4ESTABILIDADE DE GENÓTIPOS DE FEIJOEIRO COMUM COM GRÃOS CARIOCA NO CENTRO-SUL DO BRASIL EM 2003 E 2004

Leonardo Cunha MELO

Helton Santos Pereira

Luís Cláudio de FARIA

José Luís Cabrera DIAZ

Maria José DEL PELOSO

Joaquim Geraldo Cáprio da COSTA

Carlos Agustín RAVA

Adriane WENDLAND

INTRODUÇÃO

O Brasil é o maior produtor e consumidor mundial do feijão comum, Phaseolus vulgaris, de diversos tipos comerciais de grão, sendo o tipo carioca o mais importante, respondendo por cerca de 70% do mercado nacional. As avaliações de Valor de Cultivo e Uso (VCU) das linhagens desenvolvidas são realizadas nas regiões de importância para a cultura e entre essas, destaca-se a Região Centro-Sul, compreendendo os Estados do Paraná, Santa Catarina e São Paulo, que respondem por 45% da produção, com média de produtividade de 1.395 kg/ha. Como a cultura é submetida as mais variadas condições ambientais, com diferentes épocas de semeadura (águas, seca e inverno) distribuídas durante o ano todo em diferentes sistemas de cultivo e diferentes níveis de tecnologia, variando desde o mais baixo até toda utilização de tecnologia recomendada, diversos trabalhos têm mostrado que o efeito da interação genótipos x ambientes é grande. Assim, uma alternativa para minimizar o efeito da interação é identificar os genótipos com maior adaptabilidade e estabilidade, proporcionando maior segurança na indicação de novas cultivares. O objetivo desse trabalho foi identificar genótipos de feijoeiro comum de tipo comercial carioca com alta adaptabilidade, estabilidade e produtividade na Região Centro-Sul do Brasil, utilizando diferentes metodologias de análise.

MATERIAL E MÉTODOS

Os ensaios foram instalados nos anos de 2003 e 2004, em blocos ao acaso com três repetições e parcelas de quatro linhas de quatro metros de comprimento, em 26 ambientes nos Estados do Paraná, Santa Catarina e São Paulo, nas épocas das águas e seca. Cada ensaio foi constituído de 16 genótipos e os dados de produtividade de grãos (kg/ha) foram submetidos à análise de variância e em seguida foi realizada a análise conjunta obtendo-se as estimativas da porcentagem simples e complexa da interação para cada par de ambientes. Como as variâncias residuais não foram homogêneas, procedeu-se o ajuste dos graus de liberdade do erro médio e da interação GxA, conforme o método de Cochran.

Para as análises de estabilidade foram adotadas seis metodologias: Eberhart & Russell; Cruz et al.; Lin & Binns modificado por Carneiro (com decomposição de P_i e trapézio

¹Embrapa Arroz e Feijão, Rodovia GO-462, Km 12, Zona Rural, Santo Antônio de Goiás, GO, C.P. 179, CEP 75375-000, E-mail: leonardo@cnpaf.embrapa.br, helton@cnpaf.embrapa.br, lcfaria@cnpaf.embrapa.br, cabrera@cnpaf.embrapa.br, mjpeloso@cnpaf.embrapa.br, caprio@cnpaf.embrapa.br, rava@cnpaf.embrapa.br.

quadrático ponderado pelo coeficiente de variação residual (CV)); Annicchiarico; e AMMI. Foram utilizados os aplicativos Genes e Estabilidade. Os genótipos mais estáveis foram identificados de acordo com os parâmetros utilizados por cada metodologia. Para identificar os genótipos mais estáveis por AMMI, obteve-se a média dos escores absolutos para os dois primeiros componentes, ponderada pela porcentagem de explicação de cada componente (MPEA) para cada genótipo. Assim, quanto menor o valor de MPEA, menor a contribuição do genótipo para a interação e consequentemente, mais estável é o genótipo.

RESULTADOS E DISCUSSÃO

A análise de variância de 25 dos 26 ensaios mostrou diferenças significativas entre os genótipos e os valores de CV variaram de 6% a 19%, indicando boa precisão experimental. A média geral dos ensaios variou de 985 a 4.144 kg/ha, mostrando que as condições a que os genótipos foram submetidos foram discrepantes. Na análise conjunta, todos os efeitos foram significativos, indicando a presença de variabilidade entre os genótipos e entre ambientes, e também a ocorrência de resposta diferencial dos genótipos aos ambientes (Tabela 1). Além disso, foi detectado que das 325 combinações possíveis dos ambientes dois a dois, apenas 24 (7,4%) apresentaram predominância da parte simples da interação contra 301 (93,6%), nas quais a parte complexa foi predominante, indicando alteração no ranqueamento dos genótipos e reforçando a necessidade da realização de análises de estabilidade.

Tabela 1 - Resumo da análise de variância conjunta para a produtividade de grãos (kg/ha) dos 26 ensaios conduzidos na Região Centro-Sul do Brasil nos anos de 2003 e 2004.

Fontes de Variação	GL	Quadrado médio	F
Repetição/Ambiente	52	405.004	
Ambientes (A)	25	33.828.329	83,53**
Genótipos (G)	15	2.059.049	3,19**
A X G	$(256)^1$	645.352	3,75**
Resíduo	$(526)^1$	171.762	
Total	1.247	-	-
Média	-	2.479	-
CV (%)	-	16,7	-

GL: Graus de liberdade; **: Significativo a 1% de probabilidade pelo teste F. ¹ GL da interação e do erro ajustados segundo Cochran.

Com relação a produtividade média dos genótipos, BRS Estilo e CNFC 9518 se destacaram como os mais produtivos, seguidos pelo CNFC 9458 e CNFC 9506 (Tabela 2). Já os genótipos Carioca 11 e BRS 9435 Cometa, que tem ciclo precoce, foram os que apresentaram pior desempenho.

Os resultados das análises com as seis metodologias de estabilidade e adaptabilidade estão apresentados nas Tabelas 2 e 3. As metodologias identificaram diferentes genótipos como os mais estáveis e adaptados e entre esses, merecem destaque o BRS Estilo e CNFC 9518, que foram os mais produtivos e identificados por várias metodologias como os mais estáveis e adaptados. Além disso, os métodos de Lin & Binns, modificado por Carneiro (trapézio quadrático ponderado pelo CV) e o de Annichiarico foram os mais indicados para utilização em programas de melhoramento.

Tabela 2 - Estimativas de parâmetros de adaptabilidade e estabilidade fenotípica pelos métodos de Eberhart & Russel, Cruz et al. e AMMI, para 16 genótipos de feijoeiro comum avaliados em 26 ambientes na Região Centro-Sul nos anos de 2003 e 2004.

Genótipo	Média ⁽¹⁾	Eberhart & Russel				Cruz e	et al.		AMMI						
		$\hat{oldsymbol{eta}}_{1i}$ (2)	$\hat{\pmb{\sigma}}_{\scriptscriptstyle di}$ $^{\scriptscriptstyle (3)}$	R ² (%)	$\hat{oldsymbol{eta}}_{\mathrm{l}i}$ (2)	$\hat{eta}_{1i} + \hat{eta}_{2i}^{(4)}$	$\hat{oldsymbol{\sigma}}_{di}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}^{}$	R ² (%)	CP 1 (33%) (5)	CP 2 (16%) (5)	MPEA (6)	C ⁽⁷⁾			
BRS Estilo	2.797 a	1,09 ns	65.974**	88	1,06 ^{ns}	1,29 ^{ns}	371.252**	88	-16,9	1,7	11,9	12			
CNFC 9518	2.746 a	1,10 ^{ns}	24.197 ^{ns}	92	1,08 ^{ns}	1,22 ns	249.219 ^{ns}	92	1,3	-3,6	2,1	2			
CNFC 9458	2.643 b	1,15**	50.769**	90	1,12 ^{ns}	1,33*	325.022**	90	-18,5	-14,4	17,1	13			
CNFC 9506	2.567 b	1,07 ^{ns}	6.110 ^{ns}	93	1,05 ^{ns}	1,20 ns	192.257 ^{ns} 94		-7,9	10,2	8,6	9			
CNFC 9484	2.513 c	1,02 ^{ns}	2.256 ^{ns}	93	1,01 ^{ns}	1,10 ^{ns}	183.864 ^{ns} 93		-8,5	-3,1	6,8	5			
CNFC 9500	2.511 c	0,99 ns	16.920 ^{ns}	91	1,02 ^{ns}	0,78 ns	215.100 ^{ns}	91	-10,1	-2,5	7,6	7			
CNFC 9471	2.501 c	1,08 ^{ns}	-1.124 ^{ns}	94	1,09 ^{ns}	1,02 ns	174.422 ^{ns}	94	-6,9	6,7	6,8	6			
CNFC 9504	2.473 c	1,07 ^{ns}	29.331 ^{ns}	91	1,04 ^{ns}	1,23 ns	261.467 ^{ns}	91	-9,2	-12,0	10,1	10			
Pérola	2.462 c	0,83**	190.732**	67	$0,92^{ns}$	0,30**	668.405**	72	38,6	-25,2	34,2	16			
Iapar 81	2.457 c	1,01 ^{ns}	121.243**	81	0,99 ^{ns}	1,13 ^{ns}	553.640**	81	-1,4	7,4	3,4	3			
CNFC 9494	2.444 c	1,00 ^{ns}	14.802 ^{ns}	91	1,02 ^{ns}	0,87 ns	219.274 ^{ns}	91	-10,6	1,5	7,6	8			
Magnífico	2.389 c	1,02 ns	47.630**	88	1,05 ^{ns}	0,82 ns	313.815*	88	2,6	1,0	2,1	1			
Carioca Pitoco	2.379 c	0,83**	231.455**	64	0,86*	0,67*	8.938.29**	64	34,5	-4,2	24,5	14			
CNFE 8009	2.369 c	0,99 ns	75.755**	84	0,98 ^{ns}	1,06 ns	414.788**	84	6,4	2,5	5,1	4			
BRS 9435 Cometa	2.243 d	0,99 ns	152.690**	77	0,90 ^{ns}	1,52**	548.586**	81	-12,8	-7,6	11,1	11			
Carioca 11	2.166 d	0,75**	221495**	60	0,80**	0,46**	839.287**	61	19,4	41,8	26,8	15			

⁽¹⁾ Médias seguidas da mesma letra são iguais (Scott-Knott, α =0,10); (2) H_0 : $β_{1i}$ = 1; (3) H_0 : $σ_{di}$ = 0; (4) H_0 : $β_{1i}$ + $β_{2i}$ = 1; f_0 significativos, significativos a 5% e 1% de probabilidade pelo teste t, respectivamente; (5) Porcentagem da variação explicada pelo componente principal (CP); (6) Média ponderada dos escores absolutos; (7) Classificação.

Tabela 3 - Estimativas de parâmetros de adaptabilidade e estabilidade fenotípica de 16 genótipos de feijoeiro comum avaliados em 26 ambientes na Região Centro-Sul nos anos de 2003 e 2004, pelos métodos de Lin & Binns, com decomposição de P_i em favorável (P_{if}) e desfavorável (P_{id}) (L&B mod), trapézio quadrático ponderado pelo CV (L&B mod CV) e Annichiarico.

Genótipo	Média ¹	L&B mod						L&B mod CV						Annichiarico					
		$P_{i}(x10^{3})$	\mathbb{C}^2	$P_{if}(x10^3)$	С	$P_{id}(x10^3)$	С	$P_{i}(x10^{6})$	С	$P_{if}(x10^6)$	С	$P_{id}(x10^6)$	С	$\overline{\mathbf{W}_{\mathrm{i}}}$	С	W_{if}	С	W _{id}	С
BRS Estilo	2.797 a	150	2	144	2	154	2	959	1	485	1	473	1	110,0	1	111,3	1	108,1	1
CNFC 9518	2.746 a	130	1	129	1	131	1	1.032	2	528	2	503	2	108,1	2	108,2	2	107,9	2
CNFC 9458	2.643 b	208	3	163	3	241	5	1.091	3	543	3	548	4	101,8	3	99,5	3	105,0	3
CNFC 9506	2.567 b	209	4	252	4	178	3	1.128	4	574	4	554	5	100,0	4	99,4	4	100,7	4
CNFC 9484	2.513 c	268	6	299	8	246	6	1.172	5	605	5	566	7	98,0	6	97,5	5	98,9	7
CNFC 9500	2.511 c	271	7	286	6	260	7	1.195	6	632	9	562	6	98,2	5	97,3	6	99,4	5
CNFC 9471	2.501 c	241	5	273	5	218	4	1.217	8	622	8	594	11	96,3	7	94,3	10	99,1	6
CNFC 9504	2.473 c	320	10	296	7	337	13	1.207	7	615	6	593	10	95,2	9	92,8	12	98,7	9
Pérola	2.462 c	411	13	601	13	272	9	1.258	9	728	13	530	3	94,8	11	96,0	7	93,1	12
Iapar 81	2.457 c	304	9	308	9	273	10	1.261	11	658	10	603	13	95,1	10	94,8	8	95,2	11
CNFC 9494	2.444 c	293	8	324	10	270	8	1.266	12	674	11	592	9	95,3	8	94,6	9	96,0	10
Magnífico	2.389 c	368	11	347	11	413	15	1.260	10	621	7	639	15	92,3	12	87,9	14	98,8	8
Carioca Pitoco	2.379 c	473	14	686	14	317	12	1.317	14	746	15	572	8	91,8	13	93,9	11	89,0	14
CNFE 8009	2.369 c	403	12	483	12	345	14	1.310	13	708	12	601	12	90,3	14	88,7	13	92,7	13
BRS 9435 Cometa	2.243 d	561	15	729	15	437	16	1.397	15	745	14	652	16	84,3	15	84,7	16	83,7	15
Carioca 11	2.166 d	656	16	1.127	16	311	11	1.495	16	858	16	637	14	82,4	16	85,5	15	78,4	16

¹Médias seguidas da mesma letra são iguais (Scott-Knott, α=0,10); ²Classificação dos genótipos quanto a estabilidade em cada método.

Área: Genética e Melhoramento