[e ———————————

ALLOS - A TOOL TO SOLVE MARKOVIAN MODELS

Stanley R. M. Oliveiral, Maria I. C. Cabral2, Edilson Ferneda2, Marcos A. G. Brasileiro
stanley@dsc.ufpb.br, izabel@dsc.ufpb.br, edilson@dsc.ufpb.br, mbrasile@brufpb2.bitnet

1 CNPTIA/EMBRAPA 2 DSC/CCT/UFPB 3 DEE/CCT/UFPB
Rod. D. Pedero I - Km 143,6 (SP65) Avenida Aprigio Veloso s/n Avenida Aprigio Veloso s/n
13089-500 - Campinas, SP 58.109-970 Campina Grande, PB 58.109-970 Campina Grande, PB
Brazil Brazil Brazil

Phone: ++55 19 240-1073
FAX: ++55 19 240-2007

Phone/FAX: ++55 83 333-1698

Phone: ++55 83 333-1992
FAX: ++55 83 333-1650

ABSTRACT

This work presents a friendly tool usable to solve models for networks of queues using Markov chains. The state
space generation process for a specific model is automaticaly performed from a given initial state, according to
the rules that describe the behavior of that model. The use of this tool is adequate for solving systems models
which exhibit resource contention, as for example, computer systems, computer networks, manufacturing
systems, process control and other which can be modeled using the networks of queues paradigm.

Keywords: Modeling, Markov Chains, Performance Evaluation, Automatic State Generation.

1. INTRODUCTION

Modeling and analysis for computer systems have
been lately impacted by researchers who wish to predict
the behavior of such systems [1].

Systems which exhibit resource contention (as for
example, computer systems, computer networks,
manufacturing systems and process control) can be
modeled using the networks of queues paradigm [2,3].
A network of queues is a system in which multiples
queucs operate assynchronously and concurrently,
interconnected according to a specific topology. Each
system of queue is composed by customers, a set of
servers and a service discipline [2,4].

Solving models of networks of queues is not an easy
task, becoming restrained only to researchers who have
the knowledge of the performance evaluation
techniques found in the literature. Analytical
techniques can be used in order to solve these models.
These techniques are economic and efficient. However,
they sometimes demand a simplification of the model
duc to its complexity. Numerical, approximate
techniques can also be used, but their computational
cost can be a limiting factor.

One of the analytical alternatives to solve networks of
queues is the use of markovian processes. A process is
named markovian if, from a given state, the future
bahavior of the process is independent of the past
events and depends upon only on the present state of
the process [1,4]. This class of models is widely used in
analysis and modeling of computer and communication
systems and is sufficiently suitable in the majority of
the cases [S].

There are two major classes of markovian models,
continuous times and discret times models [1,2]. In the

235-083

53

first case, the state of the system can change at any
instant of time; on the second case, the state of the
system can change only at specific points of time. A
markovian model which presents a discret state space is
named a Markov chain.

Traditionally, either analytical techniques or general
purpose simulation languages, such as GPSS [6] and
SIMULA [7], were used for modeling systems of
networks of queues. Nowadays, the trend is the use of
integrated environments that offer approximate and
analytical solutions and provide a suitable way for
developing powerful models, allowing the users to
build, modify and represent models of the real world.
Examples of some of these environments are S4VAD
[8.9], RESQ [10], BONes and OPNET [11].

In order to build such environments, this paper
proposes structured techniques and facilities of
interation with the computational environment which
grant the software to be modular, extensible and
reusable [12,13].

This work presents the tool ALLOS, which
automaticaly generates states for markovian models,
solves them and presents the more important
performance measures as requested by the user. The
state space generation process for a specific model is
automatic from a given initial state, according to the
rules that describe the behavior of that model.

ALLOS is part of an intelligent simulation
environment denominated S4V4D. This tool has been
developed using the C++ [13] and PROLOG [14]
languages to microcomputer systems, compatible with
the line IBM/PC. ALLOS offers an intelligent, friendly
interface to the user. Therefore, the user has not to be
an expert in modeling and performance evaluation of

systems. The components used to describe models for
networks of queues present a great flexibility, allowing
_ the modeling of a large diversity of systems that exhibit
resource contention , as for example, computer systems,
computer networks, manufacturing systems and others
which can be modeled using the networks of queues
paradigm.

It is important to emphasize that markovian models
have caused impact in the researches concerning the
area of performance evaluation of systems which
exhibit resource contention, since that simulation
programs, when compared to mathematical models, are
more expensive to build, are error-prone, difficult to be
validated and costly in terms of CPU execution cycles
[1]. Besides, a markovian model can be altered (e.g.,
truncating the state space) so that this model becomes
more treatable.

The decline of costs for computer memory, the
increase of the processing capacity and the advance of
techniques to solve models allow that markovian
processes with a large number of states be solved,
reducing the strong restriction imposed by markovian
modeling that is the state explosion [1,15].

In this paper we describe the tool ALLOS and we
present an example of its application in modeling. In
the section 2, we present the modeling process using
ALLOS, emphesizing the automatic state generation
process. A numerical example is shown in the section
3, where we point out the solution and validation of this
tool and, finally, in the section 4, we present our
conclusions.

2. THE MODELING PROCESS USING ALLOS
2.1. Modeling Elements

The ALLOS interface allows the user, in an
interactive fashion, to describe his model and to
store/present attributes and parameters of elements used
in the modeling. It validates automaticaly the modeling
elements during the construction of the model and
validates it globally before submiting it to an
evaluation. The set of available clements allows the
construction of models for networks of queues in a
simple way. A brief description of such elements
follows. More details can be found in [8,9].

Customers: They are temporary entities that circulate
through model nodes (elements) requesting a specific
service. The path followed by a customer is named its
route. Customers in a same class have same
attributes (e.g. service distribution probability,
queuing discipline, priority level, etc).

Workstations: They represent resources in a queuing
model. There is a queuing discipline associated with
each workstation. ALLOS wuses the quening

54

discipline FCFS (First Come First Served). In
adittion, each workstation is composed of one or
more servers (entities attending customers). Two
types of workstations were defined in ALLOS: single
server and multiple servers. Each queue associated
with a single server or multiple servers may have a
length of up to K customers units (storage capacity),
where K must be specified by the user.

Control Points: They are nodes that control the flow of
customers within a network of queues. There are four
types of control-points, designed to facilitate the task
of computer networks modeling, particularly those
presenting integration of services:

- Multiplication Point: Enables a replication of
customers arriving to this node. Its structure is
composed of one input and two or more outputs
each one eventually belonging to a different route.

Fusion Point: Makes the fusion of one or more
customers belonging to the same class, to compose
a single customer.

Synchronization Point: This element is used to
block customers in a queuning system model while
waiting for a certain condition to be satisfied; after
that, customers are freed according to a liberation
discipline.

Scheduler Point: Schedules customers (waiting in
different queues) according to a liberation
discipline where each non empty queue may try to
liberate one or more customers from its queue.
Consequently, collisions may occur with this
discipline. In such cases those collision customers
wait for a a new liberation according to a specific
algorithm.

Sources: For open queue networks, source represents
the process of customers arriving into a system.
Generally, the arrival process is described in terms of
the probability distribution of customer interarrival
times.

Sinks: They are nodes (in open queue networks) where
customers leave the model.

Classes: Usually, while building a model for a network
of queues, one needs to describe classes of customers
traversing the model. Associated with each customer
class there are a name and on¢ or more routes.

2.2. Automatic State Generation

Models of real world systems generally originate a
Markov chain with a large number of states. A problem
not less important refers to transition rates and
automatic state generation [1]. It is very important that
the user can specify the model in a friendly way and
that the performance measures of interest can also be
observed automaticaly, not demanding an user

knowledge about details of the mathematical

representation.

In many models for computer systems, most of the
time is spent in a number relatively small of states in
comparison with the total number of model states. For
such models, several performance measures of interest
can be calculated from a number relatively small of
states [1].

The basic idea of dynamic exploration techniques is
to develop algorithms to guide the generation of
transition rate matrix. The importance of a state should
be eveluated in terms of its contribution to calculate the
performance measures of interest, as for example,
throughput,” mean queue length, mean queuing time
and utilization factor [1,15].

An elegant and efficient way to dynamic exploration
is the automatic state generation, where from the
specification of a system model by the user, the state
transition matrix is generated from a given initial state,
according to the rules that describe the behavior of such
model.

The language selected for implementing the
automatic state generation module is Prolog.
According to discussions in {§], three features that
Prolog provides make it appropriate for implementing
ALLOS. First, Prolog allows the use of untyped
complex data structures which allows the user full
freedom in the descriptions of model states. Second,
Prolog provides unification, a powerful form of pattern
matching used in the preconditions of the rules to
determine which actions can be taken and, finally,
Prolog has backtracking search as a basic feature of the
language. As more than one rule may have its
preconditions satisfied at the same time, the
backtracking automatically applies all possible such
rules to find all reachable states.

2.3 Procedure for Automatic State Generation

Consider Figure 1 which represents the available
state transitions of models that use the modelig
elements presented in the section §2.1.

r 3

source
sink
workstation
multiplication
scheduler
synchronization
fusion

[queue, ([queue ;]

Figure I: Modeling elements

In this convention, each modeling element can be
preceded and followed by one or more queues.

55

Exceptions are applied to elements source (it can not be
preceded by a queue) and sink (it can not be followed

by a queue). The notation used in this case is “[I”

which represents a null queue.

From a state (k;,....k,), where n is the number of
model queues, the set of reachable states for that model
is defined as follow:

1. [] source [f]
Ifkg < Il/iaxf
Theh acfl,...jcfj,...,kfn) = gpp k)

2. [f] sink []
Ifke >0

Thens (kg gk,) = Gy KLk
3. [f}] workstation [£]
If (g, > 0) A\ kg, < Maxp)
Then acfl,...,kfi,.’..,kfj,...jfn) = (kg kgt Lekg)
4. [f] multiplication [f; ...,]
[lllfkf_>0 Nl T e
Theh (g k) = Gkl g 1ok)
VajlSo<mke <Maxg
8. [f;, ;] scheduler [£] Ja Ja
Yall<asm,
Then ﬂcfl,...,kﬁaﬁ.,kfj,...ﬁcfn) = &fl,...xda-l,...xg+1,...xfn)
6. [flj""’fi | synchronization [i}-l,...,t}-P]
.{f(‘v”‘al 1 SaSm,kfi ZSynPlfi YA
BB
Then (kg ,.Xg. g kg)=> 7P
1 ig /1 " g
sk -SynPle ,..kp +SynP2¢ ,.kp)
T, of; 1fusion [f] G-, i s

Va1 SaZm ks 20)A (k< Maxg)
Then (kgypK, kge"kp) = KK Lkl),
7 a
Val<osm

Where: k; is the queue lenth i, Max; is the maximum
quening length i, SchP; is the parameter associated
with the liberation of customers of queue / at the
scheduler point, SynPI; is the parameter associated
with the liberation of customers of quene i at the
synchronization point, SynPZj is the parameter
associated with the liberation of customers at the

+SynP2¢ < Maxg)
Ip Jp

1
synchronization point to the queue /, and where £, =
{
E,, or simply E, = E,, represents the existence of one
i

direct transition refering to modeling element i,
between the states £, e E;,.

Let £, ¢ E, be two states. We say that E, is

reachable from E (E, = E,) if and only if there is a
finite number of transtions between E, and E, (£, =
E,,; = ... = Ep). The transition from the state £, to

a

val
the state E,, is considered valid (E, = E}) if and only

if AE, | E, = E,, 5 <i < 7. So, the generation of a
i
valid transition is done according to the following rule:
FIE, (B, = E,5SiSNA BB (E, = E4SSisT)
i i

val »
Else E, => Ey, sincethat AE,|E, = E 5Si<7
1

That rule can be still enriched through consideration
of restricions. For example, the restriction
Tk, = population, where k represents the queue
=l
length i and n is the total number of model queues,
define a model for closed network of queues.

Therefore, given a network of queues F, an initial
state E,) is defined generically as:
If F is open (contains elements of type source)

Then Ej=(0,.,0)

Else Ej= (P,0,...0)
where P represents the population of the closed chain,
If P > K, then the excess will pass to X,, and so on
while P < K. That initial state can also be defined
differently in the presence of restrictions.

Finally, the Markov chain generation procedure is
defined as:
A set of states generated from a unique initial state E,
builds-states([E|Es]) :-

If E was not yet built
val
Then X = {State: E =» State}

builds-states (Es °X)
Else builds-states(Es)
where 4 ° B represents a concatenation of the lists 4
and B.

3. NUMERICAL EXAMPLE

According to Figure 2, we choose an open network
with one multiplication point (applied in some cases to
broadcasting models). The modeling elements for this
example are one source, three workstations each one of
them with a single server, a muitiplication point, and
two sinks. This model presents two routes (routel and
route2). The customers of routel leaving the
workstation Serv1 are duplicated at Mult_P, and end up
at Sink1, while their duplicates follow route2 starting
at Mult_P and going to Sink2, where they leave the

system.

Serv2
11

Sink1

Sourcel Servi Mult P

D1

Serv3
11

Sink2

Figure 2: Model for an open network with Multiplication
Point.

We now summarize the specification of each one of
model elements, that could be submitted by an ALLOS
user.

Source:
Name: Sourcel
Probability distribution: exponential
Average: 1.0 '
Workstations:
Name: Servl
Kind of server. single
Queue length (k) 3
Queuing discipline: FCFS
Service distribution: exponencial
Average: 0.5 (package/msegs)
Name: Serv2
Kind of server: single
Queue length (k): 3
Quening discipline: FCFS
Service distribution: exponencial
Average: 0.5 (package/msegs)
Name: Serv3
Kind of server: single
Quene length (k). 3
Queuing discipline: FCFS
Service distribution: exponencial
Average: 0.5 (package/msegs)
Sinks:
Name: Sink1
Name: Sink2
Muitiplication Point:
Name: Mult_P
Class:
Name: classl
Priority: no priority (priority: 0)
Routes:
Name: routel
Class: classl

Nodes sequence:.
Sourcel >> Servl >> Mult_P >> Serv2 >> Sink1

Name: route2
Class: classl
Nodes sequence: Muit_P >> Serv3 >> Sink2

The space state associated with the model is shown
in Figure 3.

11000] 20,00] 3[200] 4[011] 5{LL1] 6[00,]
710,1,0] 8[3.,00] 9[1,0,1] 10[1,1,0] 11(21,1] 12{0.2,2]
13[2,0,1] 140,1,2] 152,10} 16[0,2,1] 17[1,22] 18[3,11]
19 [1.1,2] 20[0,0,2] 21 [3,0,1] 22[1,2,1] 23[0,2,0] 24(3,1,0]
25[2.2.2] 26[0,3,3] 27[1,02] 28[2,1,2] 29[0,2,3] 30[L,2,0]
31 [2.2,1] 32[0,3,2] 33[1,33] 34[3.2.2] 35[2,02] 36[0,13]
37[1.23] 38[3,1,2] 39[2,2,0] 401{0,3,1] 41(1,32] 42[3.2.1]
43[233] 44[1.1,3] 45[0,0,3] 46 [3,0.2] 47 [2.2.3] 48[13.1]
49{03,0] 50[3.2,0] 51{2.32] 52(33,3] 53[1,03] 54[2,13]
55[3.2.3] 56 [1,3,0] 57[23,1] 58 [33.2] 59[2,0,3] 60 [3,1.3]
61[2.3,01 62[3.3.1] 63 [3,0,3] 64[3,3.0]

Figure 3: State space for the open network model with
mutiplication point.

Fromr the automatic state generation for the state
space which will compose the model’s transition rate
matrix, ALLOS solves the model using the method
presented in [3]. Other methods to solve transition rate
matrix can be found in [1].

As an example of performance measures of interest
which can be obtained, we have the utilization factor in
each workstation (server), the mean answer time in
such workstation and the throughput:

— Utilization factor in each workstation (Servl, Serv2,
Serv3) = 0.498266

— Mean queue length, including job in service (Servl,
Serv2, Serv3) =0.852150

— Throughput for the open network model with
multiplication point = 0.911754

The results above were compared with [16], in order
to valid the tool ALLOS which is part of intelligent
simulation environment entitled S4VAD.

4. CONCLUSIONS

As for the user, it is desirable that a tool for
modeling networks of queues be characterized by
transparency of the details both the mathematical
definitions of the modeled system and solution
techniques, so that the user will not need to be an
expert in these techniques. In this sense, ALLOS with
its friendly interface, can easily be used for solving
model networks of queues by means of Markov chains,

ALLOS is part of the intelligent simulation
environment S4V4D. This tool automaticaly generates
the states of markovian models, from a given initial
state,.according to the rules that describe the behavior
of the models, solves them and presents the
performance measures requested by the user. The use of
this tool is adequate for solving systems models which
exhibit resource contention, as for example, computer
systems, computer networks, manufacturing systems,
process control and others which can be modeled using
the networks of queues paradigm.

ALLOS has been validated through exhaustive tests,
and results compared with the simulator for network of
queues presented in [16].

The selection of the Prolog and C++ languages
allows more flexibility in the implementation of this
tool. The languages also favored the adoption of design
and programming methodologies granting the software
t0 be modular and reusable, so that it easily allows
extensions which can enrich its options of using.

Aiming at the widest possible dissemination, the tool
ALLOS was designed to be used in microcomputers
compatible with the line IBM/PC. Now, we intend to
extend it to Unix-workstations.

57

REFERENCES

1]

2]

3]

)

151

[6]
7

18]

1]

(10]

11}

(12]
[13]
[14]

[15]

[16]

E. de S. Smva; R. R Muntz, "Métodos
Computacionais de SolugSio de Cadeias de Markov:
Aplicacdes a Sistemas de Computagdo e Comunicagio”,
VIII Escola de Computacdo, Gramado (RS), 1992.

L. KLENROCK, "Queueing Systems", Vol. 1: Theory.
Wiley Interscience, New York (USA), 1975.

C. H. Sauver;, K. M. Cuanpy, "Computer Systems
Performance Modeling”, Prentice-Hall, Englewood
Cliffs, New Jersey (USA), 1981.

H. KoBavaswi, "Modeling and Analysiss An
Introduction to System Performance Evaluation
Methodology", Addison-Wesley, New york (USA),
1978.

M. C. Dnuiz; E. de S. SiLva, "Especificagdo e Geraglo
de Modelos Markovianos para Analise de Desempenho
e Confiabilidade de Sistemas", Revista Brasileira de
Computagdo, Vol. 6, 1. 3, pp. 23-42, jan/mar, 1991.

T. J. SHRIBER, "Simulation Using GPSS", John Willey
& Sons, 1974.

G. M. BRTwisTLE et al, "Simula Begin", Auerbach
Publisher, Philadelphia (USA), 1973.

M. L C. CaBraL; F. A. C. Souto; H. C. Castro FILHO,
H. de M. Sn.va; M. A. G. BrasiLERO, "An integrated
system for modeling and evaluating models of networks
of queues”, in M. H. Hamza (Editor), Proceedings of
the IASTED International Conference - Modeling and
Simulation - MS'94 - Pinsburgh (USA), TASTED,
Anaheim (USA), 1994, pp. 206-209.

M. M. Dias; M. A. G. BrRasiLERo; M. L. C. .CABRAL,
"An Expert System for Performance Evaluation of
Computer System Models", Swmmer Computer
Simulation Conference, Reno (USA), 1992.

C. H. Sauer; E. MacNam, "The Evaluation of the
Research Queueing Package RESQ", in Modelling
Techniques and Tools for Performance Analysis, North-
Holland, 1985, pp. 5-24.

M. G. McComas;, A. M. Law, "Simulation Software for
Communication Networks: The State of the Art", IJEEE
Communication Magazine, March, 1994, pp. 44-50.

G. Boocn, "Object Oriented Design", The Benjamim/
Cummings Publishing, 1991.

B. StroUSTRUP, "The C++ Programming Language",
Addison-Wesley, 1991.

W. F. Crocksiv; C. S. MEeLLisH, "Programming in
Prolog", Springer-Verlag, 1981.

E. de S. Sm.va; P. M. OcHoa, "State Space Exploration
in Markov Models", Performance Evaluation Review,
Vol. 20, n. 1, June, 1992, pp. 152-166.

H. C. Conceigao Filho, “SIM/SAVAD - Um Simulador
de Modelos de Redes de Filas”. Campina Grande,

Parajba, Brazil: COPIN/CCT/UFPB, 1993. (MSc
thesis).

