Rev. Brasil. Genet. 14, 2, 437-453 (1991) (Brazil. J. Genetics)

# SELECTION OF LOCAL LOWLAND RICE CULTIVARS BASED ON MULTIVARIATE GENETIC DIVERGENCE

Paulo Hideo Nakano Rangel<sup>1</sup>, Cosme Damião Cruz<sup>2</sup>, Roland Vencovsky<sup>3</sup> and Reinaldo de Paula Ferreira<sup>1</sup>

## ABSTRACT

Seventy two local rice cultivars, adapted to lowland conditions, were evaluated, considering ten traits of agronomic importance. Their genetic divergence was evaluated through multivariate procedures, to orient the constitution of base populations for breeding purposes.

The clustering procedure proposed by Tocher was applied to Mahalanobis generalized distances; all cultivars could then be organized into four groups.

Special emphasis was given to the divergence within a group of 13 distinct cultivars identified as superior in relation to grain yield.

Measures of divergence permitted the recognition of two special groups within the set of 13, namely: group 1, with cultivars 49, 6, 35, 34, 38 and 13; group 2, with cultivars 59, 41, 37, 23, 3, 21 and 30. These groups seemed to be adequate for intercrossing in a factorial mating design (group 1°x group 2). Alternatively, cultivars of these groups could be used for intercrossings with introduced elite lines, already improved in terms of plant architecture.

Divergence was also detected among cultivars with the same denomination (Matão and Chorinho), but collected at different locations. It was inferred that these materials could have undergone a process of genetic divergence due to contrasting environmental conditions, maintained through decades of cultivation. The divergence detected in these cultivars with identical denomination was more pronounced for days to flowering than for other traits.

<sup>&</sup>lt;sup>1</sup> EMBRAPA/Centro Nacional de Pesquisa de Arroz e Feijão (CNPAG), Caixa Postal 179, 74000 Goiânia, GO, Brasil. Send correspondence to P.H.N.R.

<sup>&</sup>lt;sup>2</sup> Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570 Viçosa, MG, Brasil.

<sup>&</sup>lt;sup>3</sup> Departamento de Genética, ESALQ/USP, Caixa Postal 83, 13400 Piracicaba, SP, Brasil.

#### INTRODUCTION

Breeding programs frequently require the effective identification of superior parental lines for intercrossing in order to exploit hybrid vigor for the constitution of base populations to be used for the extraction of new cultivars. Parental selection based on scientific evidence may prevent the possible early failure of a breeding program.

Breeders usually select parental lines for crossing on the basis of their performance both *per se* and in hybrid combinations. However, when selection is to be made among a relatively large number of parents or when the production of large numbers of hybrids is difficult, as is the case for autogamous and/or perennial plants, selection is performed on the basis of parental information only, with no *a priori* knowledge about the hybrids.

When parental lines are selected only on the basis of information regarding comparative trials for yield and yield components, two concepts of quantitative genetics are usually applied. The first takes into account the fact that the probability of obtaining superior lines is a function of gene frequency in the population, which means that superior lines are more easily obtained from already improved populations. This concept leads to recombination of elite material for the constitution of base populations. However, no safe information is available on the potential variability of the population to be formed.

The second concept refers to the need for considerable base population variability, which would permit selection and genetic gain. This variability is achieved through divergent parental crosses and is particularly interesting in cases in which hybrid exploitation is a viable alternative.

When decisions about the choice of parental lines are to be made on the basis of the above two concepts, a very useful statistical tool is the evaluation of genetic divergence through mutlivariate procedures such as clustering based on Mahalanobis  $D^2$  generalized distances (Mahalanobis, 1936) and canonical variable analysis (Rao, 1952).

Genetic divergence has been studied in rice by Ram and Panwar (1970), Singh *et al.* (1979), Maurya and Singh (1977a) and Rao *et al.* (1981). These studies have been very useful for the constitution of cultivar groups with a high similarity pattern for comparison between genetic divergence and geographic diversity, for the evaluation of the evolutive level of *Oryza* species and for the choice of divergent parental lines for breeding programs.

The breeding program developed by the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)/Centro Nacional de Pesquisa de Arroz e Feijão (CNPAF) for rice cultivars adapted to lowland conditions is primarily based on the Selection of Rice Cultivars Based on Multivariate Genetic Divergence

study and utilization of the wide genetic variability available in traditional cultivars. Thus, the objective of the present study was to evaluate the performance of 72 traditional rice cultivars with respect to ten traits of agronomic importance, and their genetic divergence through multivariate procedures in order to determine the constitution of base populations for breeding purposes. The degree of similarity between cultivars collected at different locations but with the same denomination was also investigated.

## MATERIAL AND METHODS

A total of 72 rice cultivars from the germplasm collection program developed by EMBRAPA/CNPAF in the States of Minas Gerais and Maranhão were evaluated (Table I). The experimental design consisted of fully randomized blocks with two replications. The experimental plots consisted of 5.0-m long rows 0.4 m apart. The useful area of the plot was  $1.6 \text{ m}^2$ , corresponding to the center of the row, with 0.5 m eliminated at both ends.

| Cultivar No. | Cultivar name           | CNPAF code | State of origin |
|--------------|-------------------------|------------|-----------------|
| 1            | Chorinho Americano      | CGC-108    | MG              |
| 2            | Híbrido                 | CGA-76     | MG              |
| 3            | Poupa Preguiça          | - b/       | MG              |
| 4            | Cana Roxa Palha Amarela | CGA-102    | MG              |
| 5            | Secretário              | CGA-51     | MG              |
| 6            | De Abril                | CGA-65     | MG              |
| 7            | Santa Catarina          | CGA-2      | MG              |
| 8            | Bacaba                  | -          | MA              |
| 9            | Zebu                    | E043231    | MA              |
| 10           | Cutião Bico Preto       | _          | MA              |
| 11           | Venez Branco            | CGA-4      | MG              |
| 12           | Santa Catarina          | CGA-1      | MG              |
| 13           | Chorinho Aliança        | CGA-110    | MG              |
| 14           | - a/                    | CGA-66     | MG              |
| 15           | -                       | CGA-60     | MG              |

Table I - Identification of traditional rice cultivars, adapted to lowland conditions, collected in the States of Minas Gerais (MG) and Maranhão (MA). 1980/81.

Continued

Rangel et al.

#### Table I - Continued.

| Cultivar No. | Cultivar name         | CNPAF code | State of origin |
|--------------|-----------------------|------------|-----------------|
| 16           | Uberabinha            | CGA-80     | MG              |
| 17           | -                     | CGA-74     | MG              |
| 18           | Matão                 | CGA-43     | MG              |
| 19           | -                     | CGA-105    | MG              |
| 20           | Arroz de Leite        | -          | MA              |
| 21           | Quebra Cacho          | CGA-91     | MG              |
| 22           | Santa Catarina        | CGA-9      | MG              |
| 23           | Cuchilão              | E043281    | MA              |
| 24           | Buriti                | E043788    | MA              |
| 25           | Híbrido               | CGA-19     | MG              |
| 26           | Santa Catarina        | CGA-6      | MG              |
| 27           | -                     | E043346    | MA              |
| 28           | Palha Murcha          | -          | MA              |
| 29           | Honduras              | CGA-71     | MG              |
| 30           | Brejeiro              | CGA-115    | MG              |
| 31           | Nenezinho             | -          | MA              |
| 32           | Escrivimangote        | CGA-126    | MG              |
| 33           | Bico de Ouro          | CGA-93     | MG              |
| 34           | Coqueiro Casca Branco | CGA-111    | MG              |
| 35           | Brejeiro              | CGA-81     | MG              |
| 36           | Matão                 | CGA-120    | MG              |
| 37           | Maraba                | E043796    | MA              |
| 38           | Paga Dívida           | CGA-7      | MG              |
| 39           | Bico Preto Roxo       | E044059    | MA              |
| 40           | De Abril              | CGA-48     | MG              |
| 41           | Catetinho             | CGA-107    | MG              |
| 42           | Lageado               | E043966    | MA              |
| 43           | Bacaba Branco         | -          | MA              |
| 44           | Prata                 | CGA-123    | MG              |
| 45           | Desempenho Amarelinho | CGA-29     | MG              |
| 46           | Chorinho              | CGA-114    | MG              |
| 47           | Chorinho com Apiculo  | CGA-118    | MG              |
| 48           | Japones de Várzea     | CGA-122    | MG              |

Continued

Table I - Continued.

| Cultivar No. | Cultivar name        | CNPAFcode    | State of origin |
|--------------|----------------------|--------------|-----------------|
| 49           | -                    | CGA-63       | MG              |
| 50           | Cacho de Ouro        | CGA-77       | MG              |
| 51           | Barriga Branca       | CGA-53       | MG              |
| 52           | Come Cru Vermelho    | - 1          | MA              |
| 53           | Canela de Aço        | 2 <b>—</b> 3 | MA              |
| 54           | Macanco              | CGA-11       | MG              |
| 55           | Cana Roxa            | -            | MA              |
| 56           | Santa Catarina       | CGA-8        | MG              |
| 57           | -                    | CGA-54       | MG              |
| 58           | Amarelão             | CGA-68       | MG              |
| 59           | -                    | E043699      | MA              |
| 60           | Matão                | -            | MA              |
| 61           | Nanico               | CGA-124      | MG              |
| 62           | Mundicera            | CGA-49       | MG              |
| 63           | Americana            | -            | -               |
| 64           | Matão                | E044172      | MA              |
| 65           | Cutião Vermelho      | -            | MA              |
| 66           | Santa Catarina       | CGA-17       | MG              |
| 67           | CICA 8 <sup>c/</sup> | -            | GO              |
| 68           | Santa Catarina       | CGA-21       | MG              |
| 69           | Come Cru Branco      |              | MA              |
| 70           | IAC25 <sup>c/</sup>  | -            | SP              |
| 71           | Mucuim               |              | MA              |
| 72           | IAC 47 <sup>c/</sup> | - 2          | SP              |

<sup>a</sup> Unknown or not identified.

<sup>b</sup> Not coded at CNPAF.

<sup>c</sup> Checks.

The following traits were evaluated: plant height (PH) and leaf area (LA) in a sample of five plants; panicle length (PL), number of spikelets/panicle (NSP), pecent filled grains/panicle (%GP) and 100 weight of grains (G100) in a sample of 20 panicles; number of tillers (NT) and of panicles (NP)/m<sup>2</sup>; days to flowering (DF) and grain yield/plot (GY).

In addition to univariate analysis of variance and cluster analysis for grouping means by the criteria of Scott and Knott (1974), the following analyses were performed:

a) Estimates of generalized  $D^2$  Mahalanobis distances.

b) Cultivar grouping according to the clustering procedure proposed by Tocher (cited by Rao, 1952). A detailed example of the application of this method has been described by Singh and Chaudhary (1979).

c) Graphic divergence analysis using canonical variables. This procedure is used to obtain information about genetic distance by plotting the dispersal of the scores for each cultivar in graphs in which the first canonical variable and the second canonical variable on the y axis (Rao, 1952).

The trial was conducted in Goiânia, State of Goiás (GO), at EMBRAPA/CNPAF in 1981/82.

## **RESULTS AND DISCUSSION**

Table II shows the existence of significant differences (P < 0.01) among cultivar means for all traits evaluated, as well as high (above 70%) genotype determination coefficients (b) for most traits, except for NT and NP, whose values were 42.77% and 47.40%, respectively. These data indicate a highly favorable situation for breeding, suggesting the possibility of effective discrimination of genotypically superior cultivars among the 72 materials tested.

NT and NP were considerably affected by environment and presented a relatively low experimental precision, with CV's of 25.38% and 23.50%, respectively. Although the F test showed the presence of significant differences (Table III), the Scott and Knott test was not sensitive for the identification of significant differences among cultivar means (Table III) for the two traits. The experimental precision for the remaining traits was good, with CV's ranging from 15.54% (grain yield) to 1.53% (days to flowering).

The clustering procedure proposed by Tocher (cited by Rao, 1952) was applied to Mahalanobis generalized distances (Table III) and permitted the division of the 72 cultivars into four groups. Group I consisted of 66.7% of the cultivars, group II of 29.2%, group III of 2.8%, and group IV of 1.4%. The cultivars did not cluster by geographic origin, showing that there is a relationship between cultivars collected in Maranhão and in Minas Gerais.

| Source of                       | đf |                      |            |             |            | Means squares | uares      |           |             |                          |                |
|---------------------------------|----|----------------------|------------|-------------|------------|---------------|------------|-----------|-------------|--------------------------|----------------|
| variation                       |    | Days to<br>flowering | PH<br>(cm) | IN          | dN         | PL (cm)       | NSP        | %GP       | G100<br>(g) | LA<br>(cm <sup>2</sup> ) | GY<br>(g/plot) |
| Blocks                          | -  | 7.650                | 191.0000   | 398.0000    | 8566.0000  | 0.2656        | 227.2500   | 61.8125   | 0.0030      | 255312                   | 127216.0000    |
| Cultivars (Total)               | 11 | 383.2870*            | 396.3908*  | 11186.2700* | 9419.4650* | 7.9617*       | 1417.9720* | 334.0361* | 0.2395*     | 222.8196*                | 100089.0000*   |
| Selected cultivars <sup>8</sup> |    | 75.5703*             | 140.0677*  | 24312.6200* | 16653.1880 | 2.8708        | 1253.0704* | 29.2578   | 0.1138*     | 98.5788*                 | (14530.0000)   |
| Residue                         | 11 | 2.7588               | 73.3873    | 6402.2680   | 4954.5070  | 2.3327        | 358,5060   | 24.3195   | 0.0277      | 45.5792                  | 12482.1400     |
|                                 |    |                      |            |             |            |               |            |           |             |                          |                |
| Mean                            |    | 108.59               | 137.12     | 315.23      | 299.47     | 22.11         | 141.67     | 76.44     | 2.78        | 48.04                    | 768.32         |
| CV (%)                          |    | 1.53                 | 6.25       | 25.38       | 23.50      | 6.91          | 13.36      | 6.45      | 5.98        | 14.36                    | 14.54          |
| (%) q                           |    | 99.28                | 81.49      | 42.77       | 47.40      | 70.70         | 74.72      | 92.12     | 88.44       | 78.65                    | 87.53          |

443

Abbreviations used are: PH, plant height; NT, number of tillers; NP, number of panicles; PL, panicle length; NSP, number of spikelets/panicle; % UP, percent filled grains/panicle, G100, 100 grains weight; LA, leaf area; GY, grain yield.

\* Significant at the 1% level of probability by the F test.

<sup>a</sup> Group of 13 cultivars selected for yield at 18% selection intensity.

| Group | Cultivars                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------|
| I     | 1, 3, 4, 6, 8, 9, 10, 11, 13, 16, 19, 20, 21, 23, 24, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, |
|       | 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 64, 65, 67, 69, 71, 72                            |
| II    | 2, 5, 7, 12, 14, 15, 18, 22, 25, 26, 27, 36, 42, 45, 46, 51, 56, 61, 62, 66, 68                           |
| III   | 63, 70                                                                                                    |
| IV    | 17                                                                                                        |
|       |                                                                                                           |

Table III - Groups of rice cultivars adapted to lowland conditions, established by the clustering method of Tocher applied to Mahalanobis generalized distances.

Maximum distance = 2071.4 between cultivars 42 and 63. Minimum distance = 1.6 between cultivars 10 and 39.

On the basis of the traits analyzed, Cutião Bico Preto (No. 10) and Bico Preto Roxo (No. 39) were the cultivars showing the closest genetic relationship, with a minimal distance from each other ( $D^2 = 1.6$ ). In contrast, Lageado (No. 42) and Americana (No. 63) were the cultivars showing the greatest genetic divergence, with maximal distance from each other ( $D^2 = 2071.4$ ).

The use of parental lines with maximal genetic divergence has been recommended by several investigators, to maximize hybrid heterosis and to increase the probability of the occurrence of superior segregants in advanced generations. Thus, the information presented in Table III could be used to orient intercrossing. Since cultivars belonging to the same group present a high level of genetic similarity, according to multivariate analysis, crosses with in the same group should be avoided. whereas crosses involving parental lines belonging to different groups should be encouraged. Since heterosis is a relative measure ( $F_1$  compared to parents) the identification of parental lines for crossing based only on genetic divergence and ignoring per se performance may not be a good breeding strategy. On this basis, it can be seen from Table III that, even though Lageado (No. 42) and Americana (No. 63) are the cultivars with the greatest genetic divergence, their respective mean grain yields per plot were only 623.5 and 923.5 g (Table IV), i.e., significantly lower values than those obtained for the most productive cultivars. If cultivar Paga Dívida (No. 38), the most productive one with 1254.50 g/plot (Table IV), is taken as reference, it would be highly unlikely that the yield of the  $F_1$  hybrid between cultivars Bico Roxo

Selection of Rice Cultivars Based on Multivariate Genetic Divergence

(No. 39) and Americana (No. 63) would match that of Paga Dívida (No. 38) since high heterosis (approximately 62%) would be needed for this to occur.

Thus, in terms of breeding programs, it seems more rational to recommend crosses between genetically divergent cultivars that also exhibit a superior performance in terms of the traits of major agronomic importance. Table IV lists the means obtained for each cultivar for the ten traits evaluated. When considering grain yield in particular, nine cultivars (Paga Dívida, No. 38, De Abril, No. 6, Cuchilão, No. 23, Quebra Cacho, No. 21, Marabá, No. 37, Coqueiro Casca Branca, No. 34, Brejeiro, No. 35, Unknown, No. 49, and Poupa Preguiça, No. 31) were found to be statistically superior to the others. In addition to these, four other cultivars (Catetinho, No. 41, Brejeiro, No. 30, Unknown, No. 59, and Chorinho Aliança, No. 13) were also outstanding, with yields of approximately 1000 g/plot. Despite the relative similarity in terms of grain yield per plot, there still was a considerable genotypic variability among the 13 cultivars for most of the traits evaluated (Table II). Thus, additional genetic gain is possible by selecting populations derived from crosses between these parental lines.

|          | Days to   | РН      | NT      | NP      | PL     | NSP     | %GP    | G100  | LA                 | GY       |
|----------|-----------|---------|---------|---------|--------|---------|--------|-------|--------------------|----------|
| Cultivar | flowering | (cm)    |         |         | (cm)   |         |        | (g)   | (cm <sup>2</sup> ) | (g/plot) |
| 1        | 99.00I    | 135.30B | 212.50A | 195.00A | 24.28A | 171.00B | 87.29A | 2.60C | 49.30A             | 597.00C  |
| 2        | 127.00C   | 138.50B | 302.00A | 296.00A | 23.60A | 127.58C | 66.85C | 2.30D | 33.10B             | 478.50D  |
| 3        | 99.00I    | 142.50A | 287.50A | 283.50A | 19.35B | 156.50B | 77.21B | 3.50A | 54.35A             | 1056.00A |
| 4        | 92.00J    | 147.20A | 308.50A | 291.00A | 21.60B | 134.50C | 89.37A | 2.80C | 52.50A             | 843.00B  |
| 5        | 129.00B   | 139.98B | 355.00A | 348.50A | 23.65A | 115.00D | 60.25C | 2.50D | 37.90B             | 456.00D  |
| 6        | 105.00G   | 158.30A | 652.50A | 556.00A | 20.40B | 99.00D  | 83.50B | 2.85C | 42.05B             | 1099.00A |
| 7        | 125.00C   | 50.00A  | 355.00A | 342.00A | 24.90A | 125.50C | 55.57D | 2.50D | 41.95B             | 687.00C  |
| 8        | 102.00H   | 134.10B | 226.00A | 214.50A | 22.40A | 183.00A | 86.91A | 2.70C | 58.90A             | 684.00C  |
| 9        | 104.00G   | 152.90A | 178.50A | 173.50A | 23.65A | 185.50A | 80.23B | 2.90B | 63.20A             | 829.00B  |
| 10       | 101.50H   | 136.50B | 247.00A | 242.50A | 21.90B | 137.00C | 83.56B | 3.45A | 45.40B             | 569.50C  |
|          |           |         |         |         |        |         |        |       |                    |          |
| 11       | 92.00J    | 158.10A | 348.50A | 337.50A | 22.70A | 143.00C | 79.90B | 3.20B | 56.60A             | 705.50C  |
| 12       | 129.00B   | 144.90A | 391.00A | 387.50A | 23.10A | 121.50B | 51.78B | 2.48B | 42.25B             | 459.50D  |
| 13       | 115.00E   | 139.00B | 246.00A | 242.50A | 22.35A | 170.00B | 87.97A | 2.60C | 53.95A             | 1001.00B |
|          |           |         |         |         |        |         |        |       |                    |          |

Table IV - Comparison of mean data concerning traits of agronomical importance obtained for 72 rice cultivars adapted to lowland conditions.

Continued

Table I - Continued.

|          | Days to   | РН              | NT      | NP      | PL     | NSP              | %GP    | G100  | LA                 | GY              |
|----------|-----------|-----------------|---------|---------|--------|------------------|--------|-------|--------------------|-----------------|
| Cultivar | flowering | (cm)            |         |         | (cm)   |                  |        | (g)   | (cm <sup>2</sup> ) | (g/plot)        |
| 14       | 129.00B   | 131.90B         | 300.00A | 292.00A | 24.35A | 130.00C          | 62.63C | 2.40D | 40.20B             | 468.00B         |
| 15       | 127.00C   | 135.00B         | 351.00A | 343.50A | 23.20A | 117.00D          | 55.19D | 2.50D | 40.20B             | 498.00E         |
| 16       | 97.50I    | 144.40A         | 308.50A | 281.00A | 18.05B | 162.00B          | 86.11A | 2.65C | 47.95A             | 950.50B         |
| 17       | 115.00E   | 65.10D          | 387.00A | 285.00A | 19.30B | 70.50D           | 75.84B | 2.70C | 19.30B             | 505.00B         |
| 18       | 125.00C   | 143.68A         | 351.00A | 328.50A | 24.70A | 143.50C          | 63.06C | 2.50D | 45.85B             | <i>5</i> 95.00C |
| 19       | 91.00J    | 154.80A         | 338.50A | 326.00A | 23.95A | 153.00B          | 75.94B | 2.80C | 56.50A             | 571.00C         |
| 20       | 103.00G   | 134.60B         | 415.00A | 403.50A | 19.00B | 136 <b>.5</b> 0C | 89.27A | 3.20B | 51.95A             | 884.00B         |
| 21       | 95.50J    | 145.50A         | 392.50A | 323.50A | 22.15A | 135.00C          | 85.54A | 3.05B | 58.20A             | 1169.50A        |
| 22       | 129.00B   | 131.00B         | 289.50A | 282.00A | 24.55A | 130.50C          | 51.57D | 2.55D | 41.05D             | 481.50D         |
| 23       | 95.00J    | 158.10A         | 378.50A | 359.50A | 20.40B | 130.00C          | 83.85A | 3.25A | 56.20A             | 1174.00A        |
| 24       | 103.50G   | 139.90B         | 273.50A | 266.00A | 24.20A | 182.50A          | 86.16A | 2.70C | 66.95A             | 917.50B         |
| 25       | 115.00E   | 138.70B         | 358.50A | 352.50A | 22.90A | 126.50C          | 61.82C | 2.45D | 34.65B             | 596.00C         |
| 26       | 125.00C   | 128.40B         | 210.00A | 203.50A | 23.40A | 137.50C          | 65.20C | 2.55D | 36.30B             | 610.50C         |
| 27       | 138.00A   | 118.40B         | 346.00A | 340.00A | 25.60A | 145.00C          | 61.99C | 2.40B | 38.15D             | 647.50C         |
| 28       | 99.001    | 128.70B         | 248.50A | 209.50A | 21.15B | 149.50C          | 85.75A | 2.80C | 50.35A             | 668.50C         |
| 29       | 98.00I    | 152.80A         | 338.50A | 287.00A | 21.50B | 129.50C          | 90.58A | 3.40A | 54.20A             | 895.00B         |
| 30       | 94.00J    | 136.70B         | 292.50A | 277.50A | 22.10A | 145.50C          | 87.89A | 2.80C | 51.15A             | 1006.00B        |
| 31       | 105.00G   | 135.30B         | 233.50A | 232.50A | 16.26B | 172.50B          | 77.41B | 2.65C | 76.05A             | 746.00C         |
| 32       | 114.00E   | 131.30B         | 465.00A | 460.00A | 19.30B | 102.40B          | 80.33B | 2.55D | 31.35B             | 904.50B         |
| 33       | 95.00J    | 148.80A         | 266.00A | 262.00A | 23.35A | 169.50B          | 87.49A | 2.55B | 53.05A             | 917.50B         |
| 34       | 107.00F   | 157.70A         | 311.00A | 303.50A | 23.30A | 136.50C          | 88.10A | 2.90B | 58.90A             | 1146.00A        |
| 35       | 104.50G   | 152.70A         | 369.50A | 362.00A | 23.25A | 168.00B          | 82.29B | 3.00B | 56.35A             | 1145.50A        |
| 36       | 127.00C   | 137.20B         | 281.00A | 277.50A | 24.25A | 128.00C          | 55.32D | 2.55D | 41.90B             | 481.50D         |
| 37       | 99.00I    | 142.60 <b>A</b> | 275.00A | 267.50A | 20.65B | 156.50D          | 83.21B | 3.20B | 53.15A             | 1167.00A        |
| 38       | 109.00F   | 157.30A         | 363.50A | 354.50A | 21.95B | 142.50C          | 88.71A | 3.00B | 53.45A             | 1254.50A        |
| 39       | 102.00H   | 132.20B         | 268.50A | 258.50A | 21.50B | 134.50C          | 87.53A | 3.50A | 45.20B             | 622.00C         |
| 40       | 108.00F   | 129.40B         | 366.00A | 357.00A | 22.60A | 103.00B          | 76.43B | 2.75C | 36.50B             | 885.50B         |
| 41       | 99.00I    | 138.30B         | 314.50A | 281.00A | 22.00A | 143.00C          | 89.89A | 3.25A | 50.50A             | 1017.00B        |
| 42       | 138.00A   | 129.20B         | 362.50A | 352.50A | 26.10A | 161.50B          | 44.01D | 2.35D | 42.95B             | 623.50B         |

Table I - Continued.

|          | Days to   | РН      | NT      | NP      | PL     | NSP     | %GP    | G100   | LA                 | GY       |
|----------|-----------|---------|---------|---------|--------|---------|--------|--------|--------------------|----------|
| Cultivar | flowering | (cm)    |         |         | (cm)   |         |        | (g)    | (cm <sup>2</sup> ) | (g/plot  |
| 43       | 182.00H   | 136.30B | 330.00A | 325.00A | 20.10B | 153.50B | 81.95B | 2.35D  | 57.10A             | 742.500  |
| 44       | 103.50G   | 148.10A | 264.50A | 254.50A | 20.50B | 140.00C | 90.47A | 2.95B  | 63.40A             | 637.500  |
| 45       | 229.00B   | 121.40B | 282.00A | 274.50A | 24.40A | 113.50B | 61.66C | 2.60D  | 32.90B             | 571.500  |
| 46       | 118.00B   | 131.70B | 183.50A | 181.00A | 21.70B | 147.50C | 91.00A | 2.55D  | 46.70B             | 750.500  |
| 47       | 115.00E   | 141.40B | 319.50A | 316.00A | 23.25A | 145.50C | 86.49A | 2.55D  | 45.30B             | 841.00H  |
| 48       | 100.00I   | 143.10A | 345.00A | 335.00A | 19.60B | 134.50C | 83.14B | 3.10B  | 43.75B             | 854.00E  |
| 49       | 104.00G   | 139.90B | 508.50A | 486.00A | 20.70B | 90.50D  | 81.22B | 2.85C  | 33.75B             | 1109.50A |
| 50       | 100.50H   | 155.90A | 329.50A | 317.00A | 20.90B | 140.50C | 89.38A | 3.10B  | 56.60A             | 888.00E  |
| 51       | 125.00C   | 138.70B | 407.50A | 402.50A | 23.65A | 135.00C | 59.09C | 20.40D | 45.45D             | 698.500  |
| 52       | 100.00I   | 134.90B | 283.50A | 280.00A | 20.80B | 146.50C | 60.84C | 2.85C  | 53.90A             | 639.000  |
| 53       | 103.50G   | 137.70D | 173.50A | 171.00A | 22.55A | 191.00A | 76.35B | 3.15B  | 64.10A             | 766.500  |
| 54       | 99.001    | 138.90B | 308.50A | 288.50A | 20.70B | 208.00A | 83.06B | 2.20D  | 55.35A             | 924.001  |
| 55       | 115.00E   | 135.10B | 326.00A | 315.00A | 18.10B | 108.50D | 90.02A | 2.75C  | 62.60A             | 707.500  |
| 56       | 125.00C   | 135.00B | 313.50A | 305.00A | 22.95A | 126.00C | 63.03C | 2.35D  | 42.55B             | 609.500  |
| 57       | 93.50J    | 139.50B | 372.00A | 322.50A | 24.48A | 117.00D | 84.49A | 3.45A  | 36.85B             | 833.50H  |
| 58       | 103.00G   | 128.20B | 257.50A | 237.50A | 21.15B | 161.50B | 88.53A | 2.95B  | 50.45A             | 787.50H  |
| 59       | 99.00E    | 148.90A | 312.00A | 276.00A | 22.35A | 172.00B | 80.99B | 3.15B  | 56.65A             | 106.501  |
| 60       | 102.00H   | 139.90B | 158.50A | 253.50A | 20.80B | 151.50B | 86.19A | 3.35A  | 62.95A             | 474.501  |
| 61       | 129.00B   | 89.89C  | 352.50A | 341.00A | 20.10B | 113.50D | 49.53D | 2.55D  | 27.20B             | 317.501  |
| 62       | 120.00D   | 137.00B | 342.00A | 336.00A | 23.20A | 132.00C | 62.81C | 2.50D  | 35.80B             | 711.500  |
| 63       | 76.00K    | 122.90B | 401.00A | 293.50A | 26.55A | 207.00A | 69.67C | 1.85D  | 41.60B             | 923.50E  |
| 64       | 102.00H   | 128.10B | 288.50A | 275.00A | 19.80B | 136.00C | 72.17B | 3.15B  | 56.95A             | 924.50E  |
| 65       | 100.00E   | 127.00B | 268.50A | 226.00A | 21.60B | 140.00C | 78.70B | 3.00B  | 45.05B             | 671.500  |
| 66       | 127.00C   | 138.60B | 374.50A | 367.50A | 23.70A | 120.00D | 51.39D | 2.55D  | 40.55B             | 403.001  |
| 67       | 113.00E   | 119.60B | 332.50A | 327.00A | 18.90B | 95.00D  | 90.35A | 2.55D  | 32.80B             | 923.00H  |
| 68       | 129.00B   | 126.70B | 294.50A | 292.50A | 23.15A | 114.50D | 59.29C | 2.60D  | 39.00B             | 503.501  |
| 69       | 104.50G   | 137.30B | 222.00A | 214.50A | 23.30A | 200.00A | 82.03B | 2.80C  | 60.45A             | 638.00H  |
| 70       | 78.00K    | 136.90B | 239.50A | 216.00A | 21.30B | 143.50C | 78.09B | 2.95B  | 37.85B             | 509.001  |
| 71       | 103.50G   | 129.50B | 252.50A | 247.50A | 21.40B | 157.00B | 85.86A | 2.70C  | 59.70A             | 742.500  |
| 72       | 93.00J    | 138.80B | 288.50A | 246.00A | 21.50B | 148.50C | 85.33A | 3.15B  | 48.85A             | 902.00E  |
|          |           |         |         |         |        |         |        |        |                    |          |

Means followed by the same letter did not differ significantly by the Scott and Knott test at the 5% level of probability.

For abbreviations, see Table II.

The genetic divergence among the cultivars evaluated is presented in Figure 1, with emphasis on the 13 cultivars cited above. In this figure, dispersal is presented in relation to the first two canonical variables which retained approximately 88.1% of the total available variability. Thus, its use for the objectives of the present study is satisfactory.


It can be seen that some of the 13 cultivars identified present satisfactory genetic divergence, as is the case between cultivar 38 (the most productive) and cultivar 30, between 49 and 21, or even between 13 and 23. Thus, the use of these parental lines for hybrid derivation or for constituting base populations for the extraction of superior lines is recommended.

Figure 1 also shows that certain crosses between the selected cultivars may not produce superior descendants since they represent homogeneous groups, at least in terms of the ten traits analyzed. A high degree of similarity is observed among cultivars 6, 35, 49, 34 and 38 (subgroup I), among cultivars 41, 3, 37 and 59 (subgroup III), and among cultivars 21, 30 and 23 (subgroup III). Thus, even though these subgroups are highly productive, crosses between cultivars within them are not recommended since the probability of extracting lines derived from segregant generations that would be superior to the original cultivars is low.

In allogamous cultures, the evaluation of a relatively large number of lines is usually done in two steps. The first generally consists of a top cross in which each line is crossed with a common male parent (tester) and the best genotypes are recognized in comparative trials. The second consists of the evaluation of hybrid combinations of the group selected in diallel crosses, which provide information on the general and specific combining ability of the parents.

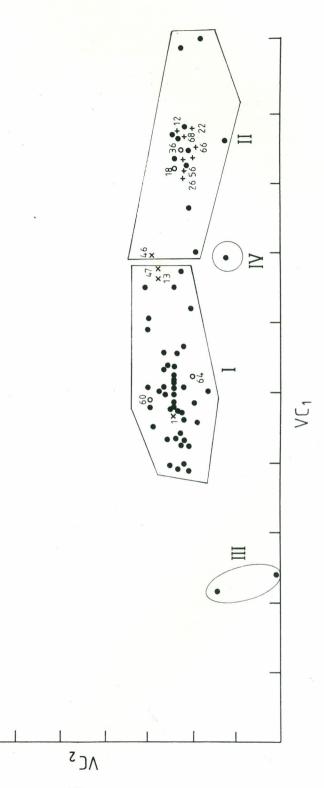
Knowing the combining ability of the materials in a hybridation program is very useful for the selection of parental lines that may produce additional desirable recombinants. Studies of this type have been conducted on rice by several investigators (Mohanty and Mohapatra, 1973; Singh and Nanda, 1976; Singh, 1977; Maurya and Singh, 1977b; Shrivastava and Seshu, 1983; Lopes, 1984; Kaw, 1988).

A procedure similar to that used for allogamous species could be recommended for autogamous species, and for rice cultivation in particular, with the following modifications: during an initial stage, comparative trials for grain yield and for its components would be carried out together with studies of genetic divergence, as presented here. The parental lines with superior agronomic performance and satisfactory genetic divergence would thus be identified. In a second stage, diallel crosses would be performed, with preference given to partial crosses (or factorial mating designs), to establish similar groups, thus permitting crosses between divergent parents only. Several investigators have provided detailed information about the



use of partial diallels (Miranda-Filho and Geraldi, 1984; Vencovsky, 1987; Geraldi and Miranda-Filho, 1988).

Within this strategy, we recommend the establishment of a diallel from crosses among parents 49, 6, 35, 38 and 13 (forming group 1) and among parents 59, 41, 37, 23, 3, 21 and 30 (forming group 2). This recommendation is of a technical nature, since it would avoid 46% of the crosses among the 13 parents, in relation to the complete diallel.


Another alternative is the establishment of diallels from crosses between groups 1 and 2 and elite introduced lines presenting the same type of modern plant. This would lead to an increased probability of obtaining lines with better plant architecture and the maintenance of a certain level of rusticity in traditional cultivars, an important characteristic for lowland cultures. Of the 72 cultivars analyzed (Table I), seven have the Santa Catarina denomination, four have the Chorinho denomination, and four the Matão denomination. Two hypotheses may be proposed with respect to these cultivars having the same denomination and collected at different locations: a) they represent the same genetic material, and b) they are divergent materials because of the differentiated selection pressure to which they were submitted over decades of cultivation, and/or because of mechanical seed mixture, and/or because of the occurrence of mutations.

Multivariate analysis of genetic divergence has been very useful to recognize clusters of cultivars with a high similarity pattern, permitting inferences about the possible similarity of cultivars with the same denomination. Figure 2 shows the relative position of cultivars with the Santa Catarina, Matão and Chorinho denominations.

Cultivars with the Santa Catarina denomination occupied close relative positions in the score dispersal plot constructed as a function of the first two canonical variables (Figure 2) and did not differ statistically from each other with respect to NT, NP, PL, G100 and LA. This suggests that these cultivars may represent the same genetic material.

For the cultivars of the Matão denomination, considerable divergence was detected between those collected in Minas Gerais (18 and 36) and those collected in Maranhão (60 and 64). The two Maranhão cultivars were mainly characterized by a smaller number of days to flowering (20 days less), higher 100 grain weight and superior filled grain percent when compared to the Minas Gerais cultivars. Since the divergence of these materials is related to geographic diversity, environmental factors are believed to have induced differentiated selective pressures, leading to the variability observed.

Among the cultivars of the Chorinho denomination (1, 13, 46 and 47), only one was divergent in relation to the others, mainly owing to its low grain yield and considerably reduced number of days to flowering. Although divergent, cultivar 1 did Figure 2 - Relative position of cultivars with the same denomination (Santa Catarina, +, Matão, o, and Chorinho, x) in relation to the first and second canonical variables, and clustering by the method of Tocher (cited by Rao, 1952) on the basis of Mahalanobis distances.



451

not differ statistically from cultivar 13 in any traits except for days to flowering and grain yield (Table IV). This fact shows that diversity induced by selective forces may have occurred and that days to flowering appears to have been the trait most vulnerable to selection pressure.

## ACKNOWLEDGMENTS

Publication supported by FAPESP.

#### **RESUMO**

Setenta e dois cultivares tradicionais de arroz de várzea úmida foram avaliados em relação a dez caracteres agronômicos. Estimaram-se suas divergências genéticas através de técnicas multivariadas, visando orientar o estabelecimento de populações básicas para o melhoramento.

O agrupamento pelo método de Tocher a partir das distâncias generalizadas de Mahalanobis, possibilitou a divisão dos 72 cultivares em quatro grupos.

Deu-se ênfase ao estudo da divergência genética entre 13 cultivares cujo desempenho em relação a rendimento de grãos/parcela foi superior. Baseando-se na divergência genética foi recomendada a formação de dois grupos entre os 13 progenitores (grupo 1: cultivares 49, 6, 35, 34, 38 e 13 e grupo 2: cultivares 59, 41, 37, 23, 3, 21 e 30) para o estabelecimento de cruzamentos fatoriais entre os dois grupos, ou entre os grupos 1 e 2 com linhagens elites introduzidas que apresentem tipo de planta moderna.

Constatou-se a existência de divergência entre cultivares coletados em diferentes locais, mas que mantinham a mesma denominação de Matão e Chorinho. Há evidências de que a diversidade ambiental durante décadas de cultivo tenha contribuído para a diferenciação genotípica e que o controle genético do ciclo parece ter sido o mais vulnerável às pressões seletivas.

#### REFERENCES

Geraldi, I.O. and Miranda-Filho, J.B. (1988). Adapted models for the analysis of combining ability of varieties in partial diallel crosses. *Brazil. J. Genet.* 11: 419-430.

Kaw, R.N. (1988). Combining ability for low temperature germinability in rice. Genet. Agr. 42: 43-49.

Lopes, A.M. (1984). Análise genética dos componentes de produção num dialelo entre seis cultivares de arroz (*Oryza sativa* L.) em dois regimes hídricos. Doctoral Thesis, Universidade Federal de Viçosa, MG.

Mahalanobis, P.C. (1936). On the generalized distance in statistics. Proc. Natl. Inst. Sci. 2: 49-55.

Maurya, D.M. and Singh, D.P. (1977a). Genetic divergence in rice. Indian J. Genet. Plant. Breed. 37: 395-402.

Maurya, D.M. and Singh, D.P. (1977b). Combining ability in rice for yield and fitness. *Indian J. Agric. Sci.* 47: 65-70.

### Selection of Rice Cultivars Based on Multivariate Genetic Divergence

- Miranda-Filho, J.B. and Geraldi, I.O. (1984). An adapted model for the analysis of partial diallel crosses. Brazil. J. Genet. 7: 677-688.
- Mohanty, H.K. and Mohapatra, K.C. (1973). Diallel analysis of yield and its components in rice. Indian J. Genet. Plant Breed. 41: 179-185.

Ram. J. and Panwar, D.V.S. (1970). Intraspecific divergence in rice. Indian J. Genet. Plant Breed. 30: 1-10.

- Rao, R.C. (1952). Advanced Statistical Methods in Biometric Research. John Wiley and Sons. New York, pp. 390.
- Rao, A.V., Prasad, A.S.R., Sai, Krishna, T., Seshu, D.V. and Srinivasan, T.E. (1981). Genetic divergence among some brown planthopper resistance rice varieties. *Indian J. Genet. Plant Breed.* 41: 179-185.
- Scott, A.J. and Knott, M.A. (1974). A cluster analysis method for grouping means in the analysis of variance. *Biometrics 30*: 507-512.
- Shrivastava, M.N. and Seshu, D.V. (1983). Combining ability for yield and associated characters in rice. Crop Sci. 23: 741-744.
- Singh, D.P. and Nanda, J.S. (1976). Combining ability and heritability in rice. *Indian J. Genet. Plant Breed.* 36: 10-15.
- Singh, R.S. (1977). Combining ability for grain yield and panicle characters in rice. *Indian J. Genet. Plant* Breed. 37: 384-387.
- Singh, R.K. and Chaudhary, B.D. (1979). *Biometrical Methods in Quantitative Genetic Analysis*. Kalyani Publishers, pp. 304.
- Singh, V.P., Swaminathan, M.S., Meiira, R.B. and Siddiq, E.A. (1979). Divergence among dwarfs of cultivated rice. *Indian J. Genet. Plant Breed.* 39: 315-322.
- Vencovsky, R. (1987). Herança Quantitativa. In: Melhoramento e Produção de Milho no Brasil (Paterniani,
  E. e Viegas, G.P., eds.). Edição da Fundação Cargill, 2ª ed., Vol. 1, Campinas, pp. 135-214.

(Received August 11, 1989)