VII CONGRESSO NACIONAL DE PESQUISA DE FEIJÃO

8 a 12 de setembro de 2002 Viçosa-MG

RESUMOS EXPANDIDOS

Departamento de Fitotecnia Universidade Federal de Viçosa Viçosa-MG 2002

EFICIÊNCIA DO NÚMERO DE INTERCRUZAMENTOS NA CULTURA DO FELJOEIRO

Marcelo Sfeir de Aguiar¹, Magno Antonio Patto Ramalho², Ângela de Fátima Barbosa Abreu³, José Eustáquio de Souza Carneiro⁴

Na condução de um programa de melhoramento por hibridação em espécies autógamas como o feijoeiro, um dos questionamento freqüentes é sobre a necessidade de retrocruzar as plantas da geração F_2 (S_0). Há estudos teóricos a esse respeito que, porém, não são conclusivos.

Considerando a importância de se responder a esse questionamento na cultura de feijoeiro, foi realizado o presente trabalho visando a comparação de famílias derivadas de zero, um ou dois ciclos de intercruzamentos. Para isso, foi obtido um cruzamento múltiplo envolvendo oito pais, todos com grãos do tipo carioca e que se complementam quanto a fenótipos de interesse na cultura (Tabela 1).

Tabela 1. Linhagens de feijoeiro utilizadas para a obtenção da população segregante.

LINHAGEM	HÁB. CRESC	PORTE	AN^1	MA^2
PÉROLA	II/III	Prostrado	S^3	T^4
FEB 200	II	Ereto	R^5	S
MAR 2	III	Prostrado	-	R
H-4	II	Ereto	R	S
AN 9022180	II	Ereto	S	T
IAPAR 31	II	Ereto	R	T
PF 9029975	II	Ereto	S	T
A 805	II	Ereto	R	S

^{1 -} Antracnose, 2 - Mancha-Angular, 3 - Reação de susceptibilidade, 4 - Reação de tolerância,

Inicialmente, foram obtidos quatro híbridos simples, posteriormente dois duplos que foram cruzados para se obter o híbrido múltiplo. As sementes F_1 desse híbrido foram semeadas no campo, para obtenção da geração S_0 . Parte das sementes S_0 foram armazenadas para originar a população sem intercruzamento (C_0) . O restante das sementes foi utilizado para o

^{5 -} Reação de resistência.

¹Mestrando de Genética e Melhoramento de Plantas, UFLA, Lavras-MG, aguiarms@bol.com.br

²Professor Titular do Departamento de Biologia, UFLA, Lavras-MG, magnoapr@ufla.br

³Engenheira Agrônoma, Doutora, Embrapa Arroz e Feijão, afbabreu@ufla.br

⁴Professor do Departamento de Fitotecnia, UFV, Viçosa-MG, jesc@.ufv.br

intercruzamento, efetuado em casa de vegetação, por cruzamentos ao acaso, envolvendo 250 plantas. Parte das sementes obtidas foram armazenadas para constituir a população com um ciclo de intercruzamento (C_1) e o restante foi utilizado para o segundo intercruzamento (C_2), efetuado de modo idêntico ao anterior. As sementes S_0 das populações do C_0 , C_1 e C_2 , foram semeadas para obtenção de 130 famílias $S_{0:1}$, de cada população. Essas famílias, juntamente com 10 testemunhas, foram avaliadas em um látice 20 x 20, com duas repetições e parcelas com 2 linhas de 2 m, e semeadura em fevereiro de 2001 em Lavras. Na geração $S_{0:2}$, as famílias foram novamente avaliadas no mesmo delineamento, porém com três repetições, e semeadura em julho de 2001.

Constatou-se diferença significativa (P< 0,01) entre as famílias de todas as populações e também significância para às interações famílias x gerações. É expressivo o fato de não ter sido detectadas diferenças significativas entre as médias das famílias das diferentes populações, ou seja, na média das famílias não se constatou diferença entre o número de intercruzamentos.

As estimativas dos parâmetros genéticos e fenotípicos referentes às gerações $S_{0:1}$ e $S_{0:2}$ estão apresentadas nas Tabelas 2 e 3.

Tabela 2. Estimativas dos parâmetros genéticos e fenotípicos da produtividade de grãos, das famílias provenientes de zero, um e dois intercruzamentos, na geração $\mathbf{S}_{0:1}$.

	Ciclos de Intecruzamento			
Parâmetro	C_0	C ₁	C_2	
Média	2708	2836	2830	
σ^2_G	194174	241146	177165	
- LÏ	94481	145491	112459	
- LS	376933	452673	400700	
σ_F^2 h^2 (%)	433898	480870	416889	
h ² (%)	44,75	50,14	42,49	
- LI (%)	24,85	31,99	21,82	
- LS (%)	58,75	62,67	57,09	
número de famílias entre as 50 melhores	17	17	16	

Tabela 3. Estimativas da parâmetros genéticos e fenotípicos da produtividade de grãos, das famílias provenientes de zero, um e dois intercruzamentos, na geração $S_{0,2}$.

	Ciclos de Intecruzamento			
Parâmetro	C ₀	C_1	C_2	
Média	4434	4512	4497	
σ_{G}^{2}	54543	123117	116805	
- LI	43097	97281	92293	
- LS	70029	158074	149969	
$\sigma_{\rm F}^2$	205167	273742	267429	
σ ² _F h ² (%)	26,59	44,97	43,67	
- LI (%)	16,55	22,71	50,88	
- LS (%)	54,20	57,58	10,47	
número de famílias entre as 50 melhores	12	20	18	

A produtividade média das famílias com diferentes números de intercruzamentos, em ambas as gerações, são muito semelhantes. O mesmo fato pode ser constatado para as estimativas da variância genética e herdabilidade.

Considerando as 50 famílias mais produtivas entre as 390 avaliadas, verifica-se que, na geração $S_{0:1}$, o número proveniente de cada ciclo é praticamente o mesmo. Na geração $S_{0:2}$, esse número foi ligeiramente menor na população sem intercruzamento,. Pelos resultados obtidos pode-se inferir que não houve vantagem no intercruzamento das plantas da geração F_2 provenientes de um híbrido múltiplo.