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Land-cover classifícation with remoteJy sensed data in moist tropical regions is a
challenge due to the complex biophysicaJ conditions. Tbis paper explores
techniques to improve land-cover classdtcation accuracy through a comparative
anaIysis of different combinations of spectraI signatures and textures [com
Landsat Enhanccd Thema1ic Mapper Plus (ETM +) and Radarsat data. A
wavelet-merging technique was used to integrate Landsat ETM + multispectraI
and panchromatic data or Radarsat data. Grey-levd co-occurrence matrix
(GLCM) textures based on Landsat ETM +- panchromatic or Radarsat data and
different sizes of moving windows were examined. A maximum-lik:elihood
classifierwas used to implement image classification for different combinations.
This research indicates the important roJe of textun::sin improving land-cover
classificaoon aocuracies in Amazonian environments. The incorporation of data
fusion and textores increases classif"JCaoonaccuracy by approximately 5.8-6.9%
compared to Landsat ETM + data, but data fusion of Landsat ETM +
multispectraI andpancbromatic data 01" RadaJsat da1a canoot etfectively
improvela.nd-coverclassificationaa:uracies..

1. Introductioo

Accurate image classification descn'"bing spatial distribution and patterns of land
cover is a prerequisite for many resean:h topics and appIications, such as landscape
characterization, Jand-cover change anaJysis, input into ditrerent models for anaIysis
of carbon cycles, habitat suit3bility and risk of Iand degradation. Many efforts and
progresses have been made to improve lhe land-cover or vegetation classification
performance, for example, use of subpixd infonnalÍon based on spectra1 mixture
analyses (Adams et ai. 1995. Roberts et ai. 199X, Lu et ai. 2003b), use of non-
parametric classifiers such as neural networks (Paola and Schowengerdt 1995,
Atkinson and Tatnall 1997, Kavzoglu and Mather 20(4) and decision trees (FriedI
and Brodley 1997, Pai and Mather 2003) and use of parnmeters derived from forest
structures such as vegetation age or biomass (Foody et ai. 1996, Vreira et aI. 2003,
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Lu 2005). However, the landscape complexity in colonization frontiers and the
abundant tree species of lhe Amazoniàn forests often impair the separation of land-
cover classes when using remoteJy sensed data, especiaHy the distinctions between
(1) successional vegetation stages and (2) successional vegetation and agroforestry.

Although several works have explored different approaches to classify succes-
sional vegetation stages (Mausel et al 1993, Monm et al '1994, Brondízio et aI. 1996,
Foody et al 1996, Steininger 1996, Rignot et al 1997, Yanasse et al 1997, Lucas
et ai. 2002, Lu et al 2OO3a, VJeira et al 2003, Lu 2(05), the accuracy achieved is still
poor. The main difficulties stem from the continuous transition of successional
vegetation stages and lhe similar stand structures between successional stages and
agroforestry, or between tbe initial successional stage and degraded pasture. To
date, remote-sensing a.pproaches to effectively separate these classes have not been
developed. Because of the recognized importance of successional vegetation and
agroforestry systems in providing environmental services such as carbon sequestra-
tion and restoration of degrnded Iands, more aa:urate cJassifications will reduce
uncertainties in modeIs and evaluations using such infonnation.

Most previous researeh uses single-sensor data only for land-cover classification,
but rarely has research expIored lhe integIation of different sensor data to improve
classification aa:uracy in the moist tropical regions. Tbe different characteristics of
optical and radar data may provide new insights for such a task. We assume that (1)
incorporation of different spatial and spectraI resolution data (e.g. Landsat
Enhanced Thematic Mapper Pios (EfM +) muJtispectral and panchromatic data,
Radarsat data), (2) oombination of spectraJ signatures and textures and (3)
combination of data fusíon and textures may impl"Ove lhe results. Hence, this paper
aims to identifya suitable image proeessing prooedure for improving land-cover
classification accuracy throogh a comparative anaIysis of ditTerent image combina-
tions basedon Landsat Em+ and Radarsat data

2. Studyarea

The state of Rondônia has experienoed high deforestation rates since the 1970s
(INPE 20(2). FoHowing lhe national strategy of regional occupation and
developmeat, colonization projects initíated by lhe Brazilian government played a
major role in this proeess (Batistella et al 20(3). Most colonization projects in the
state were designed to settle land1ess migrants. The immigrants ha ve transformed the
forested landscape into a mosaic of cultivated aops, pastores, and different stages of
secondary succession and forest remnants. The study area is Iocated at Machadinho
d'Oeste in northeastem Rondônia. Settlement began in the mid-1980s, and since
then land-use/cover trajectories foDowing deforestation have put in place a dynamic
proeess of forest fragmentation. A well-defined dry season lasts from June to
August, lhe annual a\a3ge preci:pitation is 2016mm, and the annual average
temperature is 25.5"C (Rondônia 1998). Batistella (2001) describes in detail the
characteristics of this location, a landscape in transition from a matrix dominated by
forest to land covers with lower carbon content.

3. Method

3.1 Land-cover classification scheme

A suitable classification scheme is critical for Iand-cover classification using
remotely sensed data and for field data coDectioo.. Based on our previous experience
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in the region (e.g. MauseJ et ai. 1993, Brondízio et ai. 1996, Lu et al. 2004), the
requirement of subcIasses of secondary suoeession for Amazonian research, and the
importance of coffee plantations in this study area (BatisteIla and Moran 2005), we
defmed 12 classes to be mapped. Our previous research has indicated that three
stages----initial (SSI), íntennediate (SS2), and advanced (SS3) secondary sucees-
sion-are suitabIe for most study areas (Brondízio et ai. 1996, Lu et ai. 2003a).
Successional vegetation is assigned soIely to areas where the grass cover is less than
25%, which generaIIy OCCUIS in sites that bave been abandoned for more than two
years, Tbe separation of different suecessional stages is based on the vegetation
stand structures, lhat is, average diameter at breast height (DBH), canopy height,
and biomass (Lu et al: 2OOJa).The primary forest is separated into upland forest
(UPF) and lowland forest (lLF) based on moist conditions and topographic
factors.

In the initial few years after deforestation, the land is often used for annual crops
and cattle ranching. Pasture lands are classified as cultivated pasture (CUP) and
degraded pasture (DGP) based on land management and land cover. That is,
cultivated pastures are defined as arcas with grass cova greater than 75%, and
degraded pastares are defined as areas with grass cover between 25% and 75%.
Agroforestry (AGF) systems in lhe study area are productive arrangements that
include economic tree species, eoffee, cocoa and other understory spécies. Coffee
plantations (CFP) are separated. Othec Iand-oover classes incIude infrastructure
(urban areas and roads), water and non-vegetation Iowland (NVL).

3.2 Fu!ltldohl t:DllediDn

Fieldwork was conducted during the dry seasons of 1999, 2000, 2002 and 2003.
Vegetation surveys were conducted ín areas with relatively homogeneous ecological
conditions (i.e. topography, distance from water and land use). After defining the
area to be surveyed (pIot sampIe). three subplots including nested parcels of 1nr',
9m2 and 100m2 (smaIl, medium, Iarge. respectiveIy) were randomly selected to
accurately represent lhe variability within the pIot sampIe. Seedlings were defined as
young trees or sbrubs with a stem diameter smaller than 2em. Saplings were defined
as young trees with a stem DBH greater tban 2an and smaller tban lOem. Trees
weredefined as woodyplantswith aDBH greatel"tban or equal to lOem. Total tree
height, stem height (lhe height oflhe first main branch) and DBH were measured for
alI trees in the large parceIs. Height and DBH were measured for alI saplings in the
medium pan:els. Grouad-cover estimation and counting of individuaIs were
carried out for seedlings and betbaceous vegetation in lhe small parcels. In total,
26 plots of seoondary succeSsion and 14 pIots of mature forest were sampled. The
measured parameters were used for separation of different successional vegetation
stages and primary forest classes based on canonical discriminant anaIyses (Lu et alo
2003a).

During fieldwork in August 2002, an IKONOS colour composite (acquired 28
May 2(01) was used to support lhe observation of ditrerent successional vegetation
stages, coffee plantations, and degraded and cultivated pastures. In August 2003, a
Satellite pour l'Observation de Ia Tesre (SPOT) coIour composite was used to assist
the coJIection of hundreds of observations over a larger area of approximately
2000knr'. After driving extelJsively tbroughout the settlement, field observations
provided familiarity with the structure of regrowth stages. Visual estimations
of vegetation structure attributes, such as canopy height, allowed the rapid
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detennination of the three secondary sucoession classes defined. The distinction of
mature forest classes was based on topographic and moist conditions. Exploratory
analysis of remote-sensing imagery and a digital elevation model built from
topographic maps in I: 100,000 scale supported the delimitation of such classes in
the field. lhe separation of cultivated and degraded pasture classes was based on
grass cover and oondition. Every observation and sample plot was registered with a
global positioning system (Gps) devioe to allow further integration with spatial data
in geographic information systems (GIS) and image processing systems. The
successional vegetation stages, ootfee plantations. agroforestry systems, and
pastures are mainly located near roads, The oollection of georeferenced observations
forthese classes could be accurntely located. Some primary forest sites were
identified by visual interpretation of the IKONOS ar SPOT colour composites and
confmned by local experts.. The collected observations were separated into two
groups: one group was used as training samples during the maximum-likelihood
classification approach, and another group was used for assessing classification
results, The differeaee between the image acquisition data (i.e, Landsat ETM + and
Radarsat data were acquired in 2001) and field data coIIection dates (i,e, in 2002 and
2(03) were oonsidered when detennining vegetation classes, especially different
successional stages, agroforestry systems, and pastores, based on land-use history
and image interpretation. AD sample plots \Vere examined against the Landsat
ETM + image to make sure lhe Jand-cover classes were correctly assigned.

3.3 Data preproassiRg

3.3.1 Landsat ETM+ data. Landsat 7 ETM+ data, which were acquired on
11 August 2001, \Verefirst geometrically registemI to anothec Landsat TM image
(18 June 1998), which was already rectified (Uni\lCl'SalTransverse Mercator, south
20 zone). A nearest-neighbour algorithm was used to resample the Landsat ETM +
multispectral image mto a pixel size of 30m x 30m and panchromatic image into
15m x 15m during image registrat:ion. A rcot-meaa-square error of 0.36 pixels for
the registration was obtained. An image-based dark object subtraction model was
used to impIement radiometric and atmospheric correction (Lu et ai. 2002). The
surfaee reflectance vaJues after calibration ranged between O and 1. For the
convenienee of data anaIysis. the ret1ectance vaJues were linearly rescaled to 8-bit
integer format (0-255).

3.3.2 Radarsat data. The Radarsat C-band, HH polarization data, which were
acquired on 21 September 2001, were used in this research. This image was
converted to a bacbcattering coefficient (o) using the foDowing model (Ribbes and
le Toan 1999, Cbakraborty and Panigrahy 2000):

tIJ=101og1O{(DNf+a:) / Ai] +101og1O[sin(Ij)] (1)

where DNj is the digital nmnber (amplitude of the back.scattered sígnal), Aj is the
calibration coefficient (scaJing gain value) of the jth pixel. ~ is a constant offset, and
~ is the incidence angIe at the jth range pixel, The backscattered coefficient was then
linearly rescaled to 8-bit integer format (0-255).

The Radarsat data were geometricaJly registere.d to 2001 Landsat ETM + data
with a root-mean-square errar of 0.19 pixels. Tbe image was resampled to a pixel
size of 15m x 15m using a nearest-neighbour resampling algorithm. Reducing
speckle in the Radarsat image was needed before it could be used for land-cover
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classification. Different filtering approaches bave been examined in previous works,
such as the enhanced Lee filta, the Lee-Sigma, and the Gamma MAP (panigrahy
et ai. 1999, Rio and Lozano-Garcia 2000, Ndi Nyoungui et ai. 20(2). Here, the
enhanced Lee filter was used.

3.4 Datafusion

Many methods have been developed to integrate speetral and spatial information.
Pohl and Van Genderen (1998) reviewed methods for multisensor data fusion. The
intensity-hue-saturation (lHS) trnnsfonnation is the most frequently used method
for improving the visual display of muJtisensol"data (Welch and EhJers 1987), but
this approach can empIoy oo1y three bands, and the resultant image may be
unsuitable for cJassification. To preserve the speetral integrity of the input dataset,
principal component anaIysis (PCA) is often used for data fusion to produce an
output result for further quantitative analysis. Recently, wavelet-merging techniques
have emerged as another effective approach to integrate spectral and spatial
information contents (Li et ai. 2002, U1farsson et ai. 2003). Therefore, this paper
used the wavelet-merging approaeh to integrate Landsat EfM + multispectral and
panchromatic or Radarsat data.

Wavelet theory is similar to the Fouríer transform analysis, but the wavelet
transform uses short, discrete wavelets, instead of a long wave as in the Fourier
transformo One key step during the wavelet transform is to seJect the mother
wavelet. 'lhe input image is broken down into sua:essively smaJler multiples of the
mother wavelet. 'lhe derived wavelets have many math.ematically usefuJ character-
istics that make them preferable to simple sine 01" cosine functions. Once the mother
wavelet is defined, a famiJy of muJtipJes can be created with incrementally increasing
frequency. Then the image can be decomposed by appIying ooefficients to each
waveform. In thoory, ao image can be decomposed into high-fi:equency and low-
frequency components. The wavelet family can be regarded as a high-pass filter. The
low-frequency image is the lower spatiaJ resolution image and the high-frequency
image is the higher spatiaJ resoJution image containing the details of the image. In
general, the high spatiaJ m;oJution image is a single band, such as the Landsat
ETM + panchromatic band, so the substitution image from the multispectral image
must also be a singte band. Thas, PCA is used to convert the multispectral bands
into new components. The first component contains most of the information and is
used as the substítution image.. A detaiIed description of the wavelet-merging
technique is found in Lemeshewsky (1999) and ERDAS FIeJd Guide (2003). ln this
research, the bigher spatial resoIution data-Landsat ETM + panchromatíc and
Radarsat data-were used to integrate the Landsat ETM + muJtispectral data with
the wavelet-:merging technique in order to incorporate the high spatial resolution
information and to preserve the Landsat EfM + multispectral features in the new,
fused image.

3.5 TestarelHIIIlpm

Textures have pf"Oveouseful in improving land-cover dassification accuracy. Many
texture measures have been developed (HaraJick et alo 1973, Kashyap et ai. 1982,
Emerson et ai. 1999), and used at this scope (Marceau et alo 1990, Augusteijn et ai.
1995, Groom et alo 1996, Shaban and Dikshit 2001, Chen et ai. 2004). Many
previous applications of textures are rclated to urban studies because of the
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complexity of urban landscapes requiring higher spatial resolution data sueh as
SPOT HRV. For Amazonian land-cover c1assification, the role of textures has not
been extensively explored, The enhanced characteristics of Landsat ETM + data
include a panchromatic band of 15-m spatial resolution, which provides richer
textural and contextual information than muJtispectral bands with 3O-m spatial
resolution. Use of textures based on the Landsat ETM + panehromatie band may
improve classification aeceracy. Also, radar data are often used in texture formo
Hence, in our study, textme analysis focused ou Landsat ETM + panehromatie and
Radarsat data.

The GLCM-based (grey levei oo-occurrence matrix) texture measures are often
used. In this paper, eight GLCM-based texture measures (i.e. mean [ME], variance
[VAJ, homogeneity [HO), contrast [CO], dissimilarity [DI), entropy [EN], second
moment [SM] and correlation [CC» assoeiated with three window sizes (9 x 9,
15 x 15, and 21 x 21)were explored. The textureimages were rescaled to 8-bit integer
format (0-255). The Jeffries-Matusita (J-M) algorithm was used to analyse the
separability of land-cover classes based ou training sample pIots (Mausel et ai. 1993,
Landgrebe 2003). Pearsoa's correlation anaJysis was used to analyse the correlation
between the selected textures. The textures with high separability but low correlation
coefficients were selected based on the foDowing equation:

Best texture combination (BTC)= t.JMi /1;Rij

where JM is the Jeffries-Matusita distance vaJue based on the training sample
plots, Ry is the correlation coefficient between image i and i,and n is the number of
textural images.

(2)

3.6 ComptD'lZliPe llRIllysis 0/ different imoge rombinations

Many potential image processing procedures can be used for land-cover classifica-
tion. Henee, identitication of the most suitable procedere to improve classification
accuracy has considerable significance. In practice, it is not straightforward to
define a suitable procedere for a specitic study area. In this paper, we present a
comparative anaIysis of difIerent combinations of spectraI features and textures
based on Landsat EI'M + spectral signatures, GLCM-based textures with Landsat
ETM + panchromatic or Radarsat data, data fusion from Landsat ETM +
multispectral and pancbromatic or Radarsat data. Table I summarizes the different
image combinations used in (bis research, AlI images were resealed to 8-bit integer
format (0--255) before being used for image classification.

Training sample plots were examined on the 2001 Landsat ETM + image.
Approximately 12-20 sample plots were sekcted for each class with a polygon size
of 9 to 40 pixels for each plot, depending on the homogeneity of the land-cover
patch, The maximum-liketihood classifier (MLC) was used to classífy the images
with the same training sample plots, A majority tilter with a window size of 3 x 3
pixels was used to remove the 'salt and pepper' dfect in lhe classified images.

The comparative study of difIerent image combinations is based on lhe accuraey
assessment of the land-covec classitication images. A conunon method for accuraey
assessment is through lhe use of an error matrix. Literature on this methodology
deserihes the meanings of and calculations for overaIJ accuracy (OA), producer's
accuraey (PA), user's accuracy (UA) and Kappa coefficient (KA) (Congalton 1991,
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Table L Design of image processing routines.

Sensor data Code

I"- ETM ETM-ALL
oo
N ETM-PanL.
Q).o
E
Q)
o ETM-PantxtQ)
O
'<t
'<t
(") ETM-RadartxtID~
~ ETM-Pan-fusion Pan-fusion
o
~;::!. Pan-fusion-Pantxt
>.
m
"U
Q) Pan-fusion-Radartxt"U
t1Io
C PanJusion_PanRadartxt~o
O

Description

Six ETM+ reflective bands with 30-m
spatial resolution

A combination of six ETM + reflective
bands and one ETM + panchromatic
band

A combination of ETM-ALL and three
testares from ETM + panchromatic
band

A combination of ETM-ALL and three
textures from Radarsat C-HH band

Data fusion based on six reflective
ETM + bands and one ETM +
panchromatic band

A combination of Pan-fusion and
three textures from one ETM +
panchromatic band

A combination of Pan-fusion and three
textures from Radarsat C-HH band

A combination of Pan-fusion and three
textures from ETM + panchromatic
band and three textures from
Radarsat C-HH band

ETM-Radar-fusion Radar-fusion Data fusion based on six ETM +
retlective bands and one Radarsat
C-HH band

Radar-fusion-Radartxt A combination of Radar-fusion and
three textures from Radarsat C-HH
band

Radar-fusion-Pantxt A combination of Radar-fusion and
three textures from ETM +
panchromatic band

Radar-fusion-PanRadartxt A combination of Radar-fusion and
three textures from ETM +
panchromatic band and three
textures from Radarsat C-HH band

Smits et ai. 1999, Foody 2002). In this paper, test sample plots have been selected
usíng the fieldwork carried out in 2002 and 2003 and visual interpretation of the
IKONOS ímage. A total of345 sample pIots were used for accuracy assessment. An
error matrix for each c1assification image was produced and UA, PA, OA and KA
were ca1culated.

4. Results

4.1 Selection of textures for classifieation

Separability anaJysis reveals the capability of single textures to. distinguish land-
cover classes, and the BTC approach helps to identify the potentiaUy best
combínation of textures for land-cover classification. The textures with separability
values greater than 500 for the Landsat EfM + panchromatic band and greater than
300 for the Radarsat image were selected (table 2). Tbe correlation coefficients of the
selected textures indicate tbat some textures are higbly correJated. For example, the
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Table 2. Comparison of separability among the textures based on the Jeffries-Matusita
distanoe algorithm.

Wmdow Separability based on single texture

Sensor data síze (m) ME VA HO CO DI EN SM CC

Landsat ETM + 9x9 1056 350 398 372 381 459 486 406
15x 15 1032 515 480 478 487 481 551 488panchromatic band 21 x21 984 562 509 497 524 507 578 503
9x9 708 285 188 319 228 161 135 284

Radarsat 15x 15 782 359 269 347 286 277 249 335
21 x21 812 460 298 377 317 324 276 401

~
ci
:5
ds,
CD
-o

C])-o
aso

~oo

ME, mean; VA, varianc:e;HO, homogeneity; CO, contrast; DI, dissimilarity; EN, entropy;
SM, second moment; ec, oorrelation..

correlation coefficients are 0.96, -0.92 and -0.90, respectively, between textural
images based on contrast (CO) and dissimilarity (DI), homogeneity (HO) and DI,
and entropy (EN) and second moment (SM) from the Landsat EfM +
panchromatic bando The texturaJ images with higb correlation coefficients have
similar information oontents. Therefore, the selection of textures with high
separability values but low oorrelation ooefficients between them is important.
The anaIysis of best texture oombinations (BTC) indicates that the best three
textures are mean (ME) with a 15x 15 window and variance (VA) and SM with a
21 x 21 window based on panchromatic band, and ME, VA and CO with a 21 x 21
window based on the Radarsat C-HH bando These textures were combined with
Landsat EfM + spect:raI images for classification.

4.2 Úlmparison of c/assifiaztion eceumdes

This research indicates the difficulty of using remotely sensed data for land-cover
(especíally vegetation) dassification in moist tropical regions. Table3 summarizes
the classification accunwies of different image oombinations. Overall, non-
vegetation classes (i,e, infrastructure [lNF). water [WAT] and non-vegetation
lowland [NVL]) have higber classification accuracies than vegetation classes (e.g.
primary forest, secondary succession, pastares), and primary forest (e.g, upland
forest [UPF] and lowland forest [LLF]) has bigher accw:acy than difIerent secondary
sucoessional stages. lhe classi6cation accuracies of intennediate and advanced
successions (SS2 and SS3), agroforestry (AGf) and degraded pasture (DGP) are
especíally poor because of lhe similar spectraJ featores between SS2, SS3 and AGF
and between DGP and initiaJ sureession (SSI). Tbe six Landsat ETM+ spectral
bands (EIM-ALL) and the combination of six spectral bands and one panchro-
matie band (ETM-Pan) produced similar classífkation accuracies, except for SS2,
which slightly improved accuracy, and AGF, which slightly decreased accuracy in
ETM-Pan. The combination oftextures from lhe panchromatic band (ETM-Pantxt)
slightly improved elassification accuracy oompared to ETM-ALL, but the overall
classification accuracy from the oombination of textures from Radarsat data (ETM-
Radartxt) slightJy deereased. The overall classification accuracy from the data
fusion images (based on either Landsat Em+ multispectral and panchromatic
data (Pan-fusion) or Landsat ETM + multispectral and Radarsat data [Radar-
fusionj) slightly decreased oompared to the original ETM-ALL data. However,
the inoorporation of data fusion with textures from higber spatial resolution
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Table 3. A comparison of different combinations of Landsat ETM + spectral features and
textures.

ETM-ALL ETM-Pan ETM-Pantxt ETM-Radartxt
t-
o Type PA% UA% PA% UA% PA% UA% PA% UA%o
<'I
Qj UPF 73.08 95.00 13.08 90.48 fJJ.11 91.30 73.08 86.36.n

LLF 84.62 64.71 84.62 64.71 92.31 75.00 84.62 64.71E
Q) SS3 46.15 18.18 46.15 18.75 84.62 27.50 46.15 18.75o
Q) SS2 21.43 45.00 23.81 47.62 21.43 52.94 14.29 35.29o
"'" SSI 64.62 63.64 64.62 63.64 61.54 63.49 61.54 59.70
"'" DGP 48.65 66.67 45.95 65.38 48.65 58.06 48.65 54.55(")

<D CUP 90.91 94.34 90.91 94.34 96.36 94.64 89.09 92.45

~ AGF 62.50 37.04 59.38 35.85 46.88 40.54 59.38 42.22
CFP 66.10 13.58 61.8 14.01 12.88 11.61 67.80 71.43

o lNF 90.91 100.00 90.91 100 90.91 100.00 90.91 90.91::i WAT 100.00 84.62 100 84.62 100.00 78.57 100.00 78.572.
s, NVL 83.33 100.00 83.33 100 15.00 100.00 75.00 100.00
rn OA 65.16 65.16 67.02 63.30
-u KA 0.6089 0.6087 0.6297 0.5811Q)-u
t1I
o
C Pan-fusion- Pan-fusion-;;
o Pan-fusion Pan-fusion-Pantxt Radartxt PanRadartxtO

Type PA% UA% PA% UA% PA% UA% PA% UA%

UPF 76.92 90.91 fJJ.17 81.50 84.62 84.62 80.77 95.45
LLF 84.62 61.11 92.31 66.67 84.62 68.75 100.00 72.22
SS3 69.23 22.50 84.62 32.35 46.15 23.08 69.23 40.91
SS2 21.43 36.00 23.81 52.63 19.05 53.33 16.67 70.00
SSI 53.85 61.40 63.08 62.12 70.71 6216 81.54- 59.55
DGP 40.54- 53.57 45.95 58.62 45.95 54.84 40.54 60.00
CUP 89.09 94.23 96.36 94.64 92.73 9273 98.18 91.53
AGF 53.13 34.00 43.75 34.15 50.00 42.11 43.75 58.33
CFP 51.63 68.00 66.10 69.64 74.58 10.97 86.44 68.92
lNF 90.91 90.91 90.91 100.00 90.91 100.00 90.91 100.00
WAT 100.00 18.57 100.00 18.57 100.00 73.33 100.00 78.57
NVL 75.00 100.00 75.00 100.00 66.67 100.00 75.00 100.00
OA 60.90 65.96 66.49 71.01
KA 0.5629 0.6176 0.6219 0.6106

images-Landsat EfM + panchromatic or Radarsat data-is helpful in improving
cIassification accuracies. In particular. the combination of data fusion and textures
from both paochromatic and Radarsat data improved ovecall accuracies by 5.8% to
6.9% if compared to EfM-ALL.

5. Díscussíonand concIusion

Vegetation cIassification in the moist tropical region, especially of land-cover types
like SS2 and SS3. is very difficult. but the use of textures is ao effective approach for
improvement. Indeed, a combination of textores and image data fusion generally
improved cIassification aecuraey by approximately 5.8--6.9% when compared to
using the original Landsat EfM + spectral images. On the contrary, the data fusion
based on Landsat ETM + multispectral and pancbromatic data or Radarsat data
did not effectively improve classification accuracies.
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Table 3. (Continued.)

•....
oo
N

Cii.a
E
l'3
CD
O
"<t

"<t
(")

éri•...

Type

Radar-fusion

PA% UA%

Radar-fusion-
Radartxt

PA% UA%

Radar-fusion-
Pantxt

PA% UA%

Radar -fusion-
PanRadartxt

PA% UA%
UPF
LLF
SS3
SS2
SSI
DGP
CUP
AGF
CFP
lNF
WAT
NYL
OA
K.A

84.62 95.65
92.31 80.00
16.92 25.64
26.19 47.83
55.38 6L<l2
45.95 58.62
90.91 96.15
56.25 36.00
62.71 71.15
90.91 90.91

100.00 18.57
75.00 100.00

64.63
0.6040

84.62 88.00
84.62 68.15
61.54 26.67
16.67 43.75
69.23 62.50
43.24 50.00
90.91 92.59
56.25 51.43
77.97 13.02
90.91 100.00

100.00 73.33
66.61. 100.00

61.02
0.6282

80.17 95.45
92.31 10.59
84.62 31.43
21.43 52.94
63.08 60.29
43.24 64.00
98.18 94.74
50.00 38.10
69.49 68.33
90.91 100.00
100.00 78.57
75.00 100.00

66.76
0.6260

80.77 95.45
100.00 12.22
61.54 44.44
16.67 63.64
89.23 63.04
37.84 58.33
98.18 91.53
46.88 55.56
86.44 70.83
90.91 100.00

100.00 78.57
75.00 100.00

12.07
0.6823

PA. produeer's accuracy; UA. user's accuracy;OA. overall accmacy; KA, kappa coeffieient.
UPF, upland forest; LLF, Iowland forest; SS3, advanced suocessional vegetation; SS2,
intermediate suocessionaIvegetation; SSI, initial successionaIvegetation; DGP, degraded
pasture; CUP, cultivated pasture; AGF, agroforestry; CFP, cofTee plantation; INF,
infrastructure; WAT. water; NYL, non-vegetation IowIand.

The complex fores! stand structures and abundant tree species may be the most
important factors inducing difficulty of vegetation classiíícation in the Amazon. For
example, the smooth transition between stages of successional vegetations and the
spectral confusion between successional vegetations and agroforestry makes their
classification accuracies poor, Agroforestry is a oompJex category, including a
variety of productive arrangements based on the association of two or more species.
Another problem is the difficulty in collecting sufficient training and test samples for
some vegetation classes, especiaDy for successional stages, ln this study area, the
lack of typical SS3 sampJes is an important factor resulting in poor SS3 classification
accuracy. The selected SS3 sampIes are mainIy in younger stages of SS3 and are
often confused with old SS2 vegetation because of their similar vegetation stand
structure.

This research has shown that texture measures represent an important factor
in improving land-cover cIassification aocuracies. One criticaI step is to identify
suitable textures that provide the best separabi1ity for the land-cover classes.
However, selection of suitable textures is a cbaIIenge because textures vary with the
characteristics of the landscape under investigation and images used. Identifying
suitable textures invoJves the selection of appropriate texture measures, moving
window sizes, and image bands (Franklin et al. 1996, Chen et alo 2004). Not all
texture measures can improve classification performance. Even for the same texture
measure, selecting the appropriate window size and spectral band is cruciaI. The
BTC approach provides an easy way to identify the best combination of textures to
improve classification performance based on the separability of land-cover classes
and correlation coefficients between the selected textures,

The data fusion image enhanced visual interpretation through the incorporation
of high spatial resolution infonnation in the fused dataset, However, data fusion
may decrease classification aecuracy, especially for the vegetation types with lack of
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obvious stand structures, such as 55l and DGP in this study. The major reason may
be that data fusion increases the variation within the same vegetation class. On the
contrary, textlli-es ",ale use of the spatial information inherent in the image and
reduce the speetral variation. Thus, use of data fusion and texture benefits the Iand-
cover dassíficatíon.
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