
DEE

ALLOS - A TOOL TO SOLVE MARKOVIAN MODELS

Stanley R. M. Oliveiral, Maria 1. C. Cabral2, Edilson Ferneda?, Marcos A. G. Brasileiro?
stanleyfdsc.ufpb.br, izabelêdsc.ufpb.br, edilsonfêdsc.ufpb.br, mprasilefbrufpb2.bitnet

1 CNPTIA/EMBRAPA
Rod. D. Pedero I - Km 143,6 (SP65)

13089-500 - Campinas, SP
Brazil

Phone: +55 19 240-1073
FAX: +55 19 240-2007

2 DSC/CCT/UFPB
Avenida Aprígio Veloso s/n

58.109-970 Campina Grande, PB
Brazil

Phone/FAX: +55 83 333-1698

3 DEE/CCT/UFPB
Avenida Aprígio Veloso s/n

58.109-970 Campina Grande, PB
Brazil

Phone: ++55 83 333-1992
FAX: +55 83 333-1650

ABSTRACT

This work presents a friendly tool usable to solve models for networks of queues using Markov chains. The state
space generation process for a specific model is automaticaly performed from a given initial state, according to
the rules that describe the behavior of that model. The use of this tool is adequate for solving systems modeis
which exhibit resource contention, as for example, computer systems, computer networks, manufacturing
systems, process control and other which can be modeled using the networks of queues paradigm.

Keywords: Modeling, Markov Chains, Performance Evaluation, Automatic State Generation.

1. INTRODUCTION

Modeling and analysis for computer systems have
been lately impacted by researchers who wish to predict
the behavior of such systems [1].

Systems which exhibit resource contention (as for

example, computer systems, computer networks,

manufacturing systems and process control) can be
modeled using the networks of queves paradigm [2,3].
A network of queues is a system in which multiples
queues operate assynchronously and concurrenily,
interconnected according to a specific topology. Each

system of queue is composed by customers, a set of
servers and a service discipline [2,4].

Solving models of networks of queues is not an easy
task, becoming restrained only to researchers who have
the knowledge of the performance evaluation
techniques found in the literature. Analytical
techniques can be used in order to solve these models.
These techniques are economic and efficient. However,
they sometimes demand a simplification of the model
due to its complexity. Numerical, approximate
techniques can aiso be used, but their computational
cost can be a limiting factor.

One of the analytical alternatives to solve networks of
queves is the use of markovian processes. A process is
named markovian if, from a given state, the future
bahavior of the process is independent of the past
events and depends upon only on the present state of
the process [1,4]. This class of models is widely used in
analysis and modeling of computer and communication
systems and is sufficiently suitable in the majority of
the cases [5].

There are two major classes of markovian models,
continuous times and discret times models [1,2]. In the

235-083 53

first case, the state of the system can change at any
instant of time; on the second case, the state of the
system can change only at specific points of time. A
markovian model which presents a discret state space is
named a Markov chain.

Traditionally, either analytical techniques or general
purpose simulation languages, such as GPSS [6] and
SIMULA [7], were used for modeling systems of
networks of queues. Nowadays, the trend is the use of
integrated environments that offer approximate and
analytical solutions and provide a suitable way for
developing powerful models, allowing the users to
build, modify and represent models of the real world.
Examples of some of these environments are SAVAD
[8.9], RESQ [10], BONes and OPNET [11].

In order to build such environments, this paper
proposes structured techniques and facilities of
interation with the computational environment which
grant the software to be modular, extensible and
reusable [12,13].

This work presents the tool ALLOS, which
automaticaly generates states for markovian models,
solves them and presents the more important
performance measures as requested by the user. The
state space generation process for a specific model is
automatic from a given initial state, according to the
rules that describe the behavior of that model.

ALLOS is part of an intelligent simulation
environment denominated SAVAD. This tool has been
developed using the C++ [13] and PROLOG [14]
languages to microcomputer systems, compatible with
the line IBM/PC. ALLOS offers an intelligent, friendly
interface to the user. Therefore, the user has not to be
an expert in modeling and performance evaluation of

systems. The components used to describe models for

networks of queues present a great flexibility, allowing

. the modeling of a large diversity of systems that exhibit

resource contention , as for example, computer systems,

computer networks, manufacturing systems and others

which can be modeled using the networks of queues

paradigm.

Kt is important to emphasize that markovian models

have caused impact in the researches concerning the

area of performance evaluation of systems which

exhibit resource contention, since that simulation

programs, when compared to mathematical models, are

more expensive to build, are error-prone, difficult to be

validated and costly in terms of CPU execution cycles

[1]. Besides, a markovian model can be aitered (e.g.,

truncating the state space) so that this model becomes

more treatable.

The decline of costs for computer memory, the

increase of the processing capacity and the advance of

techniques to solve models allow that markovian

processes with a large number of states be solved,

reducing the strong restriction imposed by markovian

modeling that is the state explosion [1,15].

In this paper we describe the tool ALLOS and we

present an example of its application in modeling. In

the section 2, we present the modeling process using

ALLOS, emphesizing the automatic state generation

process. A numerical example is shown in the section

3, where we point out the solution and validation of this

tool and, finally, in the section 4, we present our

conclusions.

2. THE MODELING PROCESS USING 4LLOS

2.1. Modeling Elements

The ALLOS interface allows the user, in an

interactive fashion, to describe his model and to

store/present attributes and parameters of elements used

in the modeling. It validates automaticaly the modeling

elements during the construction of the model and

validates it globally before submiting it to an

evaluation. The set of available elements allows the

construction of models for networks of queues in a

simple way. A brief description of such elements

follows. More details can be found in [8,9].

Customers: They are temporary entities that circulate

through model nodes (elements) requesting a specific

service. The path followed by a customer is named its

route. Customers in a same class have same

attributes (e.g. service distribution probability,

queuing discipline, priority level, etc).

Workstations: They represent resources in a queuing

model. There is a queuing discipline associated with

each workstation. ALLOS uses the queuing

54

discipline FCFS (First Come First Served). In

adittion, each workstation is composed of one or

more servers (entities attending customers). Two

types of workstations were defined in ALLOS: single

server and multiple servers. Each queue associated

with a single server or multiple servers may have a

length of up to K customers units (storage capacity).

where K must be specified by the user.

Control Points: They are nodes that control the flow of

customers within a network of queues. There are four
types of control-points, designed to facilitate the task

of computer networks modeling, particularly those

presenting integration of services:

- Multiplication Point: Enables a replication of

customers arriving to this node. Its structure is

composed of one input and two or more outputs

each one eventually belonging to a different route.

Fusion Point: Makes the fusion of one or more

customers belonging to the same class, to compose

a single customer.

Synchronization Point: This element is used to

block customers in a queuing system model while

waiting for a certain condition to be satisfied, after

that, customers are freed according to a liberation

discipline.

Scheduler Point: Schedules customers (waiting in

different queues) according to a liberation

discipline where cach non empty queue may try to

liberate one or more customers from its queue.

Consequentiy, collisions may occur with this

discipline. In such cases those collision customers

wait for a a new liberation according to a specific

algorithm.

Sources: For open queue networks, source represents

the process of customers arriving into a system.

Generally, the arrival process is described in terms of

the probability distribution of customer interarrival

times.

Sinks: They are nodes (in open queue networks) where

customers leave the model.

Classes: Usually, while building a model for a network

of queues, one needs to describe classes of customers

traversing the model. Associated with each customer

class there are a name and one or more routes.

2.2. Automatic State Generation

Models of real world systems generally originate a

Markov chain with a large number of states. A problem

not less important refers to transition rates and

automatic state generation [1]. It is very important that

the user can specify the model in a friendly way and

that the performance measures of interest can also be

observed automaticaly, not demanding an user

knowledge about

representation.

details of the mathematical

In many models for computer systems, most of the

time is spent in a number relatively small of states in

comparison with the total number of model states. For

such models, several performance measures of interest

can be calculated from a number relatively smail of

states [1].

The basic idea of dynamic exploration techniques is
to develop algorithms to guide the generation of

transition rate matrix. The importance of a state should

be eveluated in terms of its contribution to calculate the

performance measures of interest, as for example,

throughput, mean queue length, mean queuing time
and utilization factor [1,15].

An elegant and efficient way to dynamic exploration

is the automatic state generation, where from the
specification of a system model by the user, the state
transition matrix is generated from a given initial state,
according to the rules that describe the behavior of such

model.

The language selected for implementing the
automatic state generation module is Prolog.
According to discussions in [5], three features that

Prolog provides make it appropriate for implementing
ALLOS. First, Prolog aliows the use of untyped
complex data structures which allows the user fuli
freedom in the descriptions of model states. Second,
Prolog provides unification, a powerful form of pattern
matching used in the preconditions of the rules to
determine which actions can be taken and, finally,

Prolog has backtracking search as a basic feature of the
language. As more than one rule may have its

preconditions satisficd at the same time, the
backtracking automatically applies ali possible such
rules to find all reachable states.

2.3 Procedure for Automatic State Generation

Consider Figure 1 which represents the available
state transitions of models that use the modelig

elements presented in the section $2.1.
r "

source

sink

workstation

multiplication

scheduler

synchronization

fusion

[queue [ques ,]

A

Figure 1: Modeling elements

In this convention, each modeling element can be

preceded and followed by one cr more queuves.

55

Exceptions are applied to elements source (it can not be

preceded by a queue) and sink (it can not be followed

by a queue). The notation used in this case is “[]”
which represents a null queue.

From a state (k,....k,), where n is the number of

model queues, the set of reachable states for that model

is defined as follow:

1. [] source ff]
ke < Max,
Theh Gregg) = Gir okço)

2 [f] sink []
Them (gg) = Geo bolo)

3. [£,] workstation [6]
If kg > 0) A kg < Maxç)

4. [£] multiplication [£. ...f. 1 i 1fkç>0 jm

Theh Cerperkguk, mol) D Cpo Log +ou

ValSasSmkp <Maxp
5. (6, fi) scheduler (£] ta Ja

Vall<asm,

1 Gg >SchPy,) A (kg + SiPp S Maxp)
Then (eg pg, Eokgr kg) - Fry Look skg) pi

[44

pri] synchronization Ep) pl

Va] 1 SAS m kp 2 SyoPlç JA

BIISPSp

6. [£;

+SymP2e <Maxe)
So Big

7. [6 4) fusion [8] Cipa fig gra
PG <aSmkp >0) A (kg <Maxp)
Them (eg ug, «unkgp kg) => Cr CAL,

Vilisasm

Where: k, is the queue lenth i, Max, is the maximum
queuing length i, SchP, is the parameter associated
with the liberation of customers of queue i at the

scheduler point, SynP1, is the parameter associated

with the liberation of customers of queue i at the

synchronization point, SynP2, is the parameter
associated with the liberation of customers at the

1

synchronization point to the queue /, and where E, =
f

Ep, or simply E, > E,, represents the existence of one
í

direct transition refering to modeling element i,

between the states E, e E,.

Let E, ce E, be two states. We say that E, is

reachable from E, (E, = E,) if and only if there is a
finite number of transtions between E, and E, (E, >
Es11 > — > E). The transition from the state E, to
a

val

the state E,, is considered valid (E, = E,) if and only

if dE, |E, > E, 5 <i <7. So, the generation of a
Ê

valid transition is done according to the following rule:

VIE, (E, S ES SIS DA DEE, E95SIS7)
i ê

val

Tent, o E, .

ElseE, > Es, sincethat DE, IE, > E,,5S1S7
1

That rule can be still enriched through consideration

of restrictions. For example, the restriction

Ek, = population, where k represents the queue
lp

length i and n is the total number of model queues,

define a model for closed network of queues.

Therefore, given a network of queues F, an initial

state E, is defined generically as:
If F is open (contains elements oftype source)

Then Eg=(0....,0)

Else Ep = (P.0,...,0)

where P represents the population of the closed chain.

HW P> K,, then the excess will pass to K,, and so on

while P < K, That initial state can also be defined

differently in the presence of restrictions.

Finally, the Markov chain generation procedure is

defined as:
A set of states generated from a unique initial state Ep

builds-states([E|Es]) :-

Jf E was not yet built
val

Then X=fState:E = State)

builds-states (Es ºX)

Else builds-states (Es)

where 4 º B represents a concatenation of the lists 4

and 5.

3. NUMERICAL EXAMPLE

According to Figure 2, we choose an open network

with one multiplication point (applied in some cases to

broadcasting models). The modeling elements for this

example are one source, three workstations cach one of

them with a single server, a multiplication point, and

two sinks. This model presents two routes (routel and

route?). The customers of routel leaving the

workstation Servl are duplicated at Mult P, and end up

at Sinkt, while their duplicates follow route? starting

at Mult P and going to Sink2, where they leave the

system.
Servz Sinkf

DOC]

Sourcef Servi Muk P

Dea
Servs Sink2

IHO—G

Figure 2: Model for an open network with Multiplication

Point.

We now summarize the specification of each one of

model elements, that could be submitted by an ALLOS

user:

Source:
Name: Sourcel

Probability distribution: exponential

Average: 1.0

Workstations:

Name: Servl
Kind of server. single
Queue length (): 3

Queuing discipline: FCFS

Service distribution: exponencial

Average: 0.5 (package/msegs)

Name: Serv2
Kind of server: single

Queue length (k): 3

Queuing discipline: FCFS

Service distribution: exponencial

Average: 0.5 (package/msegs)

Name: Serv3
Kind of server: single

Queue length (o): 3

Queuing discipline: FCFS

Service distribution: exponencial

Average: 0.5 (package/msegs)

Sinks:
Name: Sinkl

Name: Sink2

Muitiplication Point:

Name: Mult P

Class:
Name: classl

Priority: no priority (priority: 0)

Routes:

Name: routel
Class: class
Nodes sequence:

Sourcel >> Serv! >> Mult P >> Serv2 >> Sinkl

Name: route2

Class: classl

Nodes sequence: Mult P >> Serv3 >> Sink2

The space state associated with the model is shown

in Figure 3.

110,0.0] 2[1,0,0] 3[20,0] 4[0,1,1] S[1,L1] 6[0,0,1]
7[0,1,0] 2[3,00] 9[1,0,1] 10 [1,10] 11 [251,1] 12 [0,22]
13 [20,1] 14 [0,1,2] 15 [2.1,0] 16 [0,2,1] 17 [1,22] 18 [3,L,1]
19 [1,12] 20 [0,0,2] 21 [3,0,1] 22 [1,2,1] 23 [0,20] 24 [3,L,0]
25 [22.2] 26 [0,3,3] 27 [1,0,2] 28 [2,1,2] 29 [0.2,3] 30 [1,2,0]
31 [2,21] 32 [0,32] 33 [1,3,3] 34 [3,2,2] 35 [2,0,2) 36 [0,1,3]
37 [1.23] 38 [3,1,2] 39 [2,2,0] 40 [0,3,1] 41 (1,3,2] 42 [3,21]
43 [23,3] 44 [1,1,3] 45 [0,0,3] 46 [3,0,2] 47 [2,2,3] 48 [1,3,1]
49 [03,0] 50 [3,2,0] 51 [2,3,2] 52 [3,3,3] 53 [1,0,3] 54 [2,1,3]
55 [3.2.3] 56 [13,0] 57 [2,3,1] 58 [3,3,2] 59 [2.0.3] 60 [3,1,3]
61 [2,3,0] 62 [3,3,1] 63 [3,0,3] 64 [3,3.0]

Figure 3: State space for the open network model with

mutiplication point.

From the automatic state generation for the state

space which will compose the model”s transition rate

matrix, ALLOS solves the model using the method

presented in [3]. Other methods to solve transition rate

matrix can be found in [1].

As an example of performance measures of interest

which can be obtained, we have the utilization factor in

each workstation (server), the mean answer time in

such workstation and the throughput:

— Utilization factor in each workstation (Servl, Serv2,

Serv3) = 0.498266

— Mean queue length, including job in service (Servl,

Serv2, Serv3) = 0.852150

-—Throughput for the open network model with

multiplication point = 0.911754

The results above were compared with [16], in order
to valid the tool ALLOS which is part of intelligent
simulation environment entitled S4VAD.

4. CONCLUSIONS

As for the user, it is desirable that a tool for
modeling networks of queues be characterized by
transparency of the details both the mathematical
definitions of the modeled system and solution

techniques, so that the user will not need to be an
expert in these techniques. In this sense, ALLOS with
its friendly interface, can easily be used for solving
model networks of queues by means of Markov chains.

ALLOS is part of the intelligent simulation
environment SAVAD. This tool automaticaly generates
the states of markovian models, from a given initial
state,.according to the rules that describe the behavior

of the models, solves them and presents the

performance measures requested by the user. The use of
this tool is adequate for solving systems models which
exhibit resource contention, as for example, computer

systems, computer networks, manufacturing systems,
process control and others which can be modeled using

the networks of queues paradigm.

ALLOS has been validated through exhaustive tests,

and results compared with the simulator for network of

queues presented in [16].

The selection of the Prolog and C++ "languages
allows more flexibility in the implementation of this
tool. The languages also favored the adoption of design
and programming methodologies granting the software

to be modular and reusable, so that it easily allows
extensions which can enrich its options of using.

Aiming at the widest possible dissemination, the tool
ALLOS was designed to be used in microcomputers
compatible with the line IBM/PC. Now, we intend to

extend it to Unix-workstations.

57

REFERENCES

[1] E. de S. Smva; R. R. Muntz, "Métodos
Computacionais de Solução de Cadeias de Markov:
Aplicações a Sistemas de Computação e Comunicação”,
VIH Escola de Computação, Gramado (RS), 1992.

L. KLEINROCK, "Queueing Systems", Vol. 1: Theory.

Wiley Interscience, New York (USA), 1975.

C. H. Sauer; K. M. CHAaNDY, "Computer Systems

Performance Modeling", Prentice-Hall, Englewood

Cliffs, New Jersey (USA), 1981.

H. Kosavasm, "Modeling and Analysis: An

Introduction to System Performance Evaluation

Methodology", Addison-Wesley, New york (USA),

1978.

M. €. Ding; E. de S. SILVA, "Especificação e Geração

de Modelos Markovianos para Análise de Desempenho

e Confiabilidade de Sistemas”, Revista Brasileira de

Computação, Vol. 6, n. 3, pp. 23-42, jan/mar, 1991.

T. J. SuriBER, "Simulation Using GPSS", John Willey

& Sons, 1974.

G. M. BRIWISTLE et al., "Simula Begin", Auerbach

Publisher, Philadelphia (USA), 1973.

M. I C. CABRAL; F. A. €. Souto; H. C. CASTRO FILHO;

H. deM. Siva; M. A. G. BRASEERO, "An integrated

system for modeling and evaluating modeis of networks

of queues", in M. H. Hamza (Editor), Proceedings of

the IASTED International Conference - Modeling and

Simulation - MS'94 - Pittsburgh (USA), IASTED,

Anaheim (USA), 1994, pp. 206-209.

M. M. Dias; M. A. G. BRASEEIRO; M. I. €. .CABRAL,

“An Expert System for Performance Evaluation of

Computer System Modeis", Summer Computer

Simulation Conference, Reno (USA), 1992.

C. H. Saver; E. MacNAR, "The Evaluation of the

Research Queueing Package RESQ", m Modelling

Techniques and Tools for Performance Analysis, North-

Holland, 1985, pp. 5-24.

M. G. McComas; A. M. Law, "Simulation Software for

Communication Networks: The State of the Art”, IEEE

Communication Magazine, March, 1994, pp. 44-50.

G. Boocn, "Object Oriented Design", The Benjamim/

Cummings Publishing, 1991.

B. SrrousTRUP, “The C++ Programming Language",

Addison-Wesley, 1991.

W. F. CLocksmn; €. S. MELLISH, "Programming in

Prolog", Springer-Verlag, 1981.

E. de S. Sm.va; P. M. OcHoa, "State Space Exploration

in Markov Models", Performance Evaluation Review,

Vol. 20, n. 1, June, 1992, pp. 152-166.

H. €. Conceição Filho, “SIM/SAVAD - Um Simulador
de Modelos de Redes de Filas”. Campina Grande,
Paraíba, Brazil: COPIN/CCT/UFPB, 1993. (MSc
thesis).

2]

BI]

[4]

IS]

[6]

[7]

[8]

BI

[10]

Lu]

[12]

[13]

[14]

[15]

[16]

