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AbstrAct. Computational methods for predicting protein-protein 
interaction sites based on structural data are characterized by an accura-
cy between 70 and 80%. Some experimental studies indicate that only a 
fraction of the residues, forming clusters in the center of the interaction 
site, are energetically important for binding. In addition, the analysis of 
amino acid composition has shown that residues located in the center 
of the interaction site can be better discriminated from the residues in 
other parts of the protein surface. In the present study, we implement 
a simple method to predict interaction site residues exploiting this fact 
and show that it achieves a very competitive performance compared 
to other methods using the same dataset and criteria for performance 
evaluation (success rate of 82.1%).
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IntroductIon

Motivation

Protein-protein interactions are important for many biological processes, playing a 
key role in living cells. Information about them improves our understanding about these pro-
cesses and may support the development of new technologies, for instance, knowledge about 
a disease process and the development of a corresponding new therapeutic approach. This 
information encompasses not only the identification of the interactions among proteins, but 
also the molecular recognition process that underlies them.

However, even considering only a fraction of the whole proteome of an organism, the 
number of protein-protein interactions involved is so high that experimental methods to find 
and analyze them all are impractical. In this context, there is a need for computational methods 
for predicting different aspects of protein-protein interactions. 

In this paper, we consider the particular problem of the prediction of protein-protein 
interaction sites (or interface regions) from a three-dimensional structure. In this case, informa-
tion about interactions at the atomic level, obtained from experimental methods such as x-ray 
crystallography and nuclear magnetic resonance spectroscopy, is used to predict interaction 
sites for proteins where there are no data revealing the structural details about how a protein 
interacts with its partner protein. Such a computational method could be used to identify po-
tential interaction sites for both experimental verification and docking algorithms as well as to 
assist in the identification of potential function for the increasing number of protein structures 
having unknown function deposited in the Protein Data Bank - PDB (Berman et al., 2000).

In trying to reveal those properties, which discriminate between interaction sites and 
the rest of protein surface, different studies have analyzed chemical and structural properties 
(Chothia and Janin, 1975; Jones and Thornton, 1997a; Larsen et al., 1998; Madabushi et al., 
2002). In their study, Jones and Thornton (1997b) suggested that no isolated property is capable 
of predicting interaction sites. Therefore, different studies have attempted to predict interaction 
sites by using a combination of chemical and structural parameters (Jones and Thornton, 1997b; 
Neuvirth et al., 2004; Bradford and Westhead, 2005; Bradford et al., 2006). Others, including 
Zhou and Shan (2001), Fariselli et al. (2002), Koike and Takagi (2004), Chen and Zhou (2005),  
and Bordner and Abagyan (2005) have relied on evolutionary conservation information, using 
multiple sequence alignment  profile, sometimes in association with solvent accessible surface 
(SAS) and a residue conservation score, to identify residues belonging to interaction sites. All 
these methods are characterized by a level of accuracy between 70 and 80%.

On the other hand, Lo Conte et al. (1999), Chakrabarti and Janin (2002) and Bahadur 
et al. (2003) showed that the interaction site can be modeled as a core interface region sur-
rounded by a rim interface region. A residue in the interaction site is considered as belonging 
to the core interface region if it is accessible to solvent in the unbound state but has zero acces-
sible surface area in the complexed state. Otherwise, a residue in the interaction site that still 
has some accessible area in the complexed state is considered as belonging to the rim region. 
In addition, when comparing the amino acid compositions of these regions with those of the 
protein interior (hydrophobic core), it was found that the composition of the core interface 
region was closer to that of the protein interior while the composition of the rim region was 
closer to the protein surface composition. 
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In this study, we exploit this core and rim interaction site model, which suggests that 
residues in core interface region are more dissimilar to the rest of the protein surface than the 
rim interface region, in order to predict protein-protein interaction sites based on structural 
information. A predictor is proposed and using a previously validated dataset we show that the 
proposed method achieves a quite competitive level of accuracy compared to other methods 
using the same dataset and performance criteria.

General description of the proposed method for prediction of protein-protein 
interaction sites

The proposed method for predicting protein-protein interaction sites consists of a two-
stage process. In the first stage, the core interface residues are detected by a Bayesian classi-
fier, assuming that core interface residues can be more easily discriminated from the rest of 
the surface residues. A reject option is used such that residues close to the decision boundary 
are temporarialy assigned to the rejection class. The final decision about these residues is post-
poned until the next stage, when additional information is considered.

The idea in the second stage is to extend the set of interface residues detected in the 
first stage by using a less restrictive decision rule. Assuming that the residues detected in the 
first stage are clustered in spatial groups, the set of rejected residues in the first stage is re-
evaluated through an empiric process, which considers as restriction basically the distance of 
the candidate residue to the closest spatial group of core interface residues.

Residues having SAS greather than zero (SAS >0) are considered exposed at protein 
surface. Each of them is labeled as either interface or non-interface, according to the dif-
ference between its SAS value calculated in unbound and bound states (ΔSAS = SASunbound 
- SASbound). If ΔSAS is higher than zero, the residue is labeled as interface residue, otherwise 
as non-interface residue. In addition, interface residues having SASbound = 0 are also labeled 
as core interface residues, otherwise as rim interface residues. Notice that although our aim is 
to detect interface residues, the Bayesian classifier in the first stage is adjusted to discriminate 
only between core interface residues and non-interface residues.

A set of 28 chemical and structural properties (Tablel 1) is computed in order to com-
pose the feature vector used by the Bayesian classifier. It consists of a 56-dimensional vector, 
where 28 elements correspond to the set of properties computed on the residue and 28 to the 
average of the same set of properties computed on the residue neighborhood. All them but 
amino acid type are normalized per protein by calculating the corresponding z-score.

MAterIAl And Methods

Dataset 

For training and testing our prediction method, we used an already validated dataset 
(Bradford and Westhead, 2005). Its aim is to be representative of the diversity of types of protein-
protein interactions, including both obligatory and non-obligatory interactions. In an obligatory 
protein-protein interaction, the protomers are not found as stable structures on their own in vivo 
while in non-obligatory ones the protomers exist independently (Nooren and Thornton, 2003). 
Even though there are larger datasets built by automated processes (Keskin et al., 2004), the 
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former presents the advantage that each complex was manually checked in the literature for evi-
dence that it occurs in vivo (Bradford and Westhead, 2005). From the original 180 proteins, we 
removed eight for which we could not measure residue conservation, and therefore, the dataset we 
effectively used contained 172 non-redundant protein structures. It consisted of 37,758 solvent-
exposed residues, from which 8642 (22.8%) were labeled as interface residues while the other 
29,116 (77.2%) residues were labeled as non-interface residues. In addition, from the total inter-
face residues, 5103 were core interface residues and 3539 were rim interface residues.

Usually, each method in the literature presents results based on its own dataset, which 
makes it difficult to compare them. Our choice allowed us to not only save the time of build-
ing our own dataset but also, as a secondary benefit, to compare directly our results to those 
reported by Bradford and Westhead (2005) and Bradford et al. (2006). 

List of properties

Amino acid type   1 Aaindex 1
   2 Aaindex 2

Solvent accessibility   3 Solvent accessible surface (SAS)
   4 Relative SAS
   5 Molecular surface
   6 Residue depth - Cα
   7 Residue depth - average
   8 Half-sphere exposure - up
   9 Half-sphere exposure - down

Packing 10 Coordination number

Solvation energy 11 According to Eisenberg and McLachlan
 12 According to Wesson and Eisenberg 1
 13 According to Wesson and Eisenberg 2
 14 Solvation energy by area - Eisenberg and McLachlan
 15 Solvation energy by area - Wesson and Eisenberg 1
 16 Solvation energy by area - Wesson and Eisenberg 2

Geometry 17 Principal curvature - minor
 18 Principal curvature - major
 19 Gaussian curvature
 20 Mean curvature
 21 Shape index
 22 Curvedness
 23 Index of planarity

Electrostatic 24 Electrostatic potential
 25 Electrostatic solvation energy

Residue conservation 26 Relative entropy
 27 Information content
 28 Evolutionary pressure

table 1. List of properties measured over the protein surface.

Bayesian classifier with reject option

A Bayesian classifier relies on a probabilistic framework to assign labels to objects. 
Using a feature vector derived from a set of measurements over the object and a set of speci-
fied cost values involved in assigning a wrong label to an object, it tries to minimize the ex-
pected cost of classification (Duda et al., 2001).
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Given a set of K classes Ω = {ω1,..., ωk}, an n-dimensional feature vector, x, and a 
matrix, C(ωi, ωj), expressing the cost involved in assigning an object to class ωi when its true 
class is ωj, the expected cost of assigning an object to class ωi using x, R(ωi|x), is given by

(Equation 1)

where P(ωk|x) is the probability of assigning an object to class ωk using the feature vector x. 
Thus, the Bayes rule can be interpreted as: assign an object characterized by x to class ωi if 
R(ωi|x) ≤ R(ωj|x) for all i,j = 1,...,K.

In order to consider the reject option and use the same Bayes rule for classification, we 
may introduce a new class to Ω, namely the reject class ω0, such that the set of K + 1 classes 
is given by Ω* = {ω0,..., ωk}. Using the reject option, an object is assigned to class ωi, i ≠ 0, 
only if the associated expected cost is lower than a specific threshold. Otherwise, the object is 
assigned to the reject class, ω0.

The second stage

The second stage is aimed at extending the set of interface residues detected in the first 
stage by using a less restrictive decision rule. It is assumed that the residues detected in the first 
stage belong to the core interface region, and as a consequence, they cluster in spatial groups. 
This way, this stage consists of an empirical process, which re-evaluates those residues as-
signed to reject class in the first stage by considering as restriction basically their distances 
to the closest spatial group of core interface residues. The idea is to capture additional core 
interface residues as well as rim interface residues close to the core interface region.

To identify groups of core interface residues, we use the k-means algorithm (Everitt et 
al., 2001), considering the corresponding xyz coordinates with the cluster centroids randomly 
initialized. To figure out the optimal number of clusters, we use the average silhouette value as 
criteria. Previously, we had determined that the optimal number of clusters for most of the pro-
teins varies from 1 to 3. Therefore, we evaluated up to 3 clusters with the average silhouette val-
ue, considering the number of clusters corresponding to the minimal average silhouette value. 

When evaluating the rejected residues, a residue is considered close to a cluster if the dis-
tance between its xyz coordinates and the cluster centroid is less than a threshold. To specify this 
threshold, the interaction site area for the test protein is estimated from its total surface area by a 
linear regression using the training dataset. The threshold corresponds to 47% of the radius of the 
circular area corresponding to the estimated interaction site area. This quite conservative thresh-
old value is similar to the value used by Bradford and Westhead (2005), Bradford et al. (2006) and 
Jones and Thornton (1997b) to estimate patch size. Finally, to be accepted as an interface residue, 
a close residue needs to have at least two core residues among its neighbors.

Performance evaluation

The overall prediction performance is evaluated through the success rate, estimated 
by a leave-one(protein)-out cross-validation method. By this form of validation, we mean that 
when testing a protein, its residues are considered as testing data and those of all other proteins 
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are considered as training data. The success rate is defined as the percentage of successful pre-
dictions over the entire dataset. A prediction is defined as successful if at least one predicted 
cluster of residues shows coverage ≥20% and precision ≥50% (Bradford and Westhead, 2005), 
according to the following equations:

(Equation 2)

where TP corresponds to the number of interface residues correctly classified, FN corresponds 
to the number of interface residues incorrectly classified and FP corresponds to the number of 
non-interface residues incorrectly classified. Using this criterion, our results can be directly 
compared to those reported by Bradford and Westhead (2005) and Bradford et al. (2006).

Since the random initialization of the centroids in k-means algorithm, used in the 
second stage, may introduce some variation in the prediction, we reported the average perfor-
mance after repeating the leave-one(protein)-out cross-validation process 10 times.

Implementation

All procedures concerning classification were implemented using the Matlab environ-
ment 7.0 (Mathworks, 2004), the pattern recognition toolbox PRTools (Duin et al., 2004) and 
the statistics toolbox for multivariate analysis.

For estimating the parameters of the Bayesian classifier in the first stage, a Gaussian 
distribution with a common covariance matrix was considered, such that we obtained a mini-
mum Mahalanobis distance classifier. For the cost matrix, the following values were consid-
ered: the cost of assigning a residue to its correct class is equal to zero, the cost of assigning 
a core interface residue to the non-interface class is equal to 2, the cost of assigning a non-
interface residue to the core interface class is equal to 3, and the cost of assigning a residue to 
the reject class is equal to 1. All these values were determined empirically.

The 56-dimensional feature vector used by the Bayesian classifier encompasses 28 
chemical and structural properties corresponding to the residue’s set of properties and 28 to 
the average of the same set of properties computed for its neighborhood, where the neighbor-
hood is formed by a set of residues (neighbors) obtained from the Alpha Shapes data structure 
(Liang et al., 1998), used to calculate SAS and molecular surface (MS).

The following 28 properties (see Table 1) were computed in order to form the 
feature vector:

To represent the 20 standard amino acid types, we used two indexes (Hagerty et al., • 
1999) derived from the Aaindex database (Kidera et al., 1985). These two indexes summarize a 
collection of more than 400 indexes describing each of the 20 standard amino acids. In particular, 
the two indexes that we used are strongly correlated to residue size and hydrophobicity on one 
hand and residue preference for being in a loop or strand on the other (Hagerty et al., 1999).

To compute SAS and MS, we used the “volbl” program, included in the package • 
Alpha Shapes software (Liang et al., 1998), considering a probe radius of 1.4 Å and the set 
of atom radii provided in the package. In order to avoid the possibility of discontinuity in the 
interaction site due to cavities introduced in the complex formation, as may happen when 
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arbitrary distance or ΔSAS threshold is used, the “outside fringe” option was used. In addi-
tion, relative SAS was calculated from the SAS by using the values of SAS for each residue in 
extended state (Ala-x-Ala), as reported by Ahmad et al. (2004).

To compute residue depth (Chakravarty and Varadarajan, 1999), half-sphere expo-• 
sure (HSE) (Hamelryck, 2005) and coordination number, we used the Bio.PDB Biopython 
toolkit (Hamelryck and Manderick, 2003). The residue depth associated with a residue is de-
fined as the average of the atom depth associated with each of its atoms, where atom depth is 
defined as the shortest distance between the atom and the MS. HSE is defined using a sphere 
(radius = 13 Å) with its center in the Cα atom position. Two half-spheres are defined by a plane 
orthogonal to the line connecting Cα and Cβ atoms, namely the side-chain half-sphere and the 
main-chain half-sphere. HSE is defined by two numbers, the number of Cα atoms inside the 
side-chain half-sphere, called HSE up (HSEu), and the number of Cα atoms inside the main-
chain half-sphere, called HSE down (HSEd). The packing parameter coordination number is 
computed as HSEu + HSEd.

Solvation energy per atom, in cal/mol • ˑ Å2, was computed by multiplying the atomic 
solvation parameter (ASP) (Eisenberg and McLachlan, 1986) and its respective SAS. Three 
different sets of ASPs were considered (Eisenberg and McLachlan, 1986; Wesson and Eisen-
berg, 1992). To calculate solvation energy per residue, additive contribution was assumed such 
that it was calculated by adding the solvation energy of the corresponding set of atoms. In ad-
dition, for each set of ASP considered, we calculated the solvation energy per area.

Principal, Gaussian and mean curvatures were calculated per surface atom using • 
an osculating quadric, as reported by McIvor and Valkenburg (1997), and considering the set 
of atoms in its neighborhood. From principal curvatures, we also computed the parameters 
curvedness and shape index, as proposed by Koenderink (1990). Finally, from the set of atoms 
in the neighborhood, we computed the index of planarity, defined as the reciprocal of the root 
mean square deviation of all atoms in the neighborhood relative to the least squares plane 
through them (Jones and Thornton, 1997a).

Electrostatic potential, in kT/e, and electrostatic contribution for the solvation ener-• 
gy, in kJ/mol, were computed by using the APBS software (Baker et al., 2001) with hydrogen 
atoms added to the protein structure by using the pdb2pqr.py software (Dolinsky et al., 2004). 
It was also used to calculate most of the parameters used to run APBS, including the grid size 
optimized for each structure. A dielectric constant of 78.54 was used for the solvent and of 2.0 
for the protein interior, with 150 mM as ion strength. Electrostatic potential per residue was 
calculated as the average of the electrostatic potential value corresponding to the grid dots 
closest to each of its surface atoms. Similarly, electrostatic solvation energy per residue was 
obtained by adding the corresponding atomic electrostatic solvation energy given by APBS.

For measuring residue conservation degree, first we used the Blast software • 
(Altschul et al., 1997), with substitution matrix BLOSUM62 and expect value = 0.1, against 
Swissprot/Uniprot knowledge base release 9.6 (Apweiler et al., 2004) in order to find similar 
protein sequences. Next, sequences in the blast result were filtered according to homology 
derived secondary structure of protein (HSSP) threshold (Rost, 1999) to keep only homologue 
sequences. Eight protein sequences in the original dataset (Bradford and Westhead, 2005) did 
not survive this filtering process (at least 5 homologue sequences). Consequently, we consid-
ered only 172 proteins in our experiment. Afterward, we used the ClustalW software (Higgins 
et al., 1994), with substitution matrix series BLOSUM, gapopen = 3.0 and gapext = 0.1, using 
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the resulting set of homologue sequences to build an optimized multiple sequence alignment. 
Finally, three parameters reporting the degree of conservation for each residue were calcu-
lated, the information content, as implemented in the Bio.PDB Biopython toolkit, the relative 
entropy, as defined in HSSP, and evolutionary pressure, using the Rate4Site software (Pupko 
et al., 2002).

results And dIscussIon

The proposed method reports the predicted binding sites as a set of residues, grouped 
in 1, 2 or 3 clusters. A prediction is considered to be successful if at least one of the predicted 
clusters shows coverage ≥20% and precision ≥50%. Therefore, using a leave-one(protein)-
out cross-validation process to estimate the overall performance of the method, we found a 
success rate of 82.1%. It also displayed an associated standard deviation of ±0.25%, which 
indicates a very robust result. 

In addition, by ranking the predicted clusters according to the number of core in-
terface residues detected in the first phase, we found that 67.5% of the successful instances, 
correspond to the top-ranked cluster. On the other hand, only 4.2% of the successful instances 
corresponded to the third-ranked cluster. That means that better-ranked clusters show a higher 
probability of corresponding to a successful prediction. Table 2 presents detailed results, con-
sidering the different types of interactions represented in the dataset.

Interaction type No. of No. of Rank
  examples successes
 
     1  2 3
  
Non-obligatory          
Enzyme inhibitors   31   23 17   6 -
NEIT   29   24 16   6 2
Subtotal   60   47 33 12 2
Obligatory          
Homodimers   85   72 46 22 4
Heterodimers   27   23 17   6 -
Subtotal 112   95 63 28 4
Total 172 142 96 40 6

table 2. Detailed performance evaluation. 

Numbers correspond to one among the leave-one(protein)-out cross-validation. NEIT = non-enzyme-inhibitor-
transient. Predicted clusters of residues are ranked according to the number of predicted core interface residues 
they contain. The column Rank indicates the rank of the best-ranked cluster satisfying the condition of success of 
the prediction.

As expected by the composition of the dataset, the prediction of obligatory interaction sites 
showed a performance (84.8%) slightly better than that of non-obligatory interactions (78.3%).

Since our study is based on the dataset compiled by Bradford and Westhead (2005), it is 
convenient to discuss the similarities and differences between them in terms of methodology and re-
sults. Both methods rely on a set of structural and chemical parameters in order to predict interaction 
sites and report the result as a set of residues. Although there are differences in the set of parameters 
considered by each method, the main difference concerns the object described by the parameters. 
Bradford and Westhead (2005) follow a patch analysis method. Thus, they project all properties over 
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points distributed on the molecular surface, sample overlapping circular patches over this surface 
and calculate the average and standard deviation for all properties considering all surface points 
inside the patch. Afterward, the patches are classified as interaction sites or surface patches. 

Our method, on the other hand, considers the surface residues as the basic units for 
prediction. Parameters are measured to characterize the residue and the neighborhood where 
it is located. Also, in the second stage of our method, the set of detected residues are divided 
into groups not necessarily displaying a circular shape. Furthermore, using the residue as the 
unit for prediction, our method can take advantage of the differences among residue properties 
inside the interface. These differences are reported in the literature as the core interface resi-
dues and rim interface residues. It also opens the possibility of exploring differences reported 
in the literature as hot spot residues (Bogan and Thorn, 1998).

Concerning pattern recognition techniques, our strategy was to keep them as simple 
as possible. This way, a classic Bayesian classifier with reject option is used in the first stage 
of our method. On the other hand, despite the fact that Bradford and Westhead (2005) use a 
theoretically more powerful method, support vector machine (Cristianini and Shawe-Taylor, 
2000), the overall performance of their method (76%) was slightly lower than the one achieved 
by our method. Interestingly, in a later study Bradford et al. (2006) achieved a performance 
similar to ours (82%) using a simpler classifier, the naive Bayes classifier (Duda et al., 2001).

For illustrating the application of the method, two examples of prediction of protein-
protein interaction sites are presented. The first example considers a subunit of the homodimer 
3-hydroxy-3-methylglutaryl-CoA reductase (Figure 1), an enzyme involved in the biosynthesis of 
cholesterol in mammals (Tabernero et al., 1999). Two clusters are predicted for this example, one 
showing a coverage of 38.13% and precision of 79.1% and the other showing a coverage of 25.9% 
and a precision of 66.67%. Together, they cover most of the large interaction area of the molecule.

Figure 1. Observed (left) and predicted (right) interaction site for the homodimer 3-hydroxy-3-methylglutaryl-CoA 
reductase (PDB ID - 1qax:A).
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The second example is barstar (Figure 2), the natural inhibitor of the RNase family 
member barnase, an extracellular enzyme of Bacillus amyloliquefaciens (Sevcik et al., 1998). 
In this case, three clusters are predicted but only the second ranked one satisfies the conditions 
to be considered as successful. It shows a coverage of 26.32% and a precision of 100%. In 
addition, the first-ranked cluster shows a coverage of 15.78% and a precision of 50% while 
the third-ranked one shows a coverage of 15.78% and a precision of 100%. However, if con-
sidered together, they cover most of the inhibitor interaction area. This example shows that 
even when the conditions to be considered successful are not satisfied, a predicted cluster of 
interface residues can provide a good indication of the interaction site as long as it is analyzed 
together with the other predicted clusters.

Figure 2. Observed (left) and predicted (right) interaction site for barstar (PDB ID - 1ay7:B).

concludIng reMArks And Future reseArch

A method to predict protein-protein interaction sites, consisting of two stages, was 
proposed. In the first stage, core interface residues are detected by using a Bayesian classifier 
with reject option. In the second stage, these detected core interface residues are then used to 
classify residues assigned to the reject class in the first stage. Despite its simplicity, the pro-
posed method is successful in predicting interaction sites in 82.1% of the tested proteins, which 
is a very competitive performance (Bradford and Westhead, 2005; Bradford et al., 2006).

In the proposed method, the second stage only extends the region previously 
found. The interaction site is effectively identified by detecting core interface residues in 
the first stage. The results suggest that focusing only on the core interface residues could 
be a good strategy to identify interaction sites based on structural information. This is in 
agreement with experimental results reported in the literature showing that a large fraction 
of binding energy is associated with only a few key residues, called hot spots, which tend 
to form clusters in the center of the interaction site (Bogan and Thorn, 1998). In order 
to investigate similarities between the hot spot theory and our approach for classifica-
tion focusing on core interface residues, we are working at the moment on extending the 
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feature vector with structural properties which were reported in the literature as useful in 
characterizing hot spot residues.
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