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ABSTRACT 

This work presents a friendly tool usable to solve models for networks of queues using Markov chains. The state 
space generation process for a specific model is automaticaly performed from a given initial state, according to 
the rules that describe the behavior of that model. The use of this tool is adequate for solving systems modeis 
which exhibit resource contention, as for example, computer systems, computer networks, manufacturing 
systems, process control and other which can be modeled using the networks of queues paradigm. 
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1. INTRODUCTION 

Modeling and analysis for computer systems have 
been lately impacted by researchers who wish to predict 
the behavior of such systems [1]. 

Systems which exhibit resource contention (as for 

example, computer systems, computer networks, 

manufacturing systems and process control) can be 
modeled using the networks of queves paradigm [2,3]. 
A network of queues is a system in which multiples 
queues operate assynchronously and concurrenily, 
interconnected according to a specific topology. Each 

system of queue is composed by customers, a set of 
servers and a service discipline [2,4]. 

Solving models of networks of queues is not an easy 
task, becoming restrained only to researchers who have 
the knowledge of the performance evaluation 
techniques found in the literature. Analytical 
techniques can be used in order to solve these models. 
These techniques are economic and efficient. However, 
they sometimes demand a simplification of the model 
due to its complexity. Numerical, approximate 
techniques can aiso be used, but their computational 
cost can be a limiting factor. 

One of the analytical alternatives to solve networks of 
queves is the use of markovian processes. A process is 
named markovian if, from a given state, the future 
bahavior of the process is independent of the past 
events and depends upon only on the present state of 
the process [1,4]. This class of models is widely used in 
analysis and modeling of computer and communication 
systems and is sufficiently suitable in the majority of 
the cases [5]. 

There are two major classes of markovian models, 
continuous times and discret times models [1,2]. In the 
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first case, the state of the system can change at any 
instant of time; on the second case, the state of the 
system can change only at specific points of time. A 
markovian model which presents a discret state space is 
named a Markov chain. 

Traditionally, either analytical techniques or general 
purpose simulation languages, such as GPSS [6] and 
SIMULA [7], were used for modeling systems of 
networks of queues. Nowadays, the trend is the use of 
integrated environments that offer approximate and 
analytical solutions and provide a suitable way for 
developing powerful models, allowing the users to 
build, modify and represent models of the real world. 
Examples of some of these environments are SAVAD 
[8.9], RESQ [10], BONes and OPNET [11]. 

In order to build such environments, this paper 
proposes structured techniques and facilities of 
interation with the computational environment which 
grant the software to be modular, extensible and 
reusable [12,13]. 

This work presents the tool ALLOS, which 
automaticaly generates states for markovian models, 
solves them and presents the more important 
performance measures as requested by the user. The 
state space generation process for a specific model is 
automatic from a given initial state, according to the 
rules that describe the behavior of that model. 

ALLOS is part of an intelligent simulation 
environment denominated SAVAD. This tool has been 
developed using the C++ [13] and PROLOG [14] 
languages to microcomputer systems, compatible with 
the line IBM/PC. ALLOS offers an intelligent, friendly 
interface to the user. Therefore, the user has not to be 
an expert in modeling and performance evaluation of 



systems. The components used to describe models for 

networks of queues present a great flexibility, allowing 

. the modeling of a large diversity of systems that exhibit 

resource contention , as for example, computer systems, 

computer networks, manufacturing systems and others 

which can be modeled using the networks of queues 

paradigm. 

Kt is important to emphasize that markovian models 

have caused impact in the researches concerning the 

area of performance evaluation of systems which 

exhibit resource contention, since that simulation 

programs, when compared to mathematical models, are 

more expensive to build, are error-prone, difficult to be 

validated and costly in terms of CPU execution cycles 

[1]. Besides, a markovian model can be aitered (e.g., 

truncating the state space) so that this model becomes 

more treatable. 

The decline of costs for computer memory, the 

increase of the processing capacity and the advance of 

techniques to solve models allow that markovian 

processes with a large number of states be solved, 

reducing the strong restriction imposed by markovian 

modeling that is the state explosion [1,15]. 

In this paper we describe the tool ALLOS and we 

present an example of its application in modeling. In 

the section 2, we present the modeling process using 

ALLOS, emphesizing the automatic state generation 

process. A numerical example is shown in the section 

3, where we point out the solution and validation of this 

tool and, finally, in the section 4, we present our 

conclusions. 

2. THE MODELING PROCESS USING 4LLOS 

2.1. Modeling Elements 

The ALLOS interface allows the user, in an 

interactive fashion, to describe his model and to 

store/present attributes and parameters of elements used 

in the modeling. It validates automaticaly the modeling 

elements during the construction of the model and 

validates it globally before submiting it to an 

evaluation. The set of available elements allows the 

construction of models for networks of queues in a 

simple way. A brief description of such elements 

follows. More details can be found in [8,9]. 

Customers: They are temporary entities that circulate 

through model nodes (elements) requesting a specific 

service. The path followed by a customer is named its 

route. Customers in a same class have same 

attributes (e.g. service distribution probability, 

queuing discipline, priority level, etc). 

Workstations: They represent resources in a queuing 

model. There is a queuing discipline associated with 

each workstation. ALLOS uses the queuing 
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discipline FCFS (First Come First Served). In 

adittion, each workstation is composed of one or 

more servers (entities attending customers). Two 

types of workstations were defined in ALLOS: single 

server and multiple servers. Each queue associated 

with a single server or multiple servers may have a 

length of up to K customers units (storage capacity). 

where K must be specified by the user. 

Control Points: They are nodes that control the flow of 

customers within a network of queues. There are four 
types of control-points, designed to facilitate the task 

of computer networks modeling, particularly those 

presenting integration of services: 

- Multiplication Point: Enables a replication of 

customers arriving to this node. Its structure is 

composed of one input and two or more outputs 

each one eventually belonging to a different route. 

Fusion Point: Makes the fusion of one or more 

customers belonging to the same class, to compose 

a single customer. 

Synchronization Point: This element is used to 

block customers in a queuing system model while 

waiting for a certain condition to be satisfied, after 

that, customers are freed according to a liberation 

discipline. 

Scheduler Point: Schedules customers (waiting in 

different queues) according to a liberation 

discipline where cach non empty queue may try to 

liberate one or more customers from its queue. 

Consequentiy, collisions may occur with this 

discipline. In such cases those collision customers 

wait for a a new liberation according to a specific 

algorithm. 

Sources: For open queue networks, source represents 

the process of customers arriving into a system. 

Generally, the arrival process is described in terms of 

the probability distribution of customer interarrival 

times. 

Sinks: They are nodes (in open queue networks) where 

customers leave the model. 

Classes: Usually, while building a model for a network 

of queues, one needs to describe classes of customers 

traversing the model. Associated with each customer 

class there are a name and one or more routes. 

2.2. Automatic State Generation 

Models of real world systems generally originate a 

Markov chain with a large number of states. A problem 

not less important refers to transition rates and 

automatic state generation [1]. It is very important that 

the user can specify the model in a friendly way and 

that the performance measures of interest can also be 

observed automaticaly, not demanding an user 



knowledge about 

representation. 

details of the mathematical 

In many models for computer systems, most of the 

time is spent in a number relatively small of states in 

comparison with the total number of model states. For 

such models, several performance measures of interest 

can be calculated from a number relatively smail of 

states [1]. 

The basic idea of dynamic exploration techniques is 
to develop algorithms to guide the generation of 

transition rate matrix. The importance of a state should 

be eveluated in terms of its contribution to calculate the 

performance measures of interest, as for example, 

throughput, mean queue length, mean queuing time 
and utilization factor [1,15]. 

An elegant and efficient way to dynamic exploration 

is the automatic state generation, where from the 
specification of a system model by the user, the state 
transition matrix is generated from a given initial state, 
according to the rules that describe the behavior of such 

model. 

The language selected for implementing the 
automatic state generation module is Prolog. 
According to discussions in [5], three features that 

Prolog provides make it appropriate for implementing 
ALLOS. First, Prolog aliows the use of untyped 
complex data structures which allows the user fuli 
freedom in the descriptions of model states. Second, 
Prolog provides unification, a powerful form of pattern 
matching used in the preconditions of the rules to 
determine which actions can be taken and, finally, 

Prolog has backtracking search as a basic feature of the 
language. As more than one rule may have its 

preconditions satisficd at the same time, the 
backtracking automatically applies ali possible such 
rules to find all reachable states. 

2.3 Procedure for Automatic State Generation 

Consider Figure 1 which represents the available 
state transitions of models that use the modelig 

elements presented in the section $2.1. 
r " 

source 

sink 

workstation 

multiplication 

scheduler 

synchronization 

fusion 

[queue [ques ,] 

A 

Figure 1: Modeling elements 

In this convention, each modeling element can be 

preceded and followed by one cr more queuves. 
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Exceptions are applied to elements source (it can not be 

preceded by a queue) and sink (it can not be followed 

by a queue). The notation used in this case is “[ ]” 
which represents a null queue. 

From a state (k,....k,), where n is the number of 

model queues, the set of reachable states for that model 

is defined as follow: 

1. [] source ff] 
ke < Max, 
Theh Gregg) = Gir okço) 

2 [f] sink [] 
Them (gg) = Geo bolo) 

3. [£,] workstation [6] 
If kg > 0) A kg < Maxç) 

4. [£] multiplication [£. ...f. 1 i 1fkç>0 jm 

Theh Cerperkguk, mol) D Cpo Log +ou 

ValSasSmkp <Maxp 
5. (6, fi) scheduler (£] ta Ja 

Vall<asm, 

1 Gg >SchPy, ) A (kg + SiPp S Maxp) 
Then (eg pg, Eokgr kg) - Fry Look skg) pi 

[44 

pri ] synchronization Ep) pl 

Va] 1 SAS m kp 2 SyoPlç JA 

BIISPSp 

6. [£; 

+SymP2e <Maxe ) 
So Big 

7. [6 4) fusion [8] Cipa fig gra 
PG <aSmkp >0) A (kg <Maxp) 
Them (eg ug, «unkgp kg) => Cr CAL, 

Vilisasm 

Where: k, is the queue lenth i, Max, is the maximum 
queuing length i, SchP, is the parameter associated 
with the liberation of customers of queue i at the 

scheduler point, SynP1, is the parameter associated 

with the liberation of customers of queue i at the 

synchronization point, SynP2, is the parameter 
associated with the liberation of customers at the 

1 

synchronization point to the queue /, and where E, = 
f 

Ep, or simply E, > E,, represents the existence of one 
í 

direct transition refering to modeling element i, 

between the states E, e E,. 

Let E, ce E, be two states. We say that E, is 

reachable from E, (E, = E,) if and only if there is a 
finite number of transtions between E, and E, (E, > 
Es11 > — > E). The transition from the state E, to 
a 

val 

the state E,, is considered valid (E, = E,) if and only 



if dE, |E, > E, 5 <i <7. So, the generation of a 
Ê 

valid transition is done according to the following rule: 

VIE, (E, S ES SIS DA DEE, E95SIS7) 
i ê 

val 

Tent, o E, . 

ElseE, > Es, sincethat DE, IE, > E,,5S1S7 
1 

That rule can be still enriched through consideration 

of restrictions. For example, the restriction 

Ek, = population, where k represents the queue 
lp 

length i and n is the total number of model queues, 

define a model for closed network of queues. 

Therefore, given a network of queues F, an initial 

state E, is defined generically as: 
If F is open (contains elements oftype source) 

Then Eg=(0....,0) 

Else Ep = (P.0,...,0) 

where P represents the population of the closed chain. 

HW P> K,, then the excess will pass to K,, and so on 

while P < K, That initial state can also be defined 

differently in the presence of restrictions. 

Finally, the Markov chain generation procedure is 

defined as: 
A set of states generated from a unique initial state Ep 

builds-states([E|Es]) :- 

Jf E was not yet built 
val 

Then X=fState:E = State) 

builds-states (Es ºX) 

Else builds-states (Es) 

where 4 º B represents a concatenation of the lists 4 

and 5. 

3. NUMERICAL EXAMPLE 

According to Figure 2, we choose an open network 

with one multiplication point (applied in some cases to 

broadcasting models). The modeling elements for this 

example are one source, three workstations cach one of 

them with a single server, a multiplication point, and 

two sinks. This model presents two routes (routel and 

route?). The customers of routel leaving the 

workstation Servl are duplicated at Mult P, and end up 

at Sinkt, while their duplicates follow route? starting 

at Mult P and going to Sink2, where they leave the 

system. 
Servz Sinkf 

DOC] 

Sourcef Servi  Muk P 

Dea 
Servs Sink2 

IHO—G 

Figure 2: Model for an open network with Multiplication 

Point. 

We now summarize the specification of each one of 

model elements, that could be submitted by an ALLOS 

user: 

Source: 
Name: Sourcel 

Probability distribution: exponential 

Average: 1.0 

Workstations: 

Name: Servl 
Kind of server. single 
Queue length (): 3 

Queuing discipline: FCFS 

Service distribution: exponencial 

Average: 0.5 (package/msegs) 

Name: Serv2 
Kind of server: single 

Queue length (k): 3 

Queuing discipline: FCFS 

Service distribution: exponencial 

Average: 0.5 (package/msegs) 

Name: Serv3 
Kind of server: single 

Queue length (o): 3 

Queuing discipline: FCFS 

Service distribution: exponencial 

Average: 0.5 (package/msegs) 

Sinks: 
Name: Sinkl 

Name: Sink2 

Muitiplication Point: 

Name: Mult P 

Class: 
Name: classl 

Priority: no priority (priority: 0) 

Routes: 

Name: routel 
Class: class 
Nodes sequence: 

Sourcel >> Serv! >> Mult P >> Serv2 >> Sinkl 

Name: route2 

Class: classl 

Nodes sequence: Mult P >> Serv3 >> Sink2 

The space state associated with the model is shown 

in Figure 3. 

110,0.0] 2[1,0,0] 3[20,0] 4[0,1,1] S[1,L1] 6[0,0,1] 
7[0,1,0] 2[3,00] 9[1,0,1] 10 [1,10] 11 [251,1] 12 [0,22] 
13 [20,1] 14 [0,1,2] 15 [2.1,0] 16 [0,2,1] 17 [1,22] 18 [3,L,1] 
19 [1,12] 20 [0,0,2] 21 [3,0,1] 22 [1,2,1] 23 [0,20] 24 [3,L,0] 
25 [22.2] 26 [0,3,3] 27 [1,0,2] 28 [2,1,2] 29 [0.2,3] 30 [1,2,0] 
31 [2,21] 32 [0,32] 33 [1,3,3] 34 [3,2,2] 35 [2,0,2) 36 [0,1,3] 
37 [1.23] 38 [3,1,2] 39 [2,2,0] 40 [0,3,1] 41 (1,3,2] 42 [3,21] 
43 [23,3] 44 [1,1,3] 45 [0,0,3] 46 [3,0,2] 47 [2,2,3] 48 [1,3,1] 
49 [03,0] 50 [3,2,0] 51 [2,3,2] 52 [3,3,3] 53 [1,0,3] 54 [2,1,3] 
55 [3.2.3] 56 [13,0] 57 [2,3,1] 58 [3,3,2] 59 [2.0.3] 60 [3,1,3] 
61 [2,3,0] 62 [3,3,1] 63 [3,0,3] 64 [3,3.0] 

Figure 3: State space for the open network model with 

mutiplication point. 



From the automatic state generation for the state 

space which will compose the model”s transition rate 

matrix, ALLOS solves the model using the method 

presented in [3]. Other methods to solve transition rate 

matrix can be found in [1]. 

As an example of performance measures of interest 

which can be obtained, we have the utilization factor in 

each workstation (server), the mean answer time in 

such workstation and the throughput: 

— Utilization factor in each workstation (Servl, Serv2, 

Serv3) = 0.498266 

— Mean queue length, including job in service (Servl, 

Serv2, Serv3) = 0.852150 

-—Throughput for the open network model with 

multiplication point = 0.911754 

The results above were compared with [16], in order 
to valid the tool ALLOS which is part of intelligent 
simulation environment entitled S4VAD. 

4. CONCLUSIONS 

As for the user, it is desirable that a tool for 
modeling networks of queues be characterized by 
transparency of the details both the mathematical 
definitions of the modeled system and solution 

techniques, so that the user will not need to be an 
expert in these techniques. In this sense, ALLOS with 
its friendly interface, can easily be used for solving 
model networks of queues by means of Markov chains. 

ALLOS is part of the intelligent simulation 
environment SAVAD. This tool automaticaly generates 
the states of markovian models, from a given initial 
state,.according to the rules that describe the behavior 

of the models, solves them and presents the 

performance measures requested by the user. The use of 
this tool is adequate for solving systems models which 
exhibit resource contention, as for example, computer 

systems, computer networks, manufacturing systems, 
process control and others which can be modeled using 

the networks of queues paradigm. 

ALLOS has been validated through exhaustive tests, 

and results compared with the simulator for network of 

queues presented in [16]. 

The selection of the Prolog and C++ "languages 
allows more flexibility in the implementation of this 
tool. The languages also favored the adoption of design 
and programming methodologies granting the software 

to be modular and reusable, so that it easily allows 
extensions which can enrich its options of using. 

Aiming at the widest possible dissemination, the tool 
ALLOS was designed to be used in microcomputers 
compatible with the line IBM/PC. Now, we intend to 

extend it to Unix-workstations. 
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