

AGRICULTURA: BASES ECOLÓGICAS PARA O DESENVOLVIMENTO SOCIAL E ECONÔMICO SUSTENTADO

XXV REUNIÃO BRASILEIRA DE FERTILIDADE DO SOLO E
NUTRIÇÃO DE PLANTAS
IX REUNIÃO BRASILEIRA SOBRE MICORRIZAS
VII SIMPÓSIO BRASILEIRO DE MICROBIOLOGIA DO SOLO
IV RE UNIÃO BRASILEIRA DE BIOLOGIA DO SOLO

08 a 13 de SETEMBRO DE 2002

GUIA DO CONGRESSISTA

RIO DE JANEIRO - RJ

BIOMASSA E DENSIDADE MICROBIANA EM EM SOLO CULTIVADO COM ARROZ NOS SISTEMAS DE PLANTIO DIRETO E CONVENCIONAL, NO CERRADO

Adriano Martins de Godoi⁽¹⁾, Maria Lucrecia Gerosa Ramos⁽¹⁾, Cleber Moraes Guimarães⁽²⁾. ⁽¹⁾ UnB – FAV, CP. 04508, 70 910-970, Brasília – DF; ⁽²⁾ EMBRAPA - Arroz e Feijão, CP 179, 75275-000, Santo Antônio de Goiás, GO

A microbiota do solo atua na ciclagem de nutrientes e fluxo de energia, regulando as transformações da matéria orgânica do solo. A biomassa microbiana pode funcionar como compartimento de reserva, dreno, ou como um catalisador da decomposição da matéria orgânica. As alterações na comunidade microbiana e na sua atividade interferem diretamente nos processos biológicos e bioquímicos do solo, na produtividade agrícola e, conseqüentemente, na sustentabilidade dos agroecossistemas, atuando como indicador de sua degradação. Tais alterações são ocasionadas, entre outros fatores, pelo tipo de cultura, condições ambientais, e principalmente, pelo sistema de cultivo e sucessões de culturas adotadas.

O objetivo deste trabalho foi avaliar e monitorar os efeitos dos sistemas de manejo de solo, convencional e plantio direto, sobre a atividade e a biomassa microbiana.

As avaliações microbiológicas foram feitas em um experimento de campo que está sendo conduzido em Goiânia, na EMBRAPA, Arroz e Feijão, desde a safra 95/96, em um solo latossolo vermelho escuro.

O solo coletado para as análises microbiológicas foi do cultivo dos anos agrícolas 00/01 e 01/02, nos tratamentos: preparo de solo convencional, com arado de aiveca e plantio do arroz, em monocultivo (PC); preparo de solo convencional, com arado de aiveca, em sistema de rotação arroz/soja, com plantio de adubo verde (*Crotalária juncea*) na safrinha, (PCR); plantio direto do arroz (PD), em monocultivo; plantio direto, em sistema de rotação soja/arroz, com plantio de adubo verde (*Crotalária juncea*) na safrinha (PDR). Os tratamentos foram comparados a uma vegetação nativa, adjacente ao experimento. O delineamento experimental foi de blocos ao acaso com 3 repetições.

A biomassa microbiana (BM) foi quantificada pelo método de fumigação-incubação (Jenkinson & Powlson, 1976), no período seco de 2001 e chuvoso de 2002, adotando-se o fator de correção Kc= 0,41 (Anderson e Domsh, 1981).

A densidade microbiana foi quantificada pelo método diluição em série e plaqueamento. Os meios utilizados foram: GL (fungos); Thorton (bactérias) e Caseína-dextrose (actinomicetos).

Na profundidade de 0-5 cm (Tabela 1), a densidade de bactérias, fungos e actinomicetos foi semelhante nos diferentes tratamentos nas duas épocas secas avaliadas. No período chuvoso/2001, o tratamento PCR apresentou maior densidade de actinomicetos e a densidade de fungos e bactérias foi semelhante nos diferentes tratamentos. No período chuvoso/2002, a densidade de bactérias foi maior nos tratamentos PD e MATA, que no tratamento PC, já a densidade de fungos foi maior na MATA.

Tabela 1 – Densidade de actinomicetos, bactérias e fungos na profundidade de 0-5 cm, em diferentes sistemas de preparo de solo e quatro épocas de avaliação.

Microrganismos	Tratamentos	Seco/2000	Chuva/2001	Seco/2001	Chuva/2002
(UFCx10 ⁵ /g de solo)					
	PDR	67,65a ⁽¹⁾	329,67b	16,53a	150,67a
	PD	18,13a	186,33b	17,87a	150,33a
Actinomicetos	PCR	21,30a	521,00a	23,17a	106,67a
	PC	18,17a	219,33b	43,73a	132,67a
	MATA	21,87a	236,33ab	20,40a	201,67a
	PDR	15,84a	47,37a	45,63a	154,67ab
Bactérias	PD	21,17a	59,47a	20,67a	163,00a
	PCR	17,07a	62,77a	20,13a	104,33ab
	PC	20,84a	15,50a	19,13a	97,70b
	MATA	19,84a	76,73a	22,20a	164,84a
	PDR	0,17a	0,627a	0,19a	1,07bc
Fungos	PD	0,19a	0,711a	0,13a	1,13bc
	PCR	0,21a	0,51a	0,15a	1,35b
	PC	0,21a	0,40a	0,16a	0,79c
	MATA	0,08a	0,69a	0,23a	1,89a

⁽¹⁾ os números seguidos pela mesma letra nas colunas e para cada grupo de microrganismos, não diferem entre si pelo teste de Tukey (p<0,05)

Na profundidade de 5-20 cm (Tabela 2), a densidade microbiana foi semelhante nos diferentes sistemas de preparo de solo e nas duas épocas secas avaliadas. A densidade de actinomicetos foi maior no tratamento PD no período chuvoso/2001; no período chuvoso de 2002, não houve diferenças significativas entre os tratamentos avaliados. A densidade de bactérias foi maior no PC, (época chuvosa/2001) e na época chuvosa/2002, a mata apresentou maior densidade de bactérias que o PD. A densidade de fungos foi menor na mata (chuva/2001) e maior no PDR (chuva/2002).

PDR – Plantio Direto com Rotação, PD – Plantio Direto, PCR – Plantio Convencional com Rotação, PC – Plantio Convencional e MATA – Mata Mesofítica adjacente ao experimento.

Tabela 2 – Densidade de actinomicetos, bactérias e fungos analisados na profundidade de 5–20 cm, em diferentes sistemas de preparo de solo e quatro épocas de avaliação.

Microrganismos	Tratamentos	Seco/2000	Chuva/2001	Seco/20	Chuva/2002
(UFCx10 ⁵ / g de solo)				01	
	PDR	18,17a	318,67c	11,63a	219,70a
	PD	19,30a	1035,67a	14,50a	123,30a
Actinomicetos	PCR	20,77a	61,27d	22,80a	125,00a
	PC	17,47a	198,67cd	25,80a	104,80a
	MATA	21,00a	802,00b	22,00a	172,70a
	PDR	19,97a	72,57ab	20,83a	212,33a
	PD	18,83a	39,30ab	20,10a	123,33b
Bactérias	PCR	19,63a	54,17ab	19,37a	156,67ab
	PC	15,80a	95,07a	18,97a	156,33ab
	MATA	19,67a	19,10b	10,03a	206,67a
	PDR	0,12a	0,623a	0,14a	2,05a
	PD	0,18a	0,71a	0,13a	0,86c
Fungos	PCR	0,09a	0,89a	0,20a	0,94c
	PC	0,08a	1,02a	0,11a	0,64c
	MATA	0,18a	0,15b	0,27a	1,46b

os números seguidos pela mesma letra nas colunas e para cada grupo de microrganismos, não diferem entre si pelo teste de Tukey (p<0,05)

Nas duas profundidades a Biomassa Microbiana (BM) da MATA foi maior que os sistemas de preparo de solo (Tabela 3). Na profundidade de 0-5 cm, o tratamento PDR apresentou maior BM que os outros sistemas de preparo de solo, e não diferiu estatisticamente dos outros sistemas de preparo de solo na profundidade de 5-20 cm.

Tabela 3 – Biomassa Microbiana(mgC/ kg solo) e Respiração Basal (mgC/kg solo/dia) do solo, nas profundidades de 0-5 e 5-20 cm, em diferentes sistemas de preparo de solo.

Tratamento	Biomassa M	licrobiana	Liberação de CO2		
	0-5 cm	5-20 cm	0-5 cm	5-20 cm	
PDR	314,47b ⁽¹⁾	198,78b	19,76ab	4,13a	
PD	187,48c	197,34b	9,01bc	7,04a	
PCR	206,74c	200,76b	11,12bc	12,60a	
PC	185,87c	167,02b	6,55c	4,65a	
MATA	782,79a	525,28a	29,54a	10,81a	

⁽¹⁾ os números seguidos pela mesma letra nas colunas e para cada grupo de microrganismos, não diferem entre si pelo teste de Tukey (p<0,05)

PDR – Plantio Direto com Rotação, PD – Plantio Direto, PCR – Plantio Convencional com Rotação, PC – Plantio Convencional e MATA – Mata Mesofítica adjacente ao experimento.

PDR – Plantio Direto com Rotação, PD – Plantio Direto, PCR – Plantio Convencional com Rotação, PC – Plantio Convencional e MATA – Mata Mesofítica adjacente ao experimento.

Na profundidade de 0-5 cm, a respiração basal do solo (Tabela 3) foi maior na MATA, que os tratamentos PD, PCR e PC. Não houve diferenças significativas entre os tratamentos na profundidade de 5-20 cm.

- ANDERSON, J.P.E; DOMSCH, K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 21: 471-479, 1989.
- JENKINSON, D.S.; POWLSON, D.S. The effects of biocide treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biol.Biochem. 8: 209-213, 1976.