LULC classification. In the Brazilian Ama-

zon, remote-sensing technology has been extensively used
to classify LULC or SS and to detect deforestation (Adams

et al., 1995; Batistella, 2001; Brondı́zio, Moran, Mausel, &

Wu, 1996; Brondı́zio et al., 1994; Foody & Curran, 1994;

Foody, Palubinskas, Lucas, Curran, & Honzák, 1996; Li et

al., 1994; Lu, 2001; Lu et al., 2002b; Lucas et al., 1993;

Mausel et al., 1993; McCracken et al., 1999; Moran &

Brondı́zio, 1998; Moran, Brondı́zio, & Mausel, 1994;

Moran, Brondı́zio, Mausel, & Wu, 1994; Rignot, Salas, &

Skole, 1997; Roberts et al., 1998, 2002; Saatchi, Soares, &

Alves, 1997; Steininger, 1996; Yanasse et al., 1997). Sup-

ported by abundant and accurate field measurements from

all classes of interest, Mausel et al. (1993) analyzed Landsat

TM spectral responses of different SS stages and classified

the vegetation into SS1, SS2, SS3, and mature forest using

an extraction and classification of homogeneous objects

(ECHO) classifier. Similar studies were conducted by

Brondı́zio et al. (1996), Li et al. (1994) and Moran,

Brondı́zio, and Mausel (1994). However, the classification

accuracy greatly depends on the availability and quality of a

very large number of training data sets. Confusion often

occurs between degraded pasture and SS1, between differ-

ent SS stages, and between advanced SS and mature forests,

since there is no clear distinction between these vegetation

classes. For example, the canopy structure of SS3 and

mature forest can be very similar although they have

significantly different ages and above-ground biomass.

The LMM approach is regarded as a physically based image

analysis tool. It supports repeatable and accurate extraction

of quantitative subpixel information (Roberts et al., 1998;

Smith et al., 1990). The fraction images indicate physical

characteristics. Therefore, LMM has the potential to provide

a better classification of successional and mature forests.
4. Linear mixture model

The LMM approach assumes that the spectrum measured

by a sensor is a linear combination of the spectra of all

components within the pixel (Adams et al., 1995; Roberts et

al., 1998; Ustin et al., 1998). The mathematic model of

LMM can be expressed as

Ri ¼
Xn
k¼1

fkRik þ ei; ð1Þ

where i = 1, . . ., m (number of spectral bands); k = 1, . . ., n
(number of endmembers); Ri is the spectral reflectance of

band i of a pixel, which contains one or more endmembers;

fk is the proportion of endmember k within the pixel; Rik is

known as the spectral reflectance of endmember k within the

pixel on band i, and ei is the error for band i. For a

constrained unmixture solution, fk is subject to the following

restrictions:

Xn
k¼1

fk ¼ 1 and 0VfkV1: ð2Þ
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The RMS error was used to assess the fit of the model.

The RMS was computed using

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

e2i

 !,
m

vuut : ð3Þ

The RMS error is calculated for all image pixels. The

larger the RMS error, the worse the fit of the model (Mather,

1999). So, the error image can be used to assess whether the

endmembers are properly selected and whether the number

of selected endmembers is sufficient.

The high quality of fraction images greatly depends on

proper selection of endmembers and sufficient number of

endmembers. A variety of methods were used to determine

endmembers. For example, the endmembers can be

obtained from (1) a spectral library, if available, such as

provided by ERDAS IMAGINE and ENVI software pack-

ages; (2) laboratory or field reflectance measurements; (3)

the image itself (Quarmby et al., 1992; Settle & Drake,

1993) or high-order principal component analysis (PCA)

eigenvectors (Boardman, 1993); (4) spectrally pure pixels

that are identified using the Pixel Purity Index (PPI)

(Boardman, Kruse, & Green, 1995), which are selected

manually by visualizing the PPI results in an N-dimen-

sional visualizer with ENVI (RSI, 2000); (5) using manual

endmember selection (Bateson & Curtiss, 1996), a multi-

dimensional visualization technique for interactively ex-

ploring the mixing space in search of spectra to designate

as endmembers; and (6) the combination of image and

reference endmember selection methods, including a spec-

tral alignment of the image endmembers to the reference

endmember spectra, and a calibration relating the image

endmembers to the reference endmembers (Roberts, Smith,

& Adams, 1993; Smith et al., 1990). Some previous

literature has discussed and summarized the methods for

endmember selection (Adams, Smith, & Gillespie, 1993;

Mustard & Sunshine, 1999; Tompkins, Mustard, Pieters, &

Forsyth, 1997). For many applications of LMM, image

endmembers are used because they can be obtained easily,

representing spectra measured at the same scale as the

image data (Roberts et al., 1998). The endmembers are

regarded as the extremes of the triangles of an image

scattergram. For example, the green vegetation (GV)

endmember has high reflectance in TM 4 and low reflec-

tance in TM 3, the soil endmember has high reflectance in

TM 3 and TM 4, and the shadow endmember has very low

reflectance in TM 3 and TM 4. It is important to consider

spatial scale and to avoid outliers when endmembers are

determined from the image itself.

The method to define the number and types of end-

members varies with specific applications but includes

statistical procedures (e.g., factor analysis) to identify the

intrinsic dimensionality of the data, or specification of

materials of known interest (Ustin, Smith, & Adams,

1993). A common approach for determining the number
of endmembers is to find the PCA eigenvectors or direc-

tions accounting for most of the variance in the data

(Ichoku & Karnieli, 1996). Typically, three to seven

endmembers are appropriate for most applications, depend-

ing on the number of channels used and the spectral

variability of the scene components (Mustard & Sunshine,

1999). Ustin et al. (1996) indicated that regardless of the

number of bands, only two to six endmembers were

needed to characterize the overall variance in the image

to the noise level. For example, three endmembers (e.g.,

GV, shade and soil) or four endmembers (e.g., GV, shade,

soil and non-photosynthetic vegetation or NPV) are often

used on the TM image (Adams et al., 1995; Aguiar et al.,

1999; Cochrane & Souza, 1998; Smith et al., 1990;

Shimabukuro & Smith, 1995; Roberts et al., 1998, 2002;

Ustin et al., 1998).
5. Study area and field data collection

Rondônia has experienced high deforestation rates dur-

ing the last decade. The deforestation rates in Rondônia

range from 1.14% to 2.62% per year between 1991 and

2000, much higher than the overall deforestation rate

(ranging from 0.37 to 0.80% per year) in the Brazilian

Amazon basin at the same period (INPE, 2002). Following

the national strategy of regional occupation and develop-

ment, colonization projects initiated by the Brazilian gov-

ernment in the 1970s played a major role in this process

(Moran, 1981; Schmink & Wood, 1992). Most colonization

projects in the state were designed to settle landless

migrants. Batistella et al. have compared distinct settlement

strategies implemented in the early 1980s (Batistella,

Brondı́zio, & Moran, 2000; Batistella & de Castro, 2001),

calling attention to the need for multitemporal LULC

assessments to understand the history of occupation and

the trends for the future. The accurate classification of

vegetation types responds to this demand. The data used in

this study were collected in Machadinho d’Oeste in north-

eastern Rondônia (Fig. 1). Settlement began in this area in

the mid-1980s, and the immigrants transformed the forested

landscape into a patchwork of cultivated crops, pastures,

and a vast area of fallow land. The climate in Machadinho

d’Oeste is classified as equatorial hot and humid, with

tropical transition. The well-defined dry season lasts from

June to August, and the annual average precipitation is

2016 mm (Rondônia, 1998). The annual average tempera-

ture is 25.5 jC and monthly relative humidity averages

between 80% and 85%. These characteristics make the

monthly potential evapotranspiration very constant, and the

real and potential evapotranspiration are coincident with

exception for the dry months (Shuttleworth, 1998). The

terrain is undulated, ranging from 100 to 450 m above sea

level. Several soil types, such as alfisols, oxisols, ultisols,

alluvial soils, and other less spatially represented associa-

tions, were identified (Miranda & Mattos, 1993). Settlers,
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rubber tappers, and loggers inhabit the area, transforming

the landscape through their economic activities and use of

resources.

Fieldwork was carried out during the dry seasons of

1999 and 2000. Preliminary image classification and band

composite printouts indicated candidate areas to be sur-

veyed, and a flight over the areas provided visual insights

about the size, condition, and accessibility of each site.

After driving extensively throughout the settlements, field

observations gave a sense about the structure of regrowth

stages, mainly regarding total height and ground cover of

dominant species. Indicator species, such as Cecropia sp.,

Vismia sp., palms, grassy vegetation, and lianas also

helped to assign the SS stages. The procedure used for

surveying vegetation was a multilevel technique adapted

from methods used by researchers at the Center for the

Study of Institutions, Population, and Environmental

Change (CIPEC) (CIPEC, 1998). After defining the area

to be surveyed (plot sample), three subplots were random-

ly installed to cover the variability within the plot sample.

A subplot is composed of three nested squares: one for

sampling ground cover and tree or woody climber species

seedlings (1 m2); one for sampling sapling information (9
m2); and one for sampling trees and woody species (100

m2). The center of each subplot was randomly selected.

Seedlings were defined as young trees or shrubs with a

maximum stem diameter less than 2.5 cm. Saplings were

defined as young trees with DBH from 2.5 cm to less than

10 cm. Trees were defined as woody plants with a DBH

greater than or equal to 10 cm. Height, stem height, and

DBH were measured for all trees in the 100 m2 area.

Height and DBH were measured for all saplings in the 9

m2 area. Ground cover estimation and counting of indi-

viduals were carried out for seedlings and herbaceous

vegetation in the 1 m2 area. Every plot was registered

with a global positioning system (GPS) device to allow

further integration with spatial data in geographic infor-

mation systems (GIS) and image processing systems.

Forty plots and 120 subplots were measured during the

fieldwork in 1999 and 2000. Meanwhile, many sites

covering different land-cover types were also identified

and land-use history was recorded during the fieldwork.

Some of the field data were used for classification and

some were used for test data. IKONOS data were also

used to identify more test sites for classification accuracy

assessment.
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6. Vegetation classification

Fig. 2 illustrates the framework for vegetation classifica-

tion using LMM. TM data acquired on June 18, 1998, were

radiometrically calibrated and atmospherically corrected

into surface reflectance using an improved image-based

dark object subtraction (DOS) model (Chavez, 1996; Lu,

Mausel, Brondı́zio, & Moran, 2002a). The path radiance

was identified based on clear water for each band. The

atmospheric transmittance values for visible and near infra-

red bands were derived from Chavez (1996), which were an

average for each spectral band derived from radiative

transfer code. For middle infrared bands, the atmospheric

transmittance was set to one. The image was geometrically

rectified based on control points taken from topographic

maps at 1:100,000 scale (UTM south 20 zone). Nearest-

neighbor resampling technique was used. The RMS error

was smaller than 0.5 pixel.

Image endmembers were derived from the extremes of

the image feature space, assuming they represent the purest

pixels in the images (Mustard & Sunshine, 1999). Three

endmembers (shade, soil and GV) were identified from the

scattergram of TM 3 and TM 4 and the scattergram of TM 4

and TM 5. An average of 4–10 pixels of these vertices was

calculated. When selecting the endmembers, caution must

be taken to identify outliers. Appropriate selection of image

endmembers is very important and is often an iterative
Fig. 2. Framework of LMM application to vegetation classification.
process. The RMS error image was one of the indicators

to assess whether the selected endmembers were appropriate

or not. A constrained least-square solution was used to

unmix the mixture model.

Different SS stages have different shade and GV fractions,

in which the majority of vegetation information is concen-

trated. The ratio of shade to GV has the potential to improve

the separability between SS stages. The soil fraction contains

less vegetation information and was not useful in the SS

classification. After the fractions were developed, different

analysis methods were used: (1) the fractions were used as

input for other classifiers such as MLC; (2) definition of

threshold for each SS stage based on GVand shade fractions;

and (3) definition of thresholds based on the shade-to-GV

ratio image. As a comparison, MLC was also conducted on

the atmospherically corrected TM image. Because GPS

devices provided the coordinates for ground-reference data

during fieldwork, the sample plots can be accurately linked

to TM imagery or endmember fraction images for classifi-

cation or determination of threshold ranges for each class.

Data from 60 sample plots were used for definition of

thresholds for each successional and mature forest class or

for training sample sets in MLC. The image value for each

sample plot was extracted based on selected polygons, with

polygon sizes ranging from 6 to 15 pixels for successional

forests and from 15 to 25 pixels for mature forest.

The definition of thresholds is an important factor affecting

the final classification results. However, it is not easy to find

the optimal thresholds for each class because of the smooth

transition between different successional stages and mature

forest. It is often an iterative process to find the best thres-

hold. The following steps provide the method used for deter-

mining an appropriate threshold for each vegetation class:

1. Define the areas of interest (AOIs) using the ERDAS

IMAGINE AOI tool on the endmember fraction images

that correspond to known classes of vegetation based on

field observations.

2. Report the statistics (e.g., minimum, maximum, mean,

and standard deviation) and draw graphs for each

vegetation class.

3. Define the thresholds for each class based on the graph

and statistics.

4. Classify vegetation classes using the defined thresholds.

5. Assess the classified image through comparison with

ground-truth data.

6. Refine the threshold and implement classification again.

Because of the extensive time involved and difficulty in

defining the optimum threshold for each SS class, it is

necessary to adopt other methods to avoid manually defin-

ing thresholds. One way to solve this problem is to use the

fraction images as inputs and then to use traditional classi-

fiers to classify the fraction images. In this paper, MLC is

used to classify the vegetation classes on the GV and shade

fraction images.
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A common method for classification accuracy assess-

ment is through the use of an error matrix. Previous

literature has provided the meanings and calculation meth-

ods for overall accuracy (OA), producer’s accuracy (PA),

user’s accuracy (UA), and kappa coefficient (Campbell,

1996; Congalton, 1991; Congalton & Mead, 1983; Con-

galton, Oderwald, & Mead, 1983; Janssen & van der Wel,

1994; Jensen, 1996; Kalkhan, Reich, & Czaplewski, 1997;

Khorram, 1999; Smits, Dellepiane, & Schowengerdt, 1999).

Kappa analysis was recognized as a powerful technique

used for analyzing a single error matrix and comparing the

difference between different error matrices (Congalton,

1991; Smits et al., 1999). A detailed description about the

kappa analysis can be found (Congalton et al., 1983;

Congalton, 1991; Hudson & Ramm, 1987; Kalkhan et al.,

1997; Smits et al., 1999). In this paper, an error matrix for

each classification method was produced. UA, PA, OAwere

calculated for each classification method. KHAT statistic,

kappa variance, and Z statistic were used to compare the

performance among different classification methods.
7. Results and discussions

Fig. 3 illustrates reflectance curves of different SS stages

and mature forest in the atmospherically corrected TM

images. It indicates that mature forest has a low reflectance
Fig. 3. TM reflectance curves of successional and mature forests.

Fig. 4. Comparison of endmember fractions among successional and mature

forests.
value in each TM band and a better separability from SS

stages, especially in the near infrared band TM 4 and the

middle infrared band TM 5. SS1 and SS2 have similar

reflectance. This confirms the opinion of many scholars that

classification of SS stages based on pure spectral materials

is very difficult using per-pixel classifiers such as the MLC.

Fig. 4 provides a comparison between different SS stages

and mature forest based on endmember fractions and the

ratio of shade to GV fractions. It shows that the GV fraction

decreases as vegetation changes from SS1 to SS3 and to

mature forest, but shade fraction increases as vegetation

grows. Mature forest has the highest shade fraction and the

lowest GV fraction. In contrast, SS1 has the lowest shade

fraction and highest GV fraction. Different SS stages and

mature forests have very low soil fraction values and cannot

be discriminated based on the soil fraction image. The

characteristics of different SS stages and mature forest in

GV and shade fraction images provide the potential to better

discriminate the vegetation classes. The ratio of shade-to-

GV fraction enlarges the separability among mature forest

and different SS stages, providing the possibility to further

improve the discrimination among different SS stages and

mature forest.

Fig. 5 illustrates part of the study area associated with

fraction images of soil, shade, and GV endmembers, respec-

tively. Urban, road, and bare soil appear white on the soil



Fig. 5. Fraction images of soil, shade, and GV endmembers for part of the study area.
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fraction (Fig. 5A) due to their high fraction values. Pasture

and agricultural lands appear grey, successional and mature

forests, and water appears black due to its very low soil

fraction values. In contrast, in the shade fraction image (Fig.

5B), water appears white and mature forests appear brighter

grey due to their high shade fraction values. Successional

forests, some agricultural land such as coffee plantation and

degraded pasture appear grey. Urban areas, roads, and bare

soil appear dark grey. On the shade fraction image, mature

forest has significant different fraction values compared

with other land-cover types. On the GV fraction image

(Fig. 5C), successional forests, especially SS1 and SS2,

appear white due to their high GV fraction values. Mature
forests appear grey. Pasture and agricultural lands had a

wide variation in GV fraction. Some of them (e.g., degraded

pasture, coffee plantation) had similar GV fractions as

successional forests. Water, urban, and bare soils appear

black. Fraction differences between the various land-cover

types provide the basis for better separation of land-cover

classes using the LMM approach. The polygons overlaid on

the GV fraction image (Fig. 5C) illustrate the link between

field data and image data.

Fig. 6 illustrates the classified image generated using the

threshold method on shade-to-GV ratio image. Water was

first derived from the shade fraction image. Urban and bare

soils, pasture and agricultural lands were classified from the



Fig. 6. Land-cover distribution using the threshold method on shade-GV ratio image.
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soil fraction. These non-forested areas were masked out

from GV and shade fraction images. Thus only successional

and mature forests remained on the GV and shade fraction

images for further classification. The threshold ranges for

each successional and mature forest class were defined

based on the integration of field sample sets and fraction

images as previously indicated. The classified image indi-

cated that mature forest accounted for most of the study

area. Different successional forests, agricultural lands, and

pastures were distributed along both sides of roads.

The accuracy assessment for each classified image was

conducted based on the test data from field work and

IKONOS data. The error matrix was created for each
classification method through the comparison of test data

and the classified image. Table 1 provides the error matrix,

from the thresholding method based on shade-to-GV ratio

images. Approximately 78.2% of overall accuracy was

obtained. Mature forest had the highest classification accu-

racy, with 98.5% of PA and 95.6% of UA. SS3 had the

lowest accuracy, with only 57.9% of PA and UA.

Table 2 shows the comparison of accuracy between

different analysis methods. The methods used were (1)

thresholding based on ratio of shade-to-GV fraction images;

(2) thresholding based on GVand shade fraction images; (3)

MLC on atmospherically corrected TM image; and (4) MLC

on shade and GV fractions. Table 2 indicates that the LMM



Table 3

Comparison of kappa analysis results between error matrices

Comparison Z-Statistic Confidence level (%)

95 90 80

(1) vs. (2) 0.3866 NS NS NS

(1) vs. (3) 1.7974 NS S S

(1) vs. (4) 0.2674 NS NS NS

(2) vs. (3) 1.4100 NS NS S

(2) vs. (4) � 0.1192 NS NS NS

(3) vs. (4) � 1.5292 NS NS S

(1) Thresholding on shade-GV ratio image; (2) Thresholding on GV and

shade fraction images; (3) MLC on atmospherically corrected TM image;

(4) MLC on GV and shade fraction images; S—Significant difference;

NS—No significant difference.

Table 1

An error matrix for the classified image derived from the threshold of

shade-GV ratio image

Classified data Reference data

SS1 SS2 SS3 MF Other Row total UA%

SS1 21 10 1 0 6 38 55.26

SS2 6 23 4 0 3 36 63.89

SS3 1 4 11 1 2 19 57.89

MF 0 0 3 65 0 68 95.59

Other 2 1 0 0 38 41 92.68

Column total 30 38 19 66 49 202

PA% 70.00 60.53 57.89 98.48 77.55

UA= user’s accuracy; PA= producer’s accuracy; Other includes pasture,

agricultural land, urban areas, bare soils, and water.
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approach achieved accuracies approximately 5.9–7.4%

higher than the MLC (76.7–78.2% for LMM approaches

vs. 70.8% for MLC approach). The shade-to-GV ratio image

provided the highest overall accuracy, mainly through

improved discrimination between successional stages—a

particularly valuable contribution. The MLC on shade and

GV fractions provided similar classification accuracies as

the threshold methods. The KHAT statistic of each classifi-

cation method also confirmed that the LMM approach

provided better classification results than that using MLC

on TM images.

Table 3 shows the kappa analysis results between the

error matrices. It indicates that these methods were not

significantly different at the 95% confidence level, but the

thresholding method based on shade-to-GV ratio image was

significantly better than the MLC on TM image at the 90%

confidence level. Also the thresholding method and MLC

based on the GV and shade images showed significantly

better performance than MLC on TM image at the 80%

confidence level. The results imply that LMM is an effective

analysis tool that improved the separability of different

successional stages and mature forest in the Amazon basin.

As previously indicated, the LMM approach provides

fractions with biophysical meaning. The fraction value

derived from the LMM approach represents areal proportion

of each endmember in a pixel. Different successional stages

have their own stand structure features, thus leading to
Table 2

Comparison of accuracy analysis results among different classification methods

Classified classes Thresholding on shade-GV

ratio image

Thresholding on G

shade image

UA% PA% UA%

SS1 55.26 70.00 50.00

SS2 63.89 60.53 63.89

SS3 57.89 57.89 52.63

Forest 95.59 98.48 97.06

Other 92.68 77.55 90.24

OA% 78.22 76.73

KHAT Statistic 0.7173 0.6972

KAPPA Variance 0.00131957 0.00137711

UA= user’s accuracy; PA= producer’s accuracy; OA= overall accuracy.
different proportional composition of endmembers. In

SS1, grassy vegetation and pioneer species dominate the

majority of above-ground biomass. In this stage, dense

ground structure with lack of stratification and a structured

canopy of trees results in high GV but low shade fraction

values. In SS2, although young trees appear, the saplings

account for most of the above-ground biomass. The vege-

tation stand in this stage lacks obvious stratification. This

characteristic is reflected on GV and shade fractions with

fraction values similar to those of SS1. In SS3, trees occupy

the canopy with obvious stratification of multilayer struc-

tures. This feature results in significantly reduced GV

fraction but increased shade fraction compared with SS1

and SS2. In mature forest, the majority of the biomass is in

woody vegetation. A well-stratified and well-structured

vegetation stand is formed. This makes the GV fraction

lower still but the shade fraction is higher than in SS3. The

GV and shade fractions are more closely related to the

vegetation stand structures, especially the vertical structure

and canopy geometry of vegetation stands. As vegetation

grows from SS1 to SS3 and mature forest, shade content

increases because canopies become more heterogeneous

with increasing numbers of gaps and emergents. The pres-

ence of gaps and emergents accounts for increasing shade.

These relationships between vegetation stand features and

fractions imply that GV fraction is more correlated with leaf

area indices and shade fraction is more correlated with
V and MLC on TM image MLC on GV and

shade image

PA% UA% PA% UA% PA%

63.33 44.74 51.52 50.00 63.33

57.50 61.11 56.41 63.89 57.50

62.50 42.11 53.33 52.63 66.67

98.51 92.65 98.44 97.06 98.51

75.51 80.49 64.71 92.68 76.00

70.79 77.23

0.6207 0.7034

0.00157017 0.00136019
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canopy geometry and stratification, especially in advanced

SS and mature forests.

Different successional forests have their own composi-

tion of GV and shade fractions. If multitemporal or multi-

scene TM data used in a specific project with similar

landscape and environmental conditions are radiometrically

and atmospherically calibrated, the LMM approach can

provide stable fraction results. Thus the threshold methods

based on the LMM fraction images can be extrapolated to

different dates of TM images for change detection or for

classification of land covers in a large area. Some previous

research has shown that the LMM is a promising approach

for land-cover classification and change detection in the

moist tropical region (Adams et al., 1995; Roberts et al.,

1998, 2002). Caution must be taken when the multitemporal

TM data have different sun elevation angles, especially in a

rugged region. In this case, accurate topographic correction

using digital elevation model (DEM) data may be necessary.

Earlier work on SS classification based on field measure-

ments indicated that some biophysical parameters (e.g.,

average stand height, biomass, ratio of sapling to tree basal

area, and RTB) are sensitive to the change of SS stages (Lu,

2001; Moran & Brondı́zio, 1998; Tucker et al., 1998).

Meanwhile, soil fertility, topography, land-use history, and

original vegetation influence the rate of vegetation regrowth

(Lu, Moran, & Mausel, 2002; Moran et al., 2000). Vegeta-

tion stand structures, vegetation vigor, species composition,

and soil conditions affect the reflectance values captured by

remote sensing sensors. Because of the complexity of

biophysical environments on SS stages, remote-sensing

signatures cannot effectively reflect the difference between

SS ages. This makes classification difficult in subclasses of

succession. However, the GV and shade fractions that were

developed using the LMM approach provided better rela-

tionships with biophysical parameters of SS stages. This

implies a potential to improve the separability between the

SS stages as indicated in Fig. 4 and in Tables 2 and 3. Also,

GV fraction is increasing but shade fraction is decreasing as

successional stand structure changes from SS1 to SS3 and to

mature forest, so the ratio of shade-to-GV fractions provides

a way to enhance the difference between SS stages and

improve the classification accuracy. On the other hand, it is

much easier to define the optimal thresholds for each

successional class on the ratio image than on the GV and

shade fraction images.

Although the LMM approach provided better results than

MLC, the classification accuracies of successional forests

are still unsatisfactory. The main reason is that no clear

boundary exists between the successional stages. For exam-

ple, some SS1 vegetation has similar stand structure with

SS2. Also some degraded pastures and coffee plantations

are confused with successional forests, reducing the classi-

fication accuracy. Previous study also indicates that classi-

fication of tropical SS vegetation purely based on spectral

signature is often unsuccessful. Spectral-spatial-based clas-

sifiers were confirmed to provide better results than other
per-pixel classifiers (Brondı́zio et al., 1996; Mausel et al.,

1993; Moran, Brondı́zio, & Mausel, 1994). However, due to

the limitation of radiometric and spectral resolutions, it is

difficult to greatly improve the SS classification accuracy. In

terms of the availability of new sensors and data, optical and

microwave data provide complementary information about

land cover and forest fragmentation. Besides overcoming

the problem of cloud cover, use of radar data or integration

of radar data with multispectral data is a promising way for

future land-cover mapping of the Amazon (Rignot et al.,

1997; Saatchi et al., 1997; Yanasse et al., 1997). Hyper-

spectral data, such as produced by the Airborne Visible/

Infrared Imaging Spectrometer (AVIRIS) has the potential to

provide the means to achieve better classification of SS

stages. An alternative to improve the extraction of Earth

surface feature information for vegetation classifications in

the Amazon is the use of state-of-the-art techniques for

image processing and classification. Among others, spectral

mixture analysis (Adams et al., 1995; Roberts et al., 1998),

spatial-spectral classifiers (Foody et al., 1996), spectral

indices of canopy brightness (Steininger, 1996) and GIS-

informed classifications (Hinton, 1996; Batistella et al.,

2000) are among the main trends to improve monitoring

of SS.
8. Conclusion

In the Amazon basin, mixed pixels in Landsat TM

images are common because of the complex vegetation

stand structure, abundant vegetation species, and the limi-

tations of spatial resolution from remotely sensed data in

such a heterogeneous environment. Without extensive field

data collection, previous research on successional and

mature forest classification using per-pixel classifiers such

as the MLC has not provided satisfactory classification

results of secondary succession because a per-pixel classifier

cannot handle mixed pixels. In this research, a constrained

linear mixture model approach was used to classify succes-

sional and mature forests in Rondônia, Brazilian Amazon.

This research indicates that the linear mixture model ap-

proach is a promising method in discriminating secondary

succession and mature forest. An overall accuracy of 78.2%

was achieved, which represents an accuracy increase of

about 7.4% compared to the MLC. The shade and GV

fractions are particularly suitable to discriminate succession-

al and mature forests, because they provide biophysical

structural information. As vegetation grows, the GV fraction

decreases and the shade fraction increases. Using a ratio of

shade-to-GV fraction slightly improved the discrimination

among vegetation classes, and classification using the MLC

on GV and shade fraction images provided accuracy similar

to that of threshold methods. This indicates that GV and

shade fraction images developed using the linear mixture

model approach provided a better separability between

successional and mature forests.
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estation in Amazônia. In D. Liverman, E. F. Moran, R. R. Rindfuss, &

P. C. Stern (Eds.), People and pixels: Linking remote sensing and

social science ( pp. 94–120). Washington, DC: National Academy

Press.

Moran, E. F., Brondı́zio, E. S., & Mausel, P. (1994). Secondary succession.

Research and Exploration, 10, 458–476.

Moran, E. F., Brondı́zio, E. S., Mausel, P., & Wu, Y. (1994). Integrating

Amazonian vegetation, land use and satellite data. BioScience, 44,

329–338.

Moran, E. F., Brondı́zio, E. S., Tucker, J. M., da Silva-Forsberg, M. C.,

McCracken, S. D., & Falesi, I. (2000). Effects of soil fertility and land

use on forest succession in Amazônia. Forest Ecology and Manage-
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eastern Amazônia: I. Patterns of plant succession. Journal of Ecology,

76, 663–681.

Ustin, S. L., Hart, Q. J., Duan, L., & Scheer, G. (1996). Vegetation map-

ping on hardwood rangelands in California. International Journal of

Remote Sensing, 17, 3015–3036.

Ustin, S. L., Roberts, D. A., & Hart, Q. J. (1998). Seasonal vegetation

patterns in a California coastal savanna derived from Advanced Visi-

ble/Infrared Imaging Spectrometer (AVIRIS) data. In R. S. Lunetta, &

C. D. Elvidge (Eds.), Remote sensing change detection: Environmental

monitoring methods and applications ( pp. 163–180). Ann Arbor, MI:

Ann Arbor Press.

Ustin, S. L., Smith, M. O., & Adams, J. B. (1993). Remote sensing of

ecological process: A strategy for developing and testing ecological

models using spectral mixing analysis. In J. Ehleringer, & C. Field

(Eds.), Scaling physiological process: Leaf to globe (pp. 339–357).

San Diego, CA: Academic Press.

Ustin, S. L., Smith, M. O., Jacquemoud, S., Verstraete, M., & Govaerts, Y.

(1999). Geobotany: Vegetation mapping for Earth sciences. In A. N.

Rencz (Ed.), Remote Sensing for the Earth Sciences: Manual of Remote

Sensing, vol. 3 (3rd ed.) (pp. 189–233). New York: Wiley.

Yanasse, C. C. F., Sant’Anna, S. J. S., Frery, A. C., Rennó, C. D., Soares,
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