DETERMINAÇÃO DE DOSES DE MICRONUTRIENTES A SEREM APLICADAS VIA SEMENTES À CULTURA DO FEIJÃO (Phaseolus vulgaris L.)

Maria Lúcia MARTINS^{1,2}
Carlos Alberto Severo FELIPE^{3,2}
Márcia Gonzaga de Castro OLIVEIRA⁴
Priscila Zaczuck BASSINELLO⁵
Rafael Mendes da SILVA^{6,2}
Adilson PELA^{7,2}

INTRODUÇÃO

A semente pode ser considerada um insumo de maior importância no processo produtivo, e sua qualidade considerada um fator indispensável no sucesso de uma cultura (PERETTI, 1994). Sementes de boa qualidade, associadas a tratamento pré-germinativo ajudam no estabelecimento das plantas em campo, sendo o tratamento de sementes com micronutrientes um dos que mais vem se destacando. MELO (1990) constatou maior rendimento na cultura do feijão, devido à aplicação uniforme de micronutrientes às sementes, reduzindo custos e favorecendo sua absorção pelas plantas.

Apesar de exigidos em pequenas quantidades, a deficiência de alguns micronutrientes pode ser tão prejudicial quanto à deficiência de um macronutriente (EMBRAPA – CNPMS, 1996). Isso porque a maioria deles é constituinte de compostos-chave no metabolismo das plantas ou essenciais ao funcionamento de sistemas enzimáticos.

A aplicação uniforme de micronutrientes é feita, normalmente, via solo e através de pulverização foliar. Todavia pode ser realizada, ainda, a aplicação diretamente às sementes via peletização (SFREDO et al, 1997).

O presente trabalho teve como objetivo estudar a aplicação dos micronutrientes Boro (na forma de ácido bórico - H₃BO₃), Molibdênio (na forma de molibidato de sódio - Na₂MoO₄) e Cobalto (na forma de sulfato de cobalto - CoSO₄) em sementes de feijão, através do processo de recobrimento.

MATERIAL E MÉTODOS

Os micronutrientes avaliados foram o Boro (B), o Cobalto (Co) e o Molibdênio (Mo), que estão entre os mais importantes para a cultura do feijão. Quanto às formulações, procurou-se trabalhar com as que são comumente utilizadas em adubações por produtores, quais sejam: ácido bórico (H₃BO₃), molibidato de sódio (Na₂MoO₄) e sulfato de cobalto (CoSO₄).

Escolhidos os micronutrientes a serem empregados, a etapa seguinte foi definir as doses adotadas nos ensaios de recobrimento. Foram pré-definidas três doses a serem analisadas e, a partir delas, determinar a mais viável. Para se chegar a estes três valores de doses para Boro, o critério adotado foi partir de uma faixa de teores foliares de

¹ Bolsista PIBIC/CNPQ;

² Curso de Agronomia, Unidade Universitária de Ipameri, UEG;

³ Pesquisador-orientador, severopeixoto@yahoo.com.br;

⁴ Mestranda do Programa de Pós-Graduação em Engenharia Agrícola/UEG, (BR 153 KM 98) Anápolis – GO, marciagcoliveira@yahoo.com.br;

⁵ Enga. Agrônoma, Pesquisadora, Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO (0xx62) 3533-2182, pzbassin@cnpaf.embrapa.br;

⁶ Voluntário de Iniciação Científica PVIC/UEG;

⁷ Pesquisador Voluntário.

micronutrientes, considerada satisfatória para a cultura (MALAVOLTA et al, 1997). Com base neste referencial, tomaram-se os seus valores extremos (o menor e o maior) além do teor intermediário. Esses três valores de teor foliar de micronutrientes foram multiplicados, individualmente, pela quantidade de matéria seca (MS) produzida pela cultura por hectare. O resultado obtido desta multiplicação foi transformado de miligrama (mg) para grama (g) e posteriormente dividido pela quantidade de sementes usada por hectare, obtendo-se assim, a quantidade de micronutrientes por quilograma de sementes. Para os elementos Cobalto e Molibdênio, as doses foram definidas a partir de recomendações para aplicação via semente, conforme VIEIRA et al. (2006). As doses definidas foram: Dose 1 – 1,764 g H₃BO₃. kg⁻¹ sementes, 0,025 g CoSO₄.kg⁻¹ sementes e 0,412 g Na₂MoO₄. CoSO₄.kg⁻¹ sementes; Dose 2 – 2,648 g H₃BO₃. kg⁻¹ sementes, 0,112 g CoSO₄.kg⁻¹ sementes e 0,616 g Na₂MoO₄. CoSO₄.kg⁻¹ sementes; Dose 3 – 13,528 g H₃BO₃. kg⁻¹ sementes, 0,200 g CoSO₄.kg⁻¹ sementes e 0,820 g Na₂MoO₄ CoSO₄.kg⁻¹ sementes.

Em cada uma das doses foram estudadas as seguintes interações: X, Y, Z, XY, XZ, YZ, XYZ, e T, onde T é a testemunha e X, Y e Z representam cada um dos elementos estudados em cada cultura. No entanto, buscava-se encontrar a melhor dose com os três.

Realizou-se a adubação por meio do recobrimento em sacos plásticos. Os ingredientes água (solvente) amido e micronutrientes (nas suas respectivas formas) foram misturados nos sacos plásticos, agitando-os até que se obtivesse uma camada uniforme sobre as sementes.

Para verificar qual a melhor dose, foram realizados testes de avaliação da qualidade das sementes, quais sejam: Teste Padrão de Germinação (TPG), 1ª Contagem, Envelhecimento Acelerado, Massa Úmida (MU) e Massa Seca (MS) das plântulas provenientes do Envelhecimento Acelerado e ainda o teste de fissuras, ou de hipoclorito de sódio. A partir desses testes, verificou-se através de Análise de Variância e Teste de Tukey a 5% de probabilidade, qual a melhor dose a ser aplicada via sementes.

RESULTADOS E DISCUSSÃO

Na Tabela 1 (Dose 1), no que diz respeito aos testes de TPG e 1ª Contagem, o tratamento contendo os três micronutrientes não diferiu estatisticamente da testemunha. Já em relação aos testes de EA, TPG, MU e MS, o mesmo não foi observado.

Tabela 1 – Resultados dos testes de qualidade do feijão relativos à Dose 1.

Tratamentos	TPG (%)	1ª Contagem	EA (%)	MU	MS
		(%)		(mg.plântula ⁻¹)	(mg.plântula ⁻¹)
Testemunha	83,25a	40,38b	62,00a	1019,85a	132,97a
(T1)					
Co	78,50a	66,25ab	37,50abc	884,40bcd	123,13a
(T2)					
Mo	73,00a	57,75ab	47,00ab	942,48ab	125,48a
(T3)					
Mo+Co	72,25a	49,75ab	14,50c	878,38bcd	132,78a
(T4)					
В	86,00a	$69,50^{a}$	39,00abc	874,73bcd	134,08a
(T5)					
BCo	69,50a	54,25ab	42,50ab	765,13d	130,15a
(T6)					
B+Mo	77,75a	66,75ab	32,00bc	813,43cd	128,73a
(T7)					
B+Mo+Co	72,00a	55,00ab	36,50bc	901,33abc	125,13a
(T8)					

^{*}Médias não seguidas pela mesma letra, na coluna, diferem entre si pelo teste de Tukey, a 5% de probabilidade de erro

Tabela 2 – Resultados dos testes de qualidade do feijão relativos à Dose 2

Tratamentos	TPG (%)	1ª Contagem	EA (%)	MU	MS
		(%)		(mg.plântula ⁻¹)	(mg.plântula ⁻¹)
Testemunha	83,25a	40,38c	62,00a	1019,85a	132,98a
(T1)					
Co	82,00a	77,50a	46,50ab	943,48ab	142,15a
(T2)					
Mo	85,00a	72,50a	43,00ab	931,53abc	134,85a
(T3)					
Mo+Co	85,50a	79,00a	46,00ab	917,00abcd	123,10a
(T4)	06.00	40.00	• 4 0 0 1		4.40.
B	86,00a	43,00c	24,00b	783,73cd	149,73a
(T5)	60.50	(2.00.1	42.00.1	774651	100.50
Bco	69,50a	62,00ab	43,00ab	774,65d	123,58a
(T6)	77.75	40.001	22.50.1	770 7.1	1.40.07
B+Mo	77,75a	49,00bc	33,50ab	779,7d	140,95a
(T7)	02.00	(4.50.1	42.00.1	006.061 1	120.62
B+Mo+Co	82,00a	64,50ab	43,00ab	806,06bcd	138,63a
(T8)					

^{*}Médias não seguidas pela mesma letra, na coluna, diferem entre si pelo teste de Tukey, a 5% de probabilidade de erro

Tabela 3 – Resultados dos testes de qualidade do feijão relativos à Dose 3.

Tratamentos	TPG	1 ^a Contagem	EA	MU	MS
	(%)	(%)	(%)	(mg.plântula ⁻¹)	(mg.plântula ⁻¹)
Testemunha	83,25ab	40,38bc	62,00a	1019,85a	132,98a
(T1)					
Co	83,25ab	77,00a	44,50a	881,72b	136,63a
(T2)					
Mo	82,75ab	75,75a	64,00a	905,05b	123,35a
(T3)					
Mo+Co	89,25a	84,75a	64,50a	932,58b	131,48a
(T4)	60 7 01	2.4.70		000 50	100 17
B	60,50b	24,70c	37,50a	932,58c	130,45a
(T5)	71.001	42.001	51.00	740.65	1.42.42
Bco	71,00b	43,00b	51,00a	742,65c	143,43a
(T6)	£1 10h	27 (21-	41.00-	716 20-	12452-
B+Mo	51,12b	37,63bc	41,00a	716,20c	134,53a
(T7)	76.25 ab	47 50h	40.00°	762.75	120 70
B+Mo+Co	76,25ab	47,50b	40,00a	763,75c	138,70a
(T8)					

^{*}Médias não seguidas pela mesma letra, na coluna, diferem entre si pelo teste de Tukey, a 5% de probabilidade de erro.

Para a Dose 2 (Tabela 2) o tratamento contendo os três elementos estudados (T8) superou estatisticamente a testemunha no teste de 1ª Contagem, e manteve-se igual nos testes de MS, EA e TPG, com os valores mais próximos da testemunha que a Dose 1. Apenas no teste de MU é que se mostrou inferior à testemunha.

Ao analisar os dados da Tabela 3, referentes a 3ª Dose, no tratamento com os três micronutrientes aplicados conjuntamente, percebe-se que os resultados dos testes de qualidade caíram, exceto para o teste de MS.

Porém, de um modo geral, após analisar as três tabelas acima, percebe-se que nenhum dos nutrientes estudados afetou seriamente o desenvolvimento inicial das plântulas, podendo dessa forma ser aplicado os três, ao mesmo tempo, às sementes.

Para se ter uma melhor percepção sobre qual das três dosagens seria a mais adequada a se aplicar às sementes, foi realizada uma nova Análise de Variância (a 5% de significância) agora com a testemunha e com os três elementos, nas três doses avaliadas. Na Tabela 12, pode ser observado o resultado do teste de Tukey a 5% de significância.

Tabala 1 /	مماني ۱	.ã. d	<u>_1:</u> ~~	· aanimata	A D	$C_{\alpha} \sim 1$	10000	tuĝa docas
Tabela 4 - A	Avanac	ao da ai	Difcacac) comunita	ue D.	Coew	TO e nas	tres doses.
				J				

Tratamentos/	TPG	1 ^a Contagem	EA	MU	MS
Doses	(%)	(%)	(%)	(mg.plântula ⁻¹)	(mg.plântula ⁻¹)
Testemunha	83,25a	40,38c	62,00a	1019,85a	132,98a
BMoCo(D1)	72,00a	55,00ab	36,50a	901,33b	125,13a
BMoCo(D2)	82,00a	64,50a	43,00a	806,06bc	138,63a
BMoCo(D3)	76,25a	47,50b	40,00a	763,75c	138,70a

^{*}Médias não seguidas pela mesma letra, na coluna, diferem entre si pelo teste de Tukey, a 5% de probabilidade de erro.

Analisando-se os dados da Tabela 4, constata-se que a Dose 2 é a mais adequada de ser empregada, e isto pelas seguintes razões:

- Foi a que apresentou os melhores resultados nos dois principais testes feitos (TPG e 1ª Contagem);
- No teste de 1ª Contagem, o resultado do tratamento com esta dose foi estatisticamente superior à testemunha;
- No TPG, embora a presença dos três nutrientes nesta dose não tenha sido significativamente melhor que a Testemunha, o resultado obtido indica uma tendência de queda na qualidade das sementes, no caso do emprego de uma dose maior que a 3 (mesma tendência apontada por todos os outros testes, com exceção do MS).

AGRADECIMENTOS

Ao CNPq e à Universidade Estadual de Goiás (UEG) pelo suporte à pesquisa.

REFERÊNCIAS BIBLIOGRÁFICAS

EMBRAPA – Centro Nacional de Pesquisa de Milho e Sorgo. **Recomendações técnicas para o cultivo do milho**. 2 ed. Brasília – DF: EMBRAPA – CNPMS, 1996. p. 64-67.

MALAVOLTA, E., VITTI, G.C., OLIVEIRA, S.A. de. **Avaliação do estado nutricional de plantas:** princípios e aplicações. Nutrição mineral e adubação de plantas cultivadas. 2 ed. Piracicaba, POTAFOS, 1997. p.164-165.

MELO, E.F.R.Q. Respostas da cultura do feijão (*Phasheolus vulgaris* L.) a níveis de zinco nas formas inorgânicas e orgânicas em casa de vegetação e no campo. Curitiba: UFPAR, 1990, 125 p. DissertçÃo (Mestrado em ciência do solo) – Curso de pós-graduação em ciência do solo, Universidade Federal do Paraná, 1990.

PERETTI, A. **Manual para Analise de Semillas**. Buenos Aires: Editorial Hemisfério Sur, 1994. 282p.

SFREDO, G.H.; BORKET, C.M.; LANTMANN, A.F.; MEYER, M.C.; MONDARINO, J.M.G. e OLIVEIRA, M.C.N. **Molibdênio e Cobalto na cyltura da soja**. Londrina: EMBRAPA – CNPSo, 1997. 18p (EMBRAPA – CNPSo. Circular Técnica, 16).

VIEIRA, C. Adubação mineral e calagem. In: VIEIRA, C.; PAULA JR., T.J. de; BORÉM, A. (eds). **Feijão:** aspectos gerais e cultura no Estado de Minas. Viçosa, UFV. P. 123-152, 1998.

Área: Sementes e Armazenamento.