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ABSTRACT. The reduced genetic variability of modern rice varieties
(Oryza sativa) is of concern because it reduces the possibilities of
genetic gain in breeding programs. Introgression lines (ILs) containing
genomic fragments from wild rice can be used to obtain new improved
cultivars. The objective of the present study was to perform the
agronomic and molecular characterizations of 35 BC,F, ILs from the
cross O. glumaepatula x O. sativa, aiming to select high-yielding ILs
to be used in rice-breeding programs. All 35 ILs were field evaluated
in the season 2002/2003 in three locations and the 15 best performing
ones were evaluated in the season 2003/2004 in five locations. In
2003/2004, six ILs (CNAi 9934, CNAi 9931, CNAi 9930, CNAi 9935,
CNAIi 9936, and CNAi 9937) showed the highest yield means and were
statistically superior to the controls Metica 1 and IRGA 417. Molecular
characterization of the 35 ILs was performed with 92 microsatellite
markers distributed on the 12 rice chromosomes and a simple regression
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quantitative trait locus analysis was performed using the phenotypic data
from 2002/2003. The six high-yielding ILs showed a low proportion
of wild fragment introgressions. A total of 14 molecular markers were
associated with quantitative trait loci in the three locations. The six high-
yielding ILs were incorporated in the Embrapa breeding program, and
the line CNAi 9930 is recommended for cultivation due to additional
advantages of good grain cooking and milling qualities and high yield
stability. The O. glumaepatula-derived ILs proved to be a source of new
alleles for the development of high-yielding rice cultivars.

Key words: Oryza glumaepatula; Introgression lines;
Simple sequence repeat markers; Yield

INTRODUCTION

Modern rice varieties (Oryza sativa) are the result of an extensive artificial selection pro-
cess that led to an extreme pressure on a few target characteristics to rice cultivation, such as non-
shattering of seeds, compact growth habit and loss of germination inhibition (Tanksley and Mc-
Couch, 1997). This strongly directional selection reduced the genetic variability of cultivated rice
due to a great loss of allelic variability in detriment to the fixation of some alleles, which resulted in
a phenomenon called “genetic erosion” (Gowda et al., 2003). In addition, rice-breeding programs
tend to favor methods that maximize endogamy in cultivar development, which drastically reduces
new recombination opportunities (Rangel and Neves, 1997). Besides, breeders usually use the
same adapted genitors repeatedly in initial breeding crosses (Moncada et al., 2001). These events
led to a concerning restriction of selection gains obtained by breeding programs over the past years.
One of the objectives of modern breeding has been the recovery of lost diversity through the search
of potentially favorable alleles in wild ancestors of rice (Gur and Zamir, 2004).

The advanced backcross quantitative trait locus (AB-QTL) analysis (Tanksley and Nel-
son, 1996) is a powerful strategy to exploit and use the potential of wild alleles in breeding pro-
grams. This methodology integrates the QTL analysis and the introgression of alleles from wild
germplasm into elite material under the assumption that marker regions positively associated
with traits of agronomic interest can be identified and transferred into elite cultivars (Bernacchi
et al., 1997; Frary et al., 2004). The AB-QTL analysis comprises a set of activities that include
the development of a backcross population derived from an interspecific cross followed by its
molecular and phenotypic characterization for QTL analysis. Marker loci associated with favor-
able wild alleles can be used to select genotypes containing these specific genomic regions. After
a few selfing generations, introgression lines (ILs) are obtained and can be field tested and used
for variety development (Frary et al., 2004). Since they contain small wild fragments evenly
distributed throughout the elite recurrent genome, ILs can be used for genetic and functional ge-
nomics studies, such as the dissection of gene functions and map-based cloning of QTLs under-
lying quantitative and qualitative traits (Li et al., 2004; Tian et al., 2006b). In addition, ILs are an
important reservoir of alleles that can be used in breeding programs for the development of new
cultivars with higher genetic diversity and that are more resistant to biotic and abiotic stresses.

Species related to the cultivated Oryza sativa have been used as an additional source of
genetic variability in breeding programs, such as Oryza glumaepatula (Brondani et al., 2001), Oryza
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rufipogon (Moncada et al., 2001; Nguyen et al., 2003; Septiningsih et al., 2003) and Oryza glaber-
rima (Aluko et al., 2004). These studies used the AB-QTL methodology to monitor the effects of
wild introgressions on important agronomic traits such as grain yield, aluminum tolerance and grain
quality. O. glumaepatula is a diploid AA species that is autogamous and has an annual life cycle
(Vaughan et al., 2003). Populations of O. glumaepatula were identified in three Brazilian biomes
(Amazon, Pantanal and Cerrados) and their adaptation to tropical soil and weather increase their
chance as donors of genes related to traits of economic importance to rice (Brondani et al., 2005).

The efficiency of using best performing ILs in breeding programs depends on a com-
plete phenotypic and molecular characterization. Phenotypic characterization, which has been
a routine in breeding programs, provides a great amount of information about IL field perfor-
mance, helping breeders to choose those with desirable traits. Molecular characterization can
be used as a complement to field evaluation, providing information about the position and
estimated size of introgressed fragments on each IL. The objective of the present study was to
perform agronomical and molecular characterizations of ILs derived from an O. glumaepatula
(RS-16) x O. sativa (BG90-2) interspecific cross (Brondani et al., 2002). These lines were de-
veloped at Embrapa Rice and Beans (Goiania, GO, Brazil) over the past ten years, following
the AB-QTL strategy (Brondani et al., 2001, 2002; Rangel et al., 2005).

MATERIAL AND METHODS
Development of the introgression lines

ILs were developed from an interspecific cross between the inbred line BG90-2 (Oryza
sativa), the recurrent parent, and the wild accession RS-16 (Oryza glumaepatula), the donor parent,
collected in the Brazilian Amazon biome. Thirty-five BC,F, lines were obtained using the AB-QTL
methodology, as described by Rangel et al. (2005). These lines were selected from BC,F, families
and field evaluated on the occasion of a QTL analysis (Brondani et al., 2002). These families were
then advanced on subsequent generations using the bulk methodology, where a sample of seeds
from each family was mixed and sown together to originate the next generation.

Phenotypical evaluations

The 35 ILs were characterized for grain yield and grain quality traits (amylose
content, gelatinization temperature and cohesiveness) in three locations (Goianira - State
of Goias; Formoso do Araguaia - State of Tocantins, and Boa Vista - State of Roraima), as
described in Rangel et al. (2005). The joint analysis of variance of these experiments was
used to select the 15 best performing ILs, which were evaluated in five locations (Goiani-
ra, Formoso do Araguaia, Boa Vista, Itajai - State of Santa Catarina, and Alegrete - State
of Rio Grande do Sul), following a complete randomized block design with four replica-
tions and using four high-yielding lines as controls (BG90-2, BRS Formoso, Metica 1, and
IRGA 417). The 15 lines were evaluated for total yield, measured as the weight of grains
from 10 random plants in each family. The analysis of variance was performed for each
environment individually and for the five environments together (joint analysis) using the
Genes software (Cruz, 1997). IL trait means were compared by the Scott and Knott test (P
< 0.05), also performed by the Genes software.
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Molecular marker assay

Fresh leaves of 10 representative plants of each one of the 35 ILs were collected and the
DNA was extracted in bulk of plants, according to the protocol described by Ferreira and Gratta-
paglia (1998). Microsatellite (simple sequence repeat) markers used in the molecular characteriza-
tion were selected based on their distribution throughout the 12 rice chromosomes according to
the O. glumaepatula x O. sativa linkage maps (Brondani et al., 2001; Rangel et al., 2005) and the
Cornell O. sativa ssp indica (IR64) x O. sativa ssp japonica (Azucena) simple sequence repeat
reference map (Singh et al., 1996; Temnykh et al., 2000, 2001; Cheng et al., 2001) available at the
Gramene web site (http:/www.gramene.org). A total of 92 polymorphic microsatellite markers
were selected, from which 69 were fluorescent-labeled with either hexachloro-6-carboxyfluores-
cein or 6-carboxyfluorescein, and the other 23 markers were not labeled (Supplementary Table 1).
The amplification reactions were carried out in a final volume of 15 pL containing 15 ng of total
genomic DNA, 0.3 uM of each primer, 0.25 mM of each dNTP, 10 mM Tris-HCI, pH 8.3, 50 mM
KCl, 1.5 mM MgCl,, 0.2 mg/mL bovine serum albumin and 1.0 unit Taq DNA polymerase. The
amplification reactions were conducted on a GeneAmp PCR System 9700 (Applied Biosystems)
with a pre-cycle of 94°C for 5 min, followed by 40 cycles of 94°C for 1 min, 1 min at the anneal-
ing temperature of each primer and 72°C for 1 min. An extension step of 72°C for 7 min was used.
Electrophoresis was conducted on an ABI 3100 automated DNA analyzer (Applied Biosystems)
and allele sizing was performed using the software GeneMapper 2.5 (Applied Biosystems). PCR
products derived from the non-labeled markers were visualized on 6% denaturing polyacrylamide
gels stained with silver nitrate, as described by Bassam et al. (1991). The software CSSL Finder
(http://www.mapdisto.free.fi/CSSLFinder.htm) was used to estimate the proportion of the parents’
genome in each line and to construct the graphical genotypes.

The QTL analysis was conducted using the genotypic data from the 35 ILs obtained
in this study and the phenotypic data obtained in field experiments conducted in Goianira, Boa
Vista and Formoso do Araguaia, as described by Rangel et al. (2005). The QTL analysis was
performed by the software QGene version 2.30 for MacIntosh (Nelson, 1997) using the single-
marker regression method.

RESULTS

Phenotypic evaluation of introgression lines

In the season 2002/2003, the 35 ILs were evaluated in three field experiments for yield-
related traits such as grain yield, tiller number and panicle number, and had their grains evalu-
ated for milling and cooking quality traits (Rangel et al., 2005). For the average of the three
locations, the most productive lines were CNAi 9930, CNAi 9931, CNAi 9934, CNAi 9935,
CNAi1 9936, and CNAi 9937. Among them, only CNAi 9930 showed long, thin and loose grains
after cooking, characteristics of commercial value in Brazil and most parts of Latin America,
and that were not present in the genitor BG90-2. The 15 best performing ILs were selected for
further evaluation in five locations in the season 2003/2004.

Coefficients of variation of the experiments conducted in the season 2003/2004 ranged
from 7% (Itajai) to 14% (Alegrete) and were under the expected range for this kind of experiment.
According to the joint analysis of variance obtained for the five locations, lines CNAi 9934, CNAi
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9931, CNAIi 9930, CNAi 9935, CNAi 9936, and CNAi1 9937 showed the highest yield average
and were statistically superior to the controls Metica 1 and IRGA 417 (Table 1). In the experiment
conducted in Itajai, lines CNAi 9931 and CNAi 9930 showed yield results that were statistically
superior to the parent BG90-2. All lines, except CNAi 9934-85, CNAi 9924-92 and CNAi 9924-3,
were statistically superior to the controls Metica 1 and IRGA 417. In Alegrete and Boa Vista, lines
CNAi 9934, CNAi 9931, CNAi 9930, CNAi 9935, CNAi 9936, and CNAi 9937 showed yield av-
erages that were statistically superior to the controls IRGA 417 and BRS Formoso, which are two
of the most productive and extensively planted cultivars at each location, respectively (Table 1).

Table 1. Grain yield (kg/ha) obtained in the trials conducted in the season 2003/2004 in five locations: Goianira,
State of Goias; Itajai, State of Santa Catarina; Formoso do Araguaia, State of Tocantins; Alegrete, State of Rio
Grande do Sul, and Boa Vista, State of Roraima, Brazil. The number of wild fragments and proportions of
homozygous and heterogeneous fragments in the high-yielding introgression lines are shown.

Lines Proportion of Proportion of Total Goianira Itajai Formoso Alegrete  Boa Vista
homozygous heterogeneous mean* do Araguaia
fragments fragments
CNAi 9934 1.09 3.26 8946° 7000* 77720 7548 12131* 10277%
CNAi 9931 1.09 2.17 8882° 6836° 8586" 6747 117220 10517°
BG90-2 - - 8598 79412 7750° 6380° 10357* 10561*
CNAi 9930 - 4.35 8574° 7586° 8295° 6371° 10973° 9644
CNAi 9935 - 5.43 8554 7278 7817° 6919 10247¢ 10511*
BRS Formoso - - 8479° 7495° 8747 7867 9755 85330
CNAi 9936 2.17 5.43 8438 7383 7847° 7077% 10003* 9879
CNAi 9937 1.09 6.52 8390° 6461° 7921° 6558 9949: 11064°
CNAi 9924-117 - 14.43 7742° 6464° 7643° 5359° 10389 8856°
CNAi 9933 - 7.61 7577 7109° 7528° 5820° 8308° 9121°
CNAi 9920-82 2.17 9.78 7394° 6020° 6787¢ 55230 9774 8869°
CNAi 9932 - 2.17 7344° 5556° 6899¢ 5820° 9397° 9048°
CNAi 9924-105 2.17 10.87 7317° 7158 6300° 5165° 94892 8475°
CNAI 9920-88 1.09 4.85 6961¢ 5625° 6640° 5751° 83490 84420
CNAi 9924-85 - 4.35 6957¢ 7352¢ 57264 4580° 8901° 8225°
CNAI 9924-92 2.17 5.43 6916 6158° 53494 5017° 9714 8343°
Metica 1 - - 6877¢ 67142 52444 5855° 6742° 98292
IRGA 417 - - 6872¢ 5006 51254 6998 8170° 9061°
CNAi 9924-3 3.26 9.78 6287¢ 6069° 59254 3973¢ 8124° 7343°
Mean 7750 6752 7146 6070 9667 9290
CV% 11 11 7 12 14 8

*Total mean was obtained by the analysis of variance of the five locations together (joint analysis). CV = coefficient
of variation. Superscribed letters represent statistical differences between the means according to the Scott and
Knott test (P < 0.05).

Molecular characterization of introgression lines

The 35 ILs were genotyped with 92 microsatellite markers distributed through the 12
rice chromosomes, with an average of 7 markers on each chromosome (Figure 1). A total of 30
wild alleles were detected among the 35 ILs on all chromosomes. The highest number of wild
alleles was detected on chromosome 8 (10 alleles) and no homozygous wild allele was detected
on chromosomes 5, 6, and 7. The average introgression proportion of homozygous wild alleles
was 1.12% and ranged from 1.09 to 3.26%. Heterogeneous fragments ranged from 21.74 (line
CNAi 9920-78) to 2.17% (lines CNAi 9930 and CNAi 9932), with an average of 8.18%.
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Figure 1. Graphical genotypes of the 35 introgression lines showing the 12 rice chromosomes. Blue squares
represent the recurrent parent (Oryza sativa) proportion of the genome. Yellow squares represent the wild (Oryza
glumaepatula) homozygous introgressions, red squares are the heterogeneous introgressions and gray squares
represent missing data. Simple sequence repeat marker distributions on each chromosome are shown.

Lines CNAi 9934, CNAi 9931, CNAi1 9930, CNAi 9935, CNAi 9936, and CNAi 9937
showed the best yield performance in the joint analysis of experiments and showed hetero-
geneous introgression proportions of 3.26, 2.17, 4.35, 5.43, 5.43, and 6.52%, respectively.
Homozygous wild introgression proportions were 1.09, 1.09, 2.17, and 1.09% (Table 1).

In an attempt to identify wild alleles related to high yield, a single-regression QTL analysis
was performed using the molecular data obtained in the present study and phenotypic data for the
35 ILs obtained by Rangel et al. (2005). The analysis was performed using phenotypic data for grain
yield measured in three locations: Goianira, Boa Vista and Formoso do Araguaia. In Goianira, six
markers were associated with grain yield (P < 0.01) and explained from 21.58 (RM30) to 36.69%
(RM1 and 5335) of the phenotypic variation (PV) of the trait. In Boa Vista, six markers were identi-
fied and the PV explained by each one ranged from 15.34 (RM264) to 28.32% (OG10). Two markers
were associated with grain yield in Formoso do Araguaia and explained 21.59 (OG10) and 17.58%
(RM310) of the PV. In all QTLs, the alleles from BG90-2 were responsible for the positive effects on
the trait, except the allele from the RM310 marker, identified in Formoso do Araguaia (Table 2).

Table 2. Quantitative trait loci detected for trait grain yield in 35 rice introgression lines with wild genomic
fragments. Quantitative trait loci were detected under the minimum threshold of P < 0.01 in three locations:
Goianira (State of Goias), Boa Vista (State of Roraima) and Formoso do Araguaia (State of Tocantins), Brazil.

Location Marker Chromosome Source PV(%) P

Goianira RM1 1 BG90-2 36.68 0.0001
5335 11 BG90-2 36.68 0.0001
RM248 7 BG90-2 30.90 0.0005
RM220 1 BG90-2 30.43 0.0019
RM103 6 BG90-2 23.42 0.0043
RM30 6 BG90-2 21.58 0.0085
Boa Vista 0G10 9 BG90-2 28.32 0.0017
RM178 5 BG90-2 23.41 0.0067
0G44 3 BG90-2 17.46 0.0125
RM210 8 BG90-2 16.43 0.0157
RM267 5 BG90-2 18.01 0.0173

RM264 8 BG90-2 15.34 0.022
Formoso do Araguaia 0G10 9 BG90-2 21.59 0.0074
RM310 8 RS-16 17.58 0.0122

PV is the phenotypic variation explained by each marker.
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QTLs detected in this study were compared to the ones detected for the BC,F, popu-
lation (Brondani et al., 2002) that derived the 35 ILs (BC,F,). This analysis revealed that the
RMI marker (chromosome 1) was associated with grain yield measured in Goianira for BC,F,
(PV% =39.11) and BC,F, (PV% = 36.68). In both analyses, the allele that was responsible for
the positive effect came from the cultivated genitor BG90-2.

DISCUSSION

The agronomic and molecular characterizations of 35 ILs derived from the interspe-
cific cross O. glumaepatula x O. sativa revealed that CNAi 9934, CNAi 9931, CNAi 9930,
CNA1 9935, CNAi 9936, and CNAi 9937 were the most productive lines and that CNAi 9931
and CNAi 9930 were statistically superior to the parent BG90-2 in the trial conducted in Itajai.
These lines showed heterogeneous introgression proportions ranging from 2.17 to 6.42% and
homozygous wild introgressions ranging from 1.09 to 2.17%. In fact, most of the wild introgres-
sions were represented by heterogeneous fragments with an average proportion of 8.18 against
1.12% of homozygous introgressions. Since the lines were advanced in bulk in each selfing
generation and the DNA was extracted in bulk from 10 plants, the presence of heterogeneous
loci was expected, due to the possibility of occurrence, on each locus, of a mixture of heterozy-
gous plants and/or homozygous plants for alleles from O. glumaepatula and O. sativa.

Lines with higher grain yield showed low introgression proportions. One of the main
reasons may be the lower linkage drag in these lines, reducing the possibility of the presence of
wild alleles with deleterious effects in genes related to traits of agronomic importance. Tian et al.
(2006a) developed ILs containing introgressions from the wild O. rufipogon and also observed that
the high-yielding ILs had the lowest number of introgressed fragments. The backcrosses performed
as part of the AB-QTL methodology played an important role in reducing the linkage drag because
they allowed a progressive breakage of wild fragments in each cross and the recovery of the cul-
tivated genetic background. The results observed for the high-yielding lines CNAi 9934, CNAi
9931, CNAi 9930, CNAi 9935, CNAi 9936, and CNAi 9937 showed that the methodology was
efficient in introducing favorable wild alleles while maintaining the best features of BG90-2.

The QTL analysis performed for the 35 ILs showed that markers were associated
with grain yield in the three sites of evaluation. The comparison of QTLs detected in the ILs
(BC,F,) and in the BC,F, families in Goianira revealed that the RM1 marker was associated,
on both generations, with grain yield. The proportions of phenotypic variation explained by
this marker was high in BC,F, and BC F, generations (39.11 and 36.68, respectively), indicat-
ing that this marker was strongly associated with rice grain yield. The genomic region in the
vicinity of the RM1 locus could be targeted to QTL fine mapping, in order to discover the gene
responsible for the favorable expression of the trait. Since this marker was never identified in a
QTL analysis involving intraspecific crosses, it can be implied that there are genomic regions
from O. glumaepatula that could act positively with BG90-2 alleles to increase yield. There
is also an opportunity to search for wild genomic fragments that could be involved as a trans-
acting element to increase the effect of the BG90-2 allele at the RM1 locus.

Agronomic and molecular characterizations of the ILs allowed a better knowledge of
their genomic composition and performance in the field. This strategy is being used routinely
in the development of lines and cultivars originated from broad crosses in rice, mainly those
involving interspecific crosses with O. glumaepatula, which is today an important source of
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genetic variability for the breeding program at Embrapa for traits such as yield and drought
tolerance. A considerable number of rice ILs have been developed in recent years (Wan et al.,
2004; Ebitani et al., 2005; Tian et al., 2006b; Wang et al., 2007). The power of QTL detection
is higher in ILs than in primary mapping populations such as F, or recombinant inbred lines,
because, in ILs, it is possible to compare phenotypic effects between alleles on the substituted
segments (Ebitani et al., 2005). Therefore, this type of population could be used to detect and
confirm QTLs for important agronomic traits. Wan et al. (2004) used 66 ILs and detected six
QTLs for grain quality traits that behaved as non-environment specific and that, according to
the authors, could be used for marker-assisted selection. The molecular characterization of the
35 O. glumaepatula-derived ILs will allow a rapid identification of wild fragments facilitating
the selection of ILs containing homozygous introgressions in regions of interest. Molecular
markers allow the identification of introgressed fragments to the early selection of plants with
smaller fragments, contributing to a faster and less expensive process. In addition, the effect
of the incorporation of small fragments on the traits of interest can be measured, and the favor-
able alleles, either from the cultivated or the wild parent, can be detected.

Lines CNA1 9934, CNAi1 9931, CNAi 9930, CNAi 9935, CNAi 9936, and CNAi 9937
showed high yield performance in five replicated experiments. These high-yielding lines have
different fragments of O. glumaepatula, combined in different individuals, which confer ge-
netic variability that is useful for low-input agriculture. Among them, CNAi 9930 is ready to
be released to small farmers, due to grain quality traits and high production in ratooning, which
increases the total yield by 30% (Rangel et al., 2005). The best performing ILs are available for
rice breeders as a source of new allelic variation for the development of high-yielding cultivars.
The generation of new ILs derived from O. glumaepatula x O. sativa crosses is under way, to
continuously offer genetic materials of broadened genetic basis for rice breeding programs.
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