ESTIMATION OF THE POPULATION COVARIANCE COEFFICIENT
FOR SPLIT-PLOT EXPERIMENTS'
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ABSTRACT - In this paper the full Maximum Likelihood Estimator is developed for-the true
covariance coefficient3, to allow covariance adjustments in split-plot experiments when the main
and split-plot residual regression coefficients may be assumed to be equal. Intuitively, pooled
estimators should produce the most efficient analysis (as compared with the split-plot regression
coefficient, which is frequently used to adjust main and split-plot treatment means). The
comparison of the MLE against the Cochran and the split-plot estimators has been investigated.
The general conclusion is that, from the practical point of view, the full MLE will perform better
than the Cochran’s and the split-plot estimators. The Likelihood Ratio Test of the hypothesis
that the main-plot and split-plot covariance coefficients are equal, together with the relationship
between the observed and asymptotic powers is investigated.

Index terms: maximum likelihood estimation, likelihood ratio test, covariance coefficients,
split-plot analysis, covariance analysis, bias, mean squared error.

ESTIMACAO DO COEFICIENTE DE COVARIANCIA POPULACIONAL
PARA EXPERIMENTOS EM PARCELAS-SUBDIVIDIDAS

RESUMO - Neste trabalho, o estimador de Méxima Verossimilhanga € desenvolvido para o
verdadeiro coeficiente de covariéncia 8 , permitindo ajustamentos pela covaridvel em experi-
mentos de parcelas subdivididas quando os coeficientes de regressdo residual para as parcelas
principais e subparcelas sdo consideradas iguais. Intuitivamente, estimadores conjuntos devem
produzir uma andlise mais eficiente (quando comparada com o coeficiente de regressdo das par-
celas subdivididas, o qual € freqilentemente usado para ajustar as médias de tratamentos nas
parcelas e subparcelas). A comparagfio do estimador de Méxima Verossimilhanga com os esti-
madores de Cochran € o da subparcela foi investigada. Como concluséo geral do ponto de vista
prético, o estimador de Mdxima Verossimilhanga apresentou melhor desempenho do que os ou-
tros dois estimadores. E estudado o Teste da Razfio de Probabilidades para hipéteses de que os
coeficientes de covaridncia para parcelas e subparcelas s40 iguais, bem como a relagdo entre po-
deres assint6ticos € observados.

Termos para indexacdo: estimagfo de méxima-verossimilhanga, teste da razdo de méaxima-veros-
similhanga, coeficiente de covarincia, parcelas-subdivididas, andlise de covaridncia, bias, qua-
drado médio do erro.

INTRODUCTION
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The Analysis of Covariance introduced by
Fisher (1946) is an important statistical
method, enabling us to reduce the experimental
error by eliminating certain environmental
effects not controlled by experimental design. It
is usually assumed that these environmental
effects or concomitant variables are not related
to treatments, but whether or not this is true, it
is possible to adjust for them by using the Anal-
ysis of Covariance, which should be expected to
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result in an increase of accuracy for treatment
comparisons.

The adjustment of the dependent variable
for the effect of the independent (or concomi-
tant) variable in the Analysis of Covariance can
be regarded as a technique which combines the
features of Analysis of Variance and Regres-
sion.

For split-plot designs, in where there are two
residual terms in the Analysis of Variance, co-
variance coefficients may be determined for
both main and split-plots. If it is assumed that
the two coefficients are unequal, treatment
means are adjusted using the main-plot coeffi-
cient to adjust the main-plot treatment means,
and using the split-plot coefficient to adjust the
split-plot treatment means. These separate ad-
justments have been suggested by a large num-
ber of authors, such as Federer (1955) and
Kempthorne (1975). When the covariance coef-
ficients are approximately equal, it has been
suggested, for example, by Bartlett (1937),
Cochran (1957) and John & Quenouille (1977)
that the split-plot covariance coefficient be used
for all adjustments. The choice of the split-plot
coefficient is governed by the large variances for
main-plot comparisons.

If the regression coefficientsg; andB, are as-
sumed to be identical at main-plot and split-
plot levels, each part of the analysis provides
only part of the information on the population
regression coefficient B. Therefore, greater ac-
curacy should be possible from combining both
parts in order to obtain a single estimator of the
coefficient, instead of using the split-plot re-
gression coefficient throughout the analysis as
is commonly recommended. The use of a single
pooled estimator of the regression coefficient
has been considered by Cochran (1946), Truitt
& Smith (1956) and, more recently, by Dear &
. Mead (1984).

In the literature there are two estimators of
for simulating adjustment of main-plot and
split-plot comparisons.. These two estimators
are compared in this study. In addition, a third
estimator, the full Maximum Likelihood Esti-
mator (MLE) of the population regression
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coefficient is developed and its performance
compared against these two estimators. The
question of when to use the single estimator is
also considered.

Background

The first estimator, the split-plot covariance
coefficient, was originally proposed by Bartlett
(1937). The residual covariance coefficient of
the dependent variable Y on the concomitant
variable X, at split-plot level, is defined as:

o i S
2

’

EXX (1)

where Ey is the sum of products of the two va-
riables after removing the effects due to main-
plots and treatments; Eyy is the corresponding
sum of squares of the concomitant variable.
Bartlett (1937) argued that, although the adjust-
ed error variance for the main-plot analysis will
be less than the value obtained by a direct
main-plot covariance adjustment, the use of
split-plot coefficient can be quite efficient.

Searching for a more efficient method of ad-
justment for the main-plot comparisons, Co-
chran (1946) provided the second estimator
used in our study. Although Cochran described
this estimator as a Maximum-Likelihood esti-
mator of the true covariance coefficientp, it is
simply a linear combination of the main-plot
and the split-plot sample covariance coefficients.
Cochran’s estimatorf . is a weighted mean of
the two independent sampling coefficients, the
weights being the reciprocals of the variances of
the respective coefficients. It is defined as fol-
lows:
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where b, and b, are the main-plot and split-plot
sample residual covariance coefficients; Dyy is
the residual main-plot sum of squares for the
covariate; o §, and o %, are the theoretical error
variances for main-plot and split-plot, respecti-
vely. Cochran (1946) commented that deriva-
tion of the full MLE of the varianceso §, and
o %,, which depends ong, was not simple. Truitt
& Smith (1956) suggested using the main-plot
and split-plot sampling variances of the obser-
vations, after eliminating variation due to the
covariate, that is

and

e oo (3)

as the estimators of the theoretical variances.
Here, Dyy and Eyvy are the main-plot and
split-plot error sum of squares for the depen-
dent vartable with df; and df, degrees of free-
dom, and D,,, E,, are the respective sum of
products. Their suggestion was based on the
assumption that almost all information about
the true variances is contained in s, and s %,.
They again pointed out the difficulty in deter-
mining the full MLE of the true variances, since
they are functions of the MLE of B.

The next estimator derived in this paper is
the MLE when the covariance coefficients are
the same, that is when the null hypothesis Hy :
B; =B, = B holds. If two samples are drawn
from Bivariate Normally distributed popula-
tions, the sample main-plot and split-plot vari-
ance-covariance matrices are independent and
each follows a Wishart distribution. The Likeli-
hood Function (LF) for the combined informa-
tion is the product of the two separate Likeli-
hood Functions based on the two variance-co-
variance matrices, conditioning on the estima-
ted block and treatment parameters:

-
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where s§;, s{,, and s %,, s %,, are the main-plot
and split-plot sample residual variances, respec-
tively of the dependent and concomitant vari-
ables; o §,,0 %,, and 0 %,,0 %,, are the corres-
ponding population variances; b, and b, are the
separate main-plot and split-plot estimators of
the covariance coefficient. The MLE equations
of the five parameters of the above LF are ob-
tained after the derivatives of In(LF) are
equated to zero. The development of these five
equations, reduces to the cubic equation inf:

[df, (b ,+2b)+df (b +2b, )] .

3 _ Ly =4 et b 5 ﬁa ot
dfi+dfa
2 2 B 2 2 2
[dfisii(2521b1b2+sae)+dfesal(Esiibiba+sie)]
o8- 2
siisai(dfi+9fe)
29 2 2
[d{isiisEEbl + dfasiasaibal T
Eve
siisal(dfi+dfa)

(35)

The reader is referred to Carvalho (1988) for
further details about the development of B. The
other four }ML estimators are obtained by
substituting (8 back in the normal equations, as
follows:
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The Likelihood Ratio Test

A test procedure based on the standard Like-
lihood Ratio statistic in order to test the null
hypothesis of equality of main-plot and split-
plot covariance coefficients against the general
alternative that they are different, may be defin-
ed as follows:

~ ~
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(7)
where the numerator is the LF maximized un-
der Hy : B; = B, = B and the denominator is
the LF maximized under H, : B; # B,
Carvalho (1988) considered two different
situations as follows:
i) The first situation is when both residual
matrices are associated with different df, that is
df, # df,, leading to the following expression
for the Likelihood Ratio Test (LRT):

[ df,
- 2
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where ﬁ is defined by evaluating equation (5).
ii) The second situation is when the residual
matp20 ave the same df, that is df; = df, = df,
resulting in: '
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where ﬁ is obtained from the simplified version
of (5) in which df; = df,.

Since the distributions of (8) or (9) are far
from simple, it would be convenient to use as-
ymptotic approximations. The general result
originally established by Wilks (1938), is that
-21n()) is asymptotically distributed as X%,
where c is the additional number of parameters
requested for the hypothesis Hy. Under the al-
ternative hypothesis, Wald (1943) derived the
asymptotic distribution of -2In(\) (when the reg-
ularity conditions of asymptotic normality and
efficiency of the ML estimators are satisfied), as
being a non-central Chi-Square with ¢ df and
noncentrality parameter 3.

The noncentrality parameter is obtained by
evaluating the Fisher Information matrix I,

giving the following expression for §.
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Based on the fact that the ML estimators
converge in probability to the true parameter
for large sample sizes, the asymptotic power P
may be obtained by making use of the Patnaik
approximation (Patnaik 1949) for the non-cen-
tral X2 distribution in terms of the central X2
distribution.

The reliability of the asymptotic power was
checked against the observed power obtained
from a simulation study with a range of combi-
nations of input parameters. Three different
population variance and covariance structures
(CS), were chosen. For the first CS;, the ratios
between the main-plot and split-plot variances
were 3 : 1 for the concomitant variable,and 2 : 1
for the dependent variable. For CS,, the ratio
was 2:1 and 3:1 and, for CS,, the ratios were
2:1 and 2:1, respectively. For each CS, the

population covariance coefficient was fixed to
vary from -0.5 to 0.0 by 0.1, and the same three
sets of df, df; = df, = 3, df; = 3, df, = 16 and
df; = 12, df, = 75 were used.

The first set, df; = 3 and df, = 3, corresponds
to. a small experiment where there are no
blocks, three levels of the main-plot factor and
two levels of the split-plot factor. The second
set, where df; = 3 and df, = 16, corresponds to
a routine experiment with two blocks, four lev-
els of main-plot factor and five levels of split-
plot factor. Finally, the third set, where df; = 12
and df, = 75, corresponds to a large experiment
with four blocks, five main-plot levels and six
split-plot levels.

The asymptotic approximation was wholly
satisfactory only in the regions near the null
hypothesis, or near the extreme alternative
hypothesis. Otherwise, the power derived from
the asymptotic theory was invariably found to
be an overestimate, even for the large exper-
iment.

The relationship between asymptotic and
observed powers was investigated and it was
found that after a logarithmic transformation of
both powers the relationship was more rea-
sonably fitted by the straight line regression
model, giving the fitted regression:

y= -0.3400 + 0.9128 x (11)

which predicts that the observed log power (y)
increases by 0.9128 for the increase in the cor-
responding of asymptotic log power (x).

Simulation study

If A is any p x p matrix of rank p, and X is a
p dimensional vector with a Multivariate Nor-
mal distribution X - MN (O, I,) then, Y = AX
has a Multivariate Normal distribution Y -
MN(O, 3)), with zero mean and variance-covar-
jance matrix = = A A’; A is lower triangular
and it may be obtained from the Cholesky’s de-
composition of the population matrix 2. To
obtain two independent sample variance-covar-
iance matrices, representing the main-plot and
split-plot variation with any specified correla-
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tion structures %; and X,, we generate inde-
pendent sample of identifically distributed
N(0,1) and calculate the corresponding observa-
tion matrix. 3 i

For each estimator (B, éc and B) for each
of the 54 experimental situations defined in sec-
tion 3, a simulated analysis was repeated a
thousand times (each time with different start-
ing seed) and the observed mean and variance
for each estimator were calculated. In addition,
the same sampling statistics were observed for
the estimators of the theoretical variances, that
is V(B),), V(B,) and V(B).

If the probability of obtaining successfully a
LRT value greater than 3.84 (the critical value
of the Chi-Square distribution with one degree
of freedom at 5%) is fixed to be 50%, we expect
from this size of simulation study, that is one
thousand observations for each set of input pa-
rameters, to have the standard error for the ob-
served power smaller than 2%. From this we
may conclude that the size of the simulation
study which was chosen was sufficient to consid-
er the sampling coefficients as good estimators
of the true parameter.

Comparison of estimators

Two.criteria were used to assess the alterna-
tive estimators of the common covariance coef-
ficient B. They are the Bias and the Mean-Squa-
red Error (MSE). The principal condition for
comparisor of the different estimators using the
MSE criterion, is that their distributions must
have almost the same shape. As Cox & Hinkley
(1974) stated, the MSE statistic may not be a
valuable criterion for comparison if the distri-
butions are of different shapes, particularly if
some estimator has infinite variance.

Before comparing the results for the different
estimators we check that the empirical distribu-
tions are really comparable. Each distribution is
standardized to have zero mean and unit stan-
dard deviation. Then, the agreement among the
empirical distributions can be tested through a
X2 statistic. For each of the 54 experimental sit-
uations, the one thousand standardized obser-
vations were grouped into fifteen classes, with
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equal width intervals, between the maximum
and minimum values for the distribution of B.
The same classes were used for_ grouping the
one thousand observations for .8, and B, for
the correspondent experimental situation.

To check the normality assumption for the
regression coefficients a goodness of fit test was
used. The X2 goodness of fit values for the 54
experimental situations are shown in Table 1
and may be compared with the X2 distribution
on 12 df (5% level 21.03).

The results show that for the small experi-
ment (3,3) the three estimators are not normal-
ly distributed in any experimental situation, al-
though, few X2 values for § or §, are significant
at 5%. For the other two combinations of
degrees of freedom, the distributions of the
three estimators may be accepted as Normal.
The estimators f,, B and @ of the true covar-
iance coefficients B, are compared in Table 2.
The Bias and the MSE criteria were evaluated
for each experimental situation, except that
MSE values given for the (3,3) df case.

Table 2 also presents the values of the test
statistic

Bias
Z=

L]

$/(1000)F

used to test if the observed Bias can be conside-
red negligible. The Normal distribution used for -
(3,3) experimental situations should be treated
with suspicion because of the non-normality of
the sampling distributions. When results for the
small combination of df (3,3) are considered,
some observations can be made from Table 2.

Although the statistical test on whether Bias
is negligible is dubious, all three estimators
suggested evidence of Bias since, for all experi-
mental situations, the values obtained for the
Bias statistic are small. There are consistent dif-
ferences of Bias between B and éc but 'éz tends
to show large Biasis.

For (3,16) and (12,75) combinations of df,
the results in Table 2 show no significant evi-
dence of Bias. For the (3,16) df the MLE B is
preferred on the basis of the MSE criterion in
almost all cases. Although the difference
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TABLE 1. X? goodness of fit for testing the agreement among the empiri-
cal distributions of the rescaled estimators against the stan-

dardized Normal distribution.
CHv= Y4 csS =2 €S =3
Sa Tl 2~ 2a 2a Sa a5 2a S«
X X X X X b's X X X

a1 tadel el O LN A B, b,
3,3 -0.5]111.73 84.98 &4.14] 60.66 57.08 S8.54149.56 28.67 60.27
3,3 -0.4] 33.75 28.23 46.89|104 .55 77 .36 76.37)14 .26 15.20 38.723
353 -0.3| 23.67 26.03 48.71|139 .61 65.24 65.42|33.98 29.27 64 .06
3,3 -0.2] 24 .52 28.18 111 64| 84 09 65.73 42.53|41 .29 33.58 89.54
3;3 =0.4 13.44 22.79 S5S4.59)] 85.96 73.87 7?.85 19.74 13.86 74 .81
3,3 0.0 372 3B 7L 82.76| 76.38 60.78 69.379|31.48 20.12 94 .54
3,16 -0.5] 31.38 30.30 14 87 19 .29 20.16 11 .38|22.48 12.56 18.51
3,16 -0.4 897 "5 L1538 115 14667 7681 7195914712074
3,16 =0. 3 15 .54 20.8% 19196 18. 26/ 106858194 8.59 19.58 11 .73
.16 =0.8 9 .43 18894 (- ki o) 18.12 12.48 141.29)15:147 ..9.22 18.57
3,16 -0. & 16.45 12 .12 23.03| 10.46 14.14 13.38] 8.13 B8.53 7.22
Iy 1.6:.,0: O 188994836 21 .60 15.21 20.03 18.62]20 .00 16:79 '15.99|
12;79+0:/81 13504 1245 9.06] 19.01 18.57 10.54)] 6.49 6.68 12.02
12,75, -0 .4} 13.49 18.62 4.66 7.281 7.48 11.83)16:27 22199 1241
185 791 03 9.38 10.56 13.47 7.24 4 .52 11 .67)|22.26 18.45 14.78
12,;795=-0.2 4.86 4.17 6.34| 17.70 22.47 17 .14] 3.05 4.41 4 .58
12,79°-0" ¢ 7991019 8.05 11.40 . 9.78 8.49]110.60. 8.61 19.53
12,73 0.9 9.94 10.02 14.91 13 .79 '4%: 7% /601912259 12. 88 17537

TABLE 2. Bias and MSE as criteria for comparing the three estimators of

B.

Bias (x1000) Z Test MSE (x 1000)

ar  pocs| B, B B |B B B g 981 OF
3,3 -0.5 1] 0.73 0.13 0.50]2.56 3.42 4.55

3,3 -0.5 2] 0.39 0.33 0.22|3.23 3.34 3.24

3,3 -0.5 3] 0.94 0.88 1.53]1.99 6.43 4.34

3,3 -0.4 1] 1.44 0.78 0.30]6.55 7.36 2.3¢

3,3 -0.4 2] 0.24 0.74 0.73]7.34 8.25 2.41

3,3 -0.4 3] 0.24 0.09 0.30]|3.42 1.98 2.52

3,3 -0.3 ] 2.16 0.53 1.37]4.73 3.45 7. .22

3,3 -0.3 2] 1.61 1.96 0.13]1.97 4.28 7.85

3,3 -0.3 3] 0.57 0.63 0.14]1.98 3.19 6.42

3.3 F0:271]59:39 0.71 0.955)2:13'3/08 §.13

3,3 -0.2 2] 0.52 0.33 1.34)|2.24 2.97 3.14

3,3 -0.2 3] 0.49 0.70 0.26]2.35 2.06 2.12

333 0.t 1| 2.48 0.22 0.21)|]2.88 7.05 8.33

3,3 -0.14 2] 2.80 1.60 4.00]|8.99 2.63 9.55

3,3 -0.1 3] 0.78 0.14 0.20]7.30 4.44 3.16

3,3 0.0 1 1.36 0.15 0.39|6.46 1.96 5.37

3,3 CLOVZ2LF0A480 0480 1 /09]3 .25 7.48 5.19

3.3 0.0 3] 1.40 0.30 0.22]6.14 S5.39 3.20

3,16 -0.5 1] 0.04 0.11 0.04|0.34 0.88 0.95|) 10.43 11.23 .41
3,16 -0.5 2] 0.14S 0.05 0.14]0.47 0.14 0.48 9.54 10.32 ?.43
3,16 -0.5 3] 0.28 0.28 0.34|0.86 0.85 0.89 10.814 11 .04 10.09
3,16 -0.4 1] 0.38 0.35 0.36]0.98 £.05 1.15] 15.25 11.12 11.44
3,16 -0.4 2] 0.19 0.33 0.27|0.50 0.82 0.50| 14.98 16.27 14.648
3216 -0.4 3] 0.44 0:10 . 0.4810:33 0.30:0:36] 12.147 441.16.40.23
3,16 0.3 1] 0.18 0.03 0.13|0.39 0.06 0.44] 20.73 16.03 146.34
3,16 -0.3 2] 0.92 1.08 0.92]1.99 2.25 2.00] 21.64 23.08 21 .49
3,16 -0.3 3] 0.114 0.24 0.19]0.30 0.76 0.33| 12.22 10.47 10.414
3,16 -0.2 1] 0.20 0.12 0.08]0.41 0.26 0.46] 23.014 19.19 18.52
3,46 -0.2 2] 0.83 1.49 0.85)|1.73 1.288 1.74] 22.93 27.31 22.84
3,16 -0.2 3] 0.149 0.08 0.079|0.53 0.22 0.56| 12.29 11.85 11.14
3,16 -0.4 1] 0.30 0.39 0.32]0.59 0.83 0.64| 24.62 &22.17 21.04
3,16 -0.1 2] 0.98 0.44 0.77]|1.91 0.79 1.91]| 26.34 30.55 26.08
3,16 0.0 3] 0.74 0.48 0.59|1.93 1.37 1.04 13.85 12.34 12.41%
12,75 -0.5 1] 0.00 0.05 0.04|0.00 0.52 0.0% 1.96 0.83 0.84
12,75 -0.5 2] 0.19 0.18 0.13]1.39 1.29 1.39 1.96 1.96 1.93
18, 73 0SS pc0Lt7 * 0.47 1 0.47})1.13"1 23 ¢. 23 2.28 1.93 1.9
12,75 -0.4 1] 0.04 0.06 0.05|0.24 0.35 0.28 3.283 2.46 2.47
12,75 -0.4 2] 0.03 0.02 0.02§0.17 0.12 0.18 3.53 3.49 3.48
12,75 -0.4 3] 0.16 0.19 O0.19]1.11 1.40 1.20 2.8 1.92 1.94
12,75 -0.3 1] 0.33 0.30 0.31]1.64 1.72 1.89 4. 10 3.07 3.10
12,75 -0.3 2] 0.10 0.10 0.10]0.47 0.49 0.47 4 11 4.08 4. .07
12,75 -0.3:- 3] 0.:07 0:14 0.14]0.47 0.92 0.5% 2252 2:82 2:8e
12,75 -0.2 1] 0.13 0.09 0.10]0.60 0.44 0 64 4 .84 4.25 4.21
12,75 -0.2 2| 0.03 0.05 0.04{0.12 0.22 0.13 4 .93 4.84 4.83
12,75 -0.2 3] 0.03 0.08 0.07|0.16 0.54 0.17 2.98 2.a8 2.235
12,73 -0.4 1] 0.14 0.16 0.15]0.58 0.73 0 .64 S.50 4. .52 4.50
12,75 -0.4 2] 021 021 0.22]0.89 0.88 0.90 5.60 S5.51 5.50
12,75 -0.4 3] 0.11 0.17 0.16]0.73 §.16 0.78 2.36 2.10 2.08
12,75 0.0 1] 0.25 0.29 0.26)1.08 1.38 1.19 S.17 4.35 4.31
12,7S 0.0 2] 0.43 0.48 0.46|1.88 1.07 1.90 S.44 5.31 5.30
12,7S 0.0 3] 0.00 0.06 0.04]0.01 0.41 0.04 2.56 2.26 2.23
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between the MSE values for
B and Bc is rarely large. For
(1z 75), the performance of
p is again slightly better
than the other two estima-
tors. Cochran’s estimator
has the smallest MSE in
only three experimental sit-
uations out of eighteen, but
this its advantage over
Cochran’ approximation is
relatively small.

Comparisons between the
variances of the esti’ 1ators

To use the MLE or Co-
chran’s estimator of the co-
variance coefficient in prac-
tice, it is necessary to know
the variance of these esti-
mators. We therefore assess
the variances of B and 8.

i) The estimated variance of
the Cochran’s estimator is

" 1
VA ) = — =
2 XX Exx
b Rl
‘12 22
1
2 2
(df, ~1Is7, - (df—1)s5,
= __LE 2 bl.- 2
512724511 Spp PaSpy
i2)

where b3s3; and b%s%,
are the reductlons in main
and split-plot error sums of
squares, due to fitting covar-
iance coefficients.

ii) The asymptotic variance
of the full MLE is obtained
by evaluating the 5x5 Fi-
sher Information Matrix
(Kendall & Stuart 1967) at
the MLE values, giving the
following equation:
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vidy =

e <2
Iff’ By ‘”E? Say

e 2 EAREs 2
P th=al YasTs ﬁsal(ﬁ—2b2)+saa
{453}

Both variances are compared using the same
criteria defined in the last section. The split-
plot coefficient was neglected because of its
poor performance in the previous section.

In the previous simulation study, the mean
and variance for each estimator of the theoreti-
cal variances under each experimental situation,
were computed. The sampling distributions of
the estimators are very skewed, though the
asymmetry decreases considerably for the third
combination of df (12,75). The condition for
using the MSE criterion to compare estimated
variances through the X 2 statistic was verified,
by standardising each sampling distribution and
comparing them against the theoretical X 2 dis-
tribution with 12 df (since there are two para-
meters imposed in the stadardisation of the
data and there are fifteen pairs of observed
frequencies to be compared). The results for the
X 2 statistic are presented in Table 3.

TABLE 3. X? statistic used to check the shape
equivalence of the standardized distribu-
tions for estimators of the variance V(3).

cs =1 cs =2 cs = 3
5., b0 b . = il
df B XV(ﬂ)V(ﬂc) Xyprvep s Xv<ﬂ)v(ﬂc)
3,3 -0.5 & .68 10.19 6 .24
8,8 '<0.@ 3.60 12.53 16.29
9,3, 0.3 0.67 24.19 5.25
Va,3-0.8] Yi3 a8 15.15 5.08
978 TI=0l! 3,78 1.39 4.07
3,3 0.0 9.16 12.68 9.47
3,16 -0.5 6.14 4. 01 11 .88
3,16 -0.4| 13.95 0.87 4.45
3,16 —0.3| 12" 62 451 4 72
3,16 -0.2| 10.46 3.45 2.94
3,16 -0.1 9.98 6.24 4.84
3,16 0.0] ‘21.a8 3.85 4.89
12,75 -0.5 4.04 0.79 11.89
12,75 -0.4 2.20 0.28 1.53
12,75 -0.3 4.65 0.31 4 62
12,75 -0.2 4.65 0.06 8.95
12,75 -0.1 7.32 0.60 6.54
12,75 0.0 6.23 0.39 3.27
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Since in almost all experimental situations
the values obtained for the X 2 statistic in Table
3 are smaller than the critical X 4, 55, = 21.03,
it is reasonable to believe that the distributions,
although not Normal, had the same shape.

The results found for the observed variance,
bias and the MSE of V(ﬁ) and V(ﬁc); are
presented in Table 4. Since the true sampling
variance of B is unknown, the Bias criterion is
defined as follows:

Bias [V(B)] = |observed mean of V(B) -
observed variance of

where the mean of V() was found from the
sampling distribution of V(B), for each experi-
mental situation, and the variance of B was
found from the sampling distribution of B. The
MSE of V(Bc) was assessed as usual.

Table 4 shows that, for (3,3), the Bias for
V(BC) is small in all experimental situations.
Although it was not possible to construct a Z
test, we can see in the same table that the
observed variance and MSE statistics, for both
estimators, are not far from each other, sugges-
ting a less degree of importance for the Bias cri-
terion in our choice of the best estimator. For
this same sample size, the MSE criterion for
V(B) is minimum in all experimental situations
where it could be applied. As Kendall & Stuart
(1967) remarked when they discussed the pro-
perties of Maximum-Likelihood Estimators, the
optimum properties of MLE are asymptotic
properties. We have, based on these optimum
MLE properties, much inducement to expect
better performance for V(B) under large com-
binations of df.

For the other two sets of df, the Bias de-
creases considerably for both variances. In some
situations, V ﬁ) is the estimator with smaller
Bias than V(éc) mainly when CS = 2. The in-
troduction of Bias in V() is, perhaps, explain-
ed by the use of sampling variances in (3) as the
best estimators of the true variance. There is a
strong indication, from the Bias results shown
in Table 4, that the sampling variances do not
account for all information needed to be regar-
ded as the best estimators of the theoretical va-




TABLE 4. Comparisons between the variance of the Cochran’s estimator
and the asymptotic variance of the MLE.
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Obser. Variance

Bias(x 1000)

MSE (x1000)

df B cs| v V(ﬂc) vip V(ﬂc) v V(ﬂc)
353 WiEglGEy 0.048 0.088| 0.033 0.012] 0.059 0.088
3,3 -0.5 2y 8391 14 478| 0.280 0 094| ©9.1S8 14 490
3,3 -0.5 3150 224 258.456| 2.400 0.046|207 583 260.1468
3,3 -0.4 1 0.654 1546381 04158 .0 .027] =:0:6864 1.165
3,3 -0.4 2| 12.010 21.979] 0.650 0.048| 16.268 21.993
3,3 -0.4 3]142.060 269 .775| 2.433 0.551]200.976 272.841
3,30 =053 1.641 3.306] 0.226 0.023] a.1it 3.311
2,3 -0.3 2] 19.588 35.855| 0.894 0.113| 20.456 25.876
3,3 -0.3 3|200.503 380.796| 2.736 0.857|275.281 388.092
3,3 -0.2 1 1.7485 3.364] 0.272 0.105| 2.457 3.460
3,3 -0.2 2| 27.890 49.976] 0.655 0.069| 32.177 50.009
3,3 -0.2 3|191.328 377.713| 3.304 0.970|300.561 387.113
3, e =00 11 L 4.095 7.638| 0.204 0.010| 4.476 7.639
3,3 -0.1 2] 41.661 74.264] 0.619 0.160| 45.435 74.S526
3,3 -0.1 3|149.939 281 .969| 1.746 0.012]180.225 281 . 969
3, a0l o 2.210 4.195| 0.268 0.023| 2.871 4. 199
3,3 0.0 2| 24.169 43.480| 0.892 0.194| 32.168 43.826
3,3 0.0 3|126.562 237.234| 2.418 0.235|184.792 237 .768
3,16 -0.5 1 0.000 0.001f 0.010 0.089] 0.008 0.007
3,16 -0.5 2| 0.029 0.033| 0.040 0.010| 0.029 0.033
3,16 -0.5 3 4.268 4.868| 0.233 0.285| 4.811 5.678
3.16 -0.4 1 0.030 0.034| 0.022 0.062] 0.032 0.03%
3,16 -0.4 2| 0.070 0.079] 0.044 0.025| 0.070 0.079
3,16 -0.4 3| 4.249 4.961] 0.188 0.225 4.590 5.469
3,16 -0.3 1 0.053 0.059| 0.033 0.015| 0.062 0.061
3,16 -0.3 2] o0.108 o0.123] 0.011 0.018] 0.110 0.126
3,16 -0.3 3] 4.803 5.579| 0.190 0.115] S.166 S.711
3,16 -0.2 1 0.067 0.079| 0.030 0.023| 0.076 0.084
3,16 -0.2 2| 0.134 0.149| 0.012 0.029] 0.134 0.158
3,16 -0.2 3] 5.18% 6.055) 0.276 0.289] S5.943 6.891
3, 16/-0i: L4 0.080 0.094] 0.039 0.03&6| 0.096 0.106
3,16 0.+ 2| 0.170 0.189| 0.013 0.040] 0.17%1 0.208
3,16 -0.1 3 4. 124 4.798] 0.387 0.299| S5.619 5.695
3, 165" 0" 1 0.080 0.094] 0.029 0.015| 0.067 0.097
3,16 0.0 2] 0.171 0.195] 0.023 0,039 0.177  0.210
3,16 0.0 3} 4.594 5.317] 0.429 0.355) &.437 &6.578
12,75 -0.5 1 0.000 0.001] 0.000 0.000] 0.000 0.001
12,75 -0.5 2| 0.002 0.003] 0.000 0.000} 0.002 0.003
12,75 -0.5 3] 0.033 0.034| 0.002 0.001 0.033 0.034
12,75 -0.4 1 0.002 0.003| 0.001 0.00t 0.002 0.003
12,75 -0.4 2| 0.005 0.006| 0.002 0.002] 0.005 0.006
12,75 -0.4 3| 0.036 0.037| 0.009 0.013] 0.037 0.039
12,75 -0.3 4 0.004 0.005| 0.000 0.000] ©0.004 0.005
12,75 -0.3 2| 0.009 0.010| 0.000 0.000| ©0.009 0.010
12,75 -0.3 3| 0.041 0.042] 0.002 0.002| 0.047 0.046
12,75 -0.2 1 0.007 0.008f 0.004 0.004] 0.009 0.010
12,75 -0.2 2| o0.00t 0.002| 0.00f 0.003] 0.00% 0.002
12,75 =0 2.1 0.041 0.042| 0.002 0.002] 0.047 0.048
12,75 -0.1 1 0.008 0.009| 0.064 0.004] 0.010 0.009
12,75 -0.1 2| o0.o01 0.002| 0.003 0.002] 0.00t 0.002
12,75 -0.14 3] 0.039 0.040| 0.002 0.003] 0.039 0.04%1
12,75 0.0 1| o0.008 0.009| 0.000 0.000| 0.009 o0.010
12,75 0.0 2| 0.00L 0.002| 0.000 0.000] O0.001t 0.002
12,7S 0.0 3| 0.043 0.045] 0.01S 0.012] 0.086 0.047
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riances. As a consequence, some Bias are intro-
duced in both Cochran’s estimator of the true
regression coefficient and in its variance.

For these remaining degrees of freedom, the
estimators may be considered as unbiased esti-
mators of the true variance. In both cases, the
observed variance is in accordance with the
MSE criterion. For the same table, the perfor-
mance of the asymptotic variance was found,
when the MSE criterion was dealt with, better
in forty nine out of fifty four experimental situa-
tions.

CONCLUSIONS

1. In split-plot designs, two independent re-
sidual covariance coefficients can be computed.
If the regression coefficients are considered
‘homogenous, the split-plot coefficient is nor-
mally used to adjust main and split-plot treat-
ment means. However, the accuracy of the ad-
justments should be greater if an estimator of B
is obtained by combining both sampling regres-
sion coefficients. This suggestion was affirma-
tively verified from the results of our simulation
study.

2. Since the estimators may be suggested as
unbiased estimators of the true B (with excep-
tion when df; = df, = 3), only the MSE crite-
rion may be taken into account in our conclu-
sions. The split-plot coefficient resulted in
smaller Bias values only in two experimental sit-
uations, within (3,3) sample sizes. Cochran’s
and the full MLE are obviously better estima-
tors of B. Bc is better than B in nine out of eigh-
teen experimental situations when these small
and equal sample sizes were considered. As ver-
iefied by Carvalho (1988) through a second
simulation study, B shows better behaviour
when the sample sizes, although the same, are
increased. e

3. For different sample sizes, B is undoubted-
ly better estimator than [B.. This statement
fails in six out of thirty six experimental situa-
tions, being three for either (3,16) and (12,75)
sets of df. In all of these failure cases, the advan-
tage observed for Bc or B~ is irrelevant, besides
the fact that, in all above six cases, the ratio
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between the main and split-plot variances are
larger for the concomitant variable, situation
which we do not expect to occur in practice.

4. Since one of the purposes of the analysis
of covariance is to estimate and test differences
among adjusted treatment means, it is impor-
tant to recognize the factors that affect the ad-
justment. The relative size of the main and
split-plot samples, the pooled regression coeffi-
cient and the mean difference of the covariate,
all play an important part in the adjustment
process.

Specifically, the pooled regression coefficient
should be the one with the smallest variance. As
a consequence, the standard error (which is dif-
ferent for every pair of treatments which are
being compared) of the difference between two
treatment means is smaller, leading to higher
values for the statistic criterion used to compa-
re the adjusted means. The results for the Bias
and MSE criteria, in Table 4, make it easy to re-
commend the asymptotic variance of the MLE
as the best estimator of the true variance of B.
Although the Bias for V(B).) are smallest for
the first combination of df, we may decide to
have V(B) as the best estimator of V(B). That is
due to thg fact that in, all experimental situa-
tions, V(B) is the estimator with minimum
mean-squared error. For the two other combi-
nations, since the Bias may be neglected, the as-
ymptotic variance is the one with predomi-
nantly smallest MSE.
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