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Abstract
Background: Cultivated peanut, Arachis hypogaea is an allotetraploid of recent origin, with an
AABB genome. In common with many other polyploids, it seems that a severe genetic bottle-neck
was imposed at the species origin, via hybridisation of two wild species and spontaneous
chromosome duplication. Therefore, the study of the genome of peanut is hampered both by the
crop's low genetic diversity and its polyploidy. In contrast to cultivated peanut, most wild Arachis
species are diploid with high genetic diversity. The study of diploid Arachis genomes is therefore
attractive, both to simplify the construction of genetic and physical maps, and for the isolation and
characterization of wild alleles. The most probable wild ancestors of cultivated peanut are A.
duranensis and A. ipaënsis with genome types AA and BB respectively.

Results: We constructed and characterized two large-insert libraries in Bacterial Artificial
Chromosome (BAC) vector, one for each of the diploid ancestral species. The libraries (AA and
BB) are respectively c. 7.4 and c. 5.3 genome equivalents with low organelle contamination and
average insert sizes of 110 and 100 kb. Both libraries were used for the isolation of clones
containing genetically mapped legume anchor markers (single copy genes), and resistance gene
analogues.

Conclusion: These diploid BAC libraries are important tools for the isolation of wild alleles
conferring resistances to biotic stresses, comparisons of orthologous regions of the AA and BB
genomes with each other and with other legume species, and will facilitate the construction of a
physical map.
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Background
Cultivated peanut (Arachis hypogaea L) is the second-most
important grain legume crop worldwide after soybean,
with a production of 33 million tons in 2003/04 [1]. Pea-
nut is produced throughout the tropics and warmer
regions of the subtropics, but is particularly important in
Africa, Asia and in the United States [1]. It is an allotetra-
ploid (AABB) of recent origin that arose from hybridiza-
tion of two wild species and spontaneous chromosome
duplication [2,3]. This polyploidization event gave rise to
a severe genetic bottle-neck [2,3] which has led to lack of
variability in some important traits, limited availability of
allelic combinations and consequently restrictions in pro-
ductivity. In addition, the very low level of polymorphism
in cultivated peanut has hampered genetic and genomic
characterization. In contrast, diploid wild relatives of pea-
nut have high genetic diversity and have been selected
during evolution in a range of environments and biotic
stresses, constituting a rich source of allele diversity [3].
Wild alleles can be introduced into the gene-pool of culti-
vated peanut using a "resynthesis" pathway, essentially
artificially recreating events similar to those that gave rise
to the origin of the crop species [4]. Recent advances in the
knowledge of the relationships of wild and cultivated
genomes through traditional taxonomy, cytogenetics and
molecular studies are enabling new choices of wild species
for resynthesis [5-8]. In parallel new genetic and genomic
tools (see below) for monitoring the introgression of wild
genes into a cultivated background are opening the per-
spectives for the efficient introgression of wild genes into
the peanut crop using molecular breeding.

The very low level of polymorphism in cultivated peanut
has hampered genetic mapping and QTL (Quantitative
trait loci) studies. Consequently only a few linkage maps
have been published. All of them have used wild species
to enable the generation of sufficient polymorphic mark-
ers. Restriction fragment length polymorphism (RFLP)
maps were developed by Halward based on a cross of two
AA genome species, A. stenosperma Krapov. & WC Gregory
and A. cardenasii Krapov. & WC Gregory, and a tetraploid
map based on a cross of TxAG-6 (a synthetic amphiploid)
and A. hypogaea was published by Burow et al. [9].
Recently, we developed an SSR-based map for the AA
genome of Arachis based on a cross of A. stenosperma and
A. duranensis Krapov. & WC Gregory [10] and a map of the
BB genome, based on a cross of A. ipaënsis Krapov., WC
Gregory & CE Simpson and A. magna Krapov., WC Gre-
gory & CE Simpson [11]. Currently there are 54,168 ESTs
for A. hypogaea in Genbank [12-14], and 6,264 for the
wild AA genome A. stenosperma [15,16].

Bacterial Artificial Chromosome (BAC) libraries are fun-
damental tools for genomic studies, being important for
physical mapping, map-based gene cloning and analysis

of gene structure and function. The easy handling and
propagation of the clones, their relatively stability and
low degree of chimerism compared with yeast artificial
chromosome (YAC) vectors have made BAC vectors the
cloning system of choice [17,18]. A number of strategies
have been proposed for physical mapping with large-
insert clones: hybridisation-based methods such as inter-
active hybridisation using individual cDNA or genomic
clones as probes [19], restriction-based fingerprinting
methods [20] integrated BAC end sequencing and finger-
print analysis [21] or more recently, the use of oligonucle-
otide-based "overgos" [22].

Within the Leguminosae, BAC libraries are available for
Phaseolus vulgaris [23], Vigna radiata [24], Glycine max [25],
Trifolium pretense [26] and the model legumes Lotus japon-
icus [27] and Medicago truncatula [28]. Within the genus
Arachis, one BAC library for the allopolyploid cultivated
peanut has been developed [29]. As a complement to this
resource, here we describe the production of BAC libraries
for the two diploid wild species A. duranensis (AA
genome) and A. ipaënsis (BB genome) that have been
identified as the most probable ancestors of cultivated
peanut [8,30]. Using whole genome in-situ hybridization
(GISH) we also further investigated the affinities and cov-
erage of the selected diploid genomes compared to those
present in A. hypogaea.

Results
In-situ hybridizations
Total genomic DNA of A. duranensis (AA genome) and A.
ipaënsis (BB genome) when used as probes on the chro-
mosomes of A. hypogaea displayed intense and uniform
hybridization patterns onto AA and BB chromosomes of
A. hypogaea respectively (Fig. 1). This clear genome dis-
crimination of the chromosome subsets from the corre-
sponding parental genomes in the tetraploids was
possible without the need of any unlabelled blocking
DNA, which is normally used to avoid cross-hybridization
between a specific probe from one genome and homolo-
gous DNA sequences from another genome. Counter-
stained A and B chromosomes show very similar total
sizes for the two genomic components (Fig. 1).

High Molecular Weight (HMW) DNA isolation
The use of standard HMW DNA isolation protocols
[31,32] did not produce sufficient amounts of good qual-
ity nuclei for Arachis. High levels of carbohydrate and
polyphenols are present in both A. duranensis and A.
ipaënsis leaves. This results in high viscosity leaf extracts,
which are difficult to filtrate, increasing considerably the
time of the nuclei exposure to the action of oxidizing sub-
stances. To overcome this problem, some modifications
were necessary: inclusion of PVP-40 in the extraction
buffer, filtration of leaf extracts in four layers of cheese-
Page 2 of 8
(page number not for citation purposes)



BMC Plant Biology 2008, 8:14 http://www.biomedcentral.com/1471-2229/8/14
cloth followed by two layers of Miracloth, centrifugation
at low speed (60 × g for 2 min) and a Percoll gradient
(37.5%). The analysis of the extracts by DAPI-staining
microscopy enabled the correct evaluation of the amount
and quality of the nuclei preparations.

The inclusion of an extra purification step, consisting of
PFGE of agarose plugs for 40 min before digestion, ena-
bled the purging of smaller fragments and eliminated
impurities, increasing cloning efficiency. To obtain the
highest amount of restricted DNA after electro-elution,
only 50 μL was recovered at the very bottom of the collec-
tion tube instead of 300 μL as described in the standard
protocol [21]. After the double size selection, various
ratios of ligation were tested with the 1/4 V/I ratio result-
ing in the greatest number of transformants. Overall, five
different ligations were necessary to obtain each BAC
library (Table 1).

BAC libraries characterisation
The BAC library for the AA genome (A. duranensis) con-
tained 84,096 clones whilst the BB genome library (A.
ipaënsis) consisted of 75,648 (Table 1). A random sample
of each library was analyzed by NotI digestion, and the

average insert size was 110 and 100 kb for A. duranensis
and A. ipaënsis respectively (Fig. 2a and 2b; Fig. 3).

The organelle contamination in both BAC libraries was
evaluated by screening the high-density filters with mito-
chondrial and chloroplast specific probes. For A. duranen-
sis, the contamination of BAC clones with chloroplast
sequences was of 0.016% and mitochondrial sequences of
0.21%. For A. ipaënsis 0.363% was contaminated with
chloroplast sequences and 0.081% of the clones with
mitochondrial DNA. These values, together with the
microscopic DAPI-staining observations, reflect the high
level of purification of the Arachis nuclei obtained with
the modified protocol.

Based on the library average insert size and A. duranensis
haploid genome, equivalent to 1260 Mb [33], the esti-
mated coverage of the AA genome BAC library is of 7.4
haploid genome equivalents. However, for A. ipaënsis, the
DNA-content determination is controversial. It is possible
that the haploid genome equivalent of 2,830 Mb reported
by Singh et al [34] is a 2.0 fold overestimate because of
measurement inconsistencies, as already described for
other Arachis species [33,35] Therefore the BB genome
BAC library for A. ipaënsis could represent from 2.7 to 5.3
the haploid genome equivalents of the species. Consider-
ing that A and B chromosomes show very similar sizes for
the two genomic components of the tetraploid (as men-
tioned above, Fig. 1) we consider that latter to be a better
estimate. To further test the coverage, high-density filters
were screened with probes corresponding to single copy
gene used as anchor markers in legume and that have
been placed on the Arachis AA genetic map (unpublished
data). An average of 5.1 clones per probe was identified in
the AA genome and 4.5 in the BB (Table 2).

The hybridization of both BAC libraries with an Arachis
resistance gene analogue RGA S1_A_36 identified two
clones in the AA genome but none in the BB genome
(Table 2).

Discussion
Cultivated peanut is an allotetraploid with two nuclear
genomic components, AA and BB. Although it is generally
agreed that these component genomes are derived from

GISH of Arachis hypogaea metaphase chromosomesFigure 1
GISH of Arachis hypogaea metaphase chromosomes. 
Somatic metaphases of Arachis hypogaea (subsp. hypogaea var. 
hypogaea, race Guaycurú) after a) 4'6-diamidino-2-phenylin-
dole (DAPI) counterstaining (blue, shown in black and white), 
b) Genomic in situ hybridization using genomic DNA from 
A.duranensis (in green) and A. ipaënsis (red).

Table 1: Characteristics of the A. duranensis and A. ipaënsis BAC libraries

Species Ligations(no.) Genome size (Mb) Clones (no.) Average insert size 
(kb)

mtDNA(%) cpDNA(%) Estimated genome 
coverage

A. duranensis 5 1260a 84,096 110 0.21 0.016 7.4×
A. ipaënsis 5 1415–2830b 75,648 100 0.081 0.363 5.3–2.7bx

mt: mitochondrial, cp: chloroplastic
a Temsch & Greilhuber, 2001
b Singh et al, 1996
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diploid wild ancestors, the exact species involved has been
a matter of some research and discussion. Although the
evidence is not completely clear cut, analysis of data from
molecular markers, cytogenetics, morphology and geo-
graphical distributions support that A. duranensis and A.
ipaënsis are the direct ancestors of cultivated peanut
[8,30].

Genomic in situ hybridization (GISH) of A. hypogaea met-
aphase chromosomes with total genomic DNA from the
AA genome of A. duranensis and the BB genome of A.
ipaënsis allowed a clear differentiation of the A and B chro-
mosomes. Firstly, this observation reinforces the evidence

of the close relationship between the genomes of A. duran-
ensis, A. ipaënsis and cultivated peanut. Secondly, since
GISH relies largely on the hybridization of repetitive
sequences, it also indicates that A. duranensis and A. ipaën-
sis genomes have diverged substantially regarding their
repeated sequences/transposable elements contents.

In contrast, the evidence available indicates that the gene
order in the AA and BB genomes is substantially conserved
[9]. This situation of largely syntenic gene frameworks
embedded within quickly evolving repetitive DNA seems
to be a recurrent theme in plant evolution [36-39].

The availability of BAC libraries from the allopolyploid
and the two wild ancestors will allow the comparison of
these genomes regarding microsynteny and repetitive
DNA contents, in particular transposable elements and
will provide insights into the fascinating area of polyploid
genome evolution.

Table 2: BAC library filter-hybridization results using legume single-copy probes and one RGA

Probe Number of BAC clones detected

A. duranensis A. ipaënsis

RGA S1_A_36 2 0
Leg083 2 5
Leg128 4 4

Leg092, Leg149, Leg178 (mixed) 19
Leg 92 10 *
Leg237 5 *
Leg242 6 *
Leg 88 0 *

Average Leg clones 5,11 4,5

* Not tested

A. duranensis (a) and A. ipaënsis (b) libraries sizingFigure 2
A. duranensis (a) and A. ipaënsis (b) libraries sizing. 
Random BAC clones from the A. duranensis (a) and A. ipaënsis 
(b) libraries digested with NotI and separated by PGEF. The 
size of a few reference bands from Lambda Ladder PFG 
Marker (New England Biolabs) are indicated in kilobases.

BAC libraries insert sizesFigure 3
BAC libraries insert sizes. Distribution of insert sizes 
from randomly selected BAC clones from the A. duranensis 
and A. ipaënsis libraries.
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In addition, the legume single copy anchor markers, used
to characterize the libraries, will allow orthologous
regions to be identified and compared between the AA
and BB Arachis genomes, and with other legume genomes,
in particular the sequenced genomes of Lotus and Medi-
cago, providing insight into legume genome evolution.

Construction of BAC libraries in some plants can require
substantial effort due to particular chemical constitution
as already experienced by us before [32]. For Arachis,
obtaining good quality HMW DNA was difficult due to
contamination from polyphenols and carbohydrates,
which are abundant in Arachis leaves. A number of steps
had to be added to the standard protocols of nuclei extrac-
tion and several ligations had to be made to obtain a rea-
sonable number of BAC clones. These difficulties were
also reported by Yuksel and Paterson [29] for the con-
struction of the A hypogaea BAC library.

The genome coverage of the BAC libraries was estimated
between 7.4 and 5.1 haploid genome equivalents for the
A genome and 5.3 to 4.5 for the B genome. These dispari-
ties are due to variations of the density of restriction sites
in certain genome regions or difficulties in cloning too
large or too small fragments [40]. Considering that 99%
coverage is equivalent to 4.7× haploid genomes [40]A.
duranensis and A ipaënsis genomes are well represented
and the libraries will be suitable for many applications.

The availability of BAC libraries from diploid Arachis will
greatly facilitate the development of a reference physical
map for Arachis. The construction of this physical map
will be initiated soon with the A. duranensis BAC library.
This species was used as a parent of the mapping popula-
tion used for the construction of the Arachis SSR-based
map [10]. A. ipaënsis is also the parent of a mapping pop-
ulation [11]. This will facilitate the integration of genetic
and physical maps.

The exploitation of peanut's diploid wild relatives for
breeding is very attractive since they possess various resist-
ances to biotic and abiotic stresses. The two species used
to make the BAC libraries harbour resistances to nema-
tode and fungal diseases[41,42]. These new BAC resources
will help the tagging and/or the isolation of the corre-
sponding resistance genes. For example, a QTL for resist-
ance to late leaf spot, caused by Cercosporidium personatum
has been mapped in a cross of A. duranensis with A. steno-
sperma [43]. S1_A_36, a RGA that co-segregates with this
QTL has been used to identify two BAC clones in the A.
duranensis library, whilst no clones in the A. ipaënsis
library were found. Sequencing of the BAC clones should
enable the identification of microsatellites in the target
region, thus providing more convenient markers for track-
ing the QTL in segregating populations.

Conclusion
In summary, here we describe the production of BAC
libraries for the AA and BB genomes of Arachis. The librar-
ies will be a useful resource for the isolation of genes, the
construction and correlation of physical and genetic
maps, the isolation of probes for cytogenetic analysis, the
study of the evolution of the two genome types, and, by
comparison with the allotetraploid genome of cultivated
peanut, for the study of the evolution of polyploid
genomes.

Methods
Plant Material
Seeds were obtained from the Arachis germplasm collec-
tion, maintained at Embrapa Genetic Resources and Bio-
technology – CENARGEN (Brasília-DF, Brazil). The
germination was improved by placing the seeds on a blot-
ting paper humidified with a 1% Ethephon. For HMW
DNA isolation, A. duranensis V14167 (genome AA) and A.
ipaënsis KG30076 (genome BB) were grown under green-
house conditions. Young leaves were collected in liquid
nitrogen then stored at -80°C.

Probe labelling and fluorescent in situ hybridization
Whole genomic DNA from A. duranensis and A. ipaënsis
were used as probes in genomic in situ hybridization
(GISH). Probes were labelled with digoxigenin-11-dUTP
(Roche, Mannheim, Germany) or biotin-11-dUTP
(Sigma) by nick translation.

Pre-treatment of preparations, chromosome and probe
denaturation, conditions for the in situ hybridization
(hybridization mixes contained DNA probes at a concen-
tration of 2.5–3.5 ng/μL), post-hybridization washings,
blocking, and indirect detection by fluorochrome conju-
gated antibodies were performed according to Moscone et
al[44]. Antibodies consisted of mouse anti-biotin (Dako-
patts, Dako, Carpinteria, California, USA) and sheep anti-
digoxigenin conjugated to fluorescein isothiocyanate
(FITC) (Roche) in PBS (0.13 mol/L NaCl, 0.007 mol/L
Na2HPO4, 0.003 mol/L NaH2PO4), 3% (w/v) bovine
serum albumin (BSA) or, rabbit anti-mouse conjugated to
tetramethyl-rodamine isothiocyanate (TRITC) (Dako-
patts) and FITC-conjugated rabbit anti-sheep (Dakopatts)
in PBS, 3% (w/v) BSA. Preparations were counterstained
and mounted with Vectashield medium (Vector Laborato-
ries, Burlingame, California, USA) containing 2 μg/mL of
4',6-diamidino-2-phenylindole (DAPI, Sigma).

The DAPI counterstaining subsequent to GISH resulted in
a C banding-like pattern with major heterochromatin
bands fluorescing more intensely, thus aiding chromo-
some identification [8,44].
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Fluorescence microscopy and image acquisition
Chromosomes were viewed and photographed with a
Leica DMLB fluorescence microscope (Leica, Heerbrugg,
Switzerland) equipped with a computer-assisted Leica DC
250 digital camera system. Red, green, and blue images
were captured in black and white using appropriate filters
for TRITC, FITC, and DAPI excitation, respectively. Digital
images were pseudo-coloured and combined using IM
1000 Leica software, then imported into Adobe Pho-
toshop, version 7.0 (Adobe, San Jose, California, USA) for
final processing.

HMW DNA isolation
Nuclei were isolated from leaves according to Meyers et al.
[31] with some modifications. Fifty grams of young leaves
were ground in liquid nitrogen and nuclei were liberated
by incubating the cell extract at 4°C for 20 min in HB 1×
extraction buffer, plus 0.2% of polyvinylpyrrolidone (PVP
40). PVP was added to the buffer to reduce the production
of oxidizing polyphenolic substances. To eliminate cell
debris, the leaf homogenate was filtered successively
through four layers of cheesecloth then two layers of Mir-
acloth (250 μm), (Calbiochem, UK) and a low speed cen-
trifugation (60 × g for 2 min) was performed.
Centrifugation at 850 × g for 8 min at 4°C was followed
by a Percoll gradient (37.5%) to separate nuclei from the
pectin matrix [45]. The nuclei was washed in 20 mL of HB
1× extraction buffer without β-mercaptoethanol and Tri-
ton-100×, and then centrifuged at 850 × g for 8 min at
4°C. Finally the nuclei pellet was resuspended in 1 mL of
filtered HB 1× and embedded in 1.2% low-melting-point
agarose plugs (InCert Agarose, Cambrex-Bioscience, Rock-
land, Inc.). An aliquot of the nuclei extraction was evalu-
ated under a microscope using DAPI staining to observe
the integrity of the nuclei and the purity of the preparation
in terms of organelle contamination. Agarose plugs con-
taining HMW DNA were incubated for 24 h at 50°C in
lysis buffer (5% Sodium Lauryl Sarcosyl, 0.625 M EDTA
pH 9.0, 50 mg Proteinase K), washed for 1 h at 4°C in
inactivation solution (0.5 M EDTA, pH 8.0, 1 mM PMSF),
then washed four times for 30 min in TE 10/10 (10 mM
Tris-HCl, 10 mM EDTA, pH 8.0). An extra HMW DNA
purification step was conducted with a pulsed-field gel
electrophoresis (PFGE) using a CHEF Mapper™ XA appa-
ratus (Bio-Rad, U.K.) at 6 V/cm, with 3 s of switch time,
and an angle of 120° for 40 min aiming to eliminate the
degraded DNA. Agarose plugs were finally washed four
times for 30 min in TE 10/1 (10 mM Tris-HCl, 1 mM
EDTA, pH 8.0). at 4°C before being used for restriction
enzyme digestions.

BAC library construction
Agarose plugs containing HMW DNA were chopped into
small pieces and incubated on ice, with agitation, three
times in 1 mL of HindIII restriction buffer (Gibco BRL,

USA), with buffer exchange every 30 min. Seven units of
HindIII was added to each chopped plug and allowed to
diffuse for 4 hours on ice. For partial digestions, the reac-
tions were incubated for 15 min at 37°C and then
stopped by adding one-tenth of the total volume of 0.5 M
EDTA, pH 8.0. Partially digested HMW DNA was size-
selected by two successive PFGE in 1% GTG SEAKEM aga-
rose gels in 0.5× TBE at 14°C. The first-sizing was per-
formed at 6 V/cm, with 1 s to 50 s of switch-time, and an
angle of 120° for 20 h. Two regions from 80 to150 kb and
150 to 250 kb were excised from the gel and loaded onto
a new gel. The second-sizing selection was then performed
at 6 V/cm, with 3 s of switch time, and an angle of 120°
for 20 h. The regions from 100 to 250 kb were cut out
from the latter gel and the DNA was recovered through an
electro-elution (BIO-RAD/electro-eluter, UK). DNA con-
centration was estimated in 1% agarose gel in 1× TAE. Sev-
eral ligation reactions were tested containing different
ratios of vector to insert. A constant 30 ng of the commer-
cial vector "pIndigo BAC-5 HindIII-Cloning Ready" (Epi-
centre, USA) was used, and varying amounts of DNA
ranging from 50 to 600 ng of HMW DNA were used. One
microlitre of ligation was mixed to 20 microlitres of com-
petent E. coli cells (ElectroMAX DH10B, Invitrogen) and
electro-transformed using a BRL Cell-Porator system
according to the manufacturer's recommendations but
with a charge rate of 355 volts. Transformants were
selected on 2YT plates (tryptone 16 g/L, yeast extract 10 g/
L, sodium chloride 5 g/L, agar 16 g/L) containing 12.5 μg/
mL of chloramphenicol, 50 μg/mL of 5-bromo-4-chloro-
3-indole-β-D-galactopyranoside (X-Gal) and 25 μg/mL of
isopropyl-thiogalactoside (IPTG). White colonies were
picked using a Q-Pix 2 colony picker robot (Genetix) and
transferred to 384-well plates containing 80 μL of 2YT, 7%
glycerol. Microplates were incubated for 18–20 h at 37°C
and stored at -80°C.

BAC library screening and DNA isolation
For estimation of BAC clone insert sizes, random individ-
ual clones were grown in 100 μL pre-innoculum and then
in 3 mL 2YT liquid medium containing chloramphenicol
(12.5 μg/mL). BAC DNA was isolated using a QIAGEN
BIO-ROBOT 9600 (Qiagen GmbH, Germany). BAC DNA
was digested with NotI to release the inserts. The digested
clones were separated by PFGE at 6 V, a switch time from
5 to 15 s, an angle of 120° and run for 15 h. High-density
filters were made using a Q-Pix 2 robot (Genetix). Each
high-density filter contained 18,432 double-spotted
clones. Hybridisations were performed as described in the
Clemson BAC protocols [45]. Filters were exposed for 24
h to Ferrania LifeRay XCG-films.

Genomic probes
Estimation of organelle contamination in both libraries
was evaluated by hybridization of high-density filters
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using probes from a spinach chloroplast gene, the large
Rubisco subunit (1.5 kb) and a wheat mitochondrial gene
of cytochrome oxidase cox I (1.3 kb) [32]. BAC libraries
were also hybridized to probes from single-copy genes
that have been defined as legume anchor markers [46]
and the Arachis resistance gene analogue S1_A_36 [47]
(Genbank accession AY157808). This RGA was isolated
from the AA genome species A. stenosperma and has been
found to co-localize with a QTL for resistance to the late-
leaf spot Cercosporidium personatum [43].
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