

Ministério da Ministério da Agricultura, Pecuária e Tecnologia e Abastecimento

O SOLO E A PRODUÇÃO DE BIOENERGIA: PERSPECTIVAS E DESAFIOS 2 a 7 de agosto de 2009 Fortaleza-CE

Sociedade Brasileira de Ciência do Solo

Universidade Federal

XXXII Congresso Brasileiro de Ciência do Solo "Introdução da Agricultura de Precisão no Manejo de Irrigação utilizando Qualisolo Mobile"

AGOSTINHO BARONE RIBEIRO DA SILVA(1), LUÍS HENRIQUE BASSOI(2), CARLOS MANOEL PEDRO VAZ(3) & JOÃO DE MENDONÇA NAIME(4)

RESUMO - A agricultura de precisão (AP) baseada-se na variabilidade espacial do fatores de produção para estabelecer as condições ideais para o desenvolvimento de uma cultura, nos aspectos econômico e ambiental.

Na AP, a utilização de práticas e soluções de tecnologia de informação proporciona o aumento do nível de informação sobre as etapas de produção, o que permite tomar decisões com mais rapidez e segurança. Porém, o custo para a implantação de soluções de tecnologia de informação (TI) complexas e integradas pode se tornar muito elevado.

Soluções de TI baseadas na utilização de *Personal Digital Assistants* (PDAs) possibilitam que a AP seja aplicada em uma propriedade rural sem exigir grandes investimentos ou mudanças drásticas nos processos produtivos.

Com o objetivo de oferecer uma solução simples, eficaz e de baixo custo para o manejo de irrigação em fazendas, este trabalho apresenta uma ferramenta computacional para PDAs.

A ferramenta computacional em desenvolvimento, chamada Qualisolo Mobile, oferece, a partir de tensiometria e curva de retenção georreferenciada, o cálculo da quantidade de água disponível no solo e a lâmina d'água a ser aplicada; entre outras funcionalidades.

Palavras-Chave: (agricultura de precisão; manejo de irrigação; dispositivos móveis)

Introdução

Apoio financeiro: Embrana.

A agricultura de precisão surgiu da constante necessidade de aumento da eficiência dos processos de produção agrícolas e da preocupação com a preservação dos recursos naturais.

Para produzir com maior eficiência é necessário considerar a variabilidade espacial dos fatores de produção. Cada região da propriedade rural possui necessidades e características próprias que precisam ser identificadas, armazenadas e relacionadas para que bons resultados possam ser obtidos.

Entretanto, considerando-se propriedades rurais de médio e grande porte, as pessoas teriam dificuldade em trabalhar com tal quantidade de dados e informações. Sendo assim, a capacidade de armazenamento, processamento e organização de informações oferecida pela tecnologia de informação torna-se imprescindível.

Estudos feitos por NASCIMENTO (2009) [1] comprovaram a eficiência da utilização de uma planilha para auxiliar no controle de irrigação. A referida planilha auxilia a tomada de decisões quanto ao manejo de irrigação pois utiliza as leituras tensiométricas realizadas na área experimental para a determinação do potencial matricial, umidade do solo, água disponível no solo, umidade de reposição, lâmina bruta e tempo de irrigação Entretanto, para auxiliar ainda mais o produtor é necessário que ele possa fazer uso dessa planilha no momento em que está no campo por meio do Qualisolo Mobile (QM).

No controle de irrigação, a AP tem desempenhado um papel de alta relevância. Em algumas regiões, a irrigação concorre diretamente com a indústria e as cidades pelo uso da água. Desta forma, a utilização racional de um recurso natural tão valioso torna-se fundamental para que as culturas irrigadas possam continuar existindo em regiões como o Semi-Árido brasileiro.

A ferramenta que está sendo desenvolvida (Qualisolo Mobile) ajuda a promover o uso racional de água em uma propriedade por meio do controle do nível de umidade do solo. O QM é capaz de calcular o tempo de irrigação necessário para um determinado talhão atingir um nível desejado de umidade baseado em dados fornecidos sobre o sistema de irrigação daquele local, a curva de retenção de água daquele solo e o potencial mátrico deste último. A ferramenta oferece a opção de obter esses dados por georreferenciamento, através da ativação do módulo GPS do PDA e da comparação das coordenadas geográficas informadas pelo GPS com as coordenadas contidas no mapa da propriedade rural.

No desenvolvimento do programa está sendo utilizada a plataforma de software livre SuperWaba [2], sendo o programa em desenvolvimento inspirado no Qualisolo [3] e na planilha de auxílio ao manejo de irrigação [1]. A curva de retenção utilizada pelo QM em seus cálculos é descrita pelos parâmetros da equação de VAN GENUCHTEN

⁽¹⁾ Primeiro Autor é Graduando em Engenharia de Computação, UFSCar, agostinhobaroners@hotmail.com

⁽²⁾ Segundo Autor é Pesquisador da Embrapa Semi-Árido, BR 428, Km 152, Zona Rural - Caixa Postal 23, Petrolina-PE - CEP 56302-9700.

⁽³⁾ Terceiro Autor é Pesquisador da Embrapa Instrumentação Agropecuária, Rua 15 de Novembro, 1452, São Carlos-SP – CEP 13561-206 (4) Quarto Autor é Pesquisador da Embrapa Instrumentação Agropecuária, Rua 15 de Novembro, 1452, São Carlos-SP – CEP 13561-206

(1980) [4], obtidos pelo programa Qualisolo, interpolada aos 20 pontos da curva de retenção determinada pelo método de ARYA e PARIS (1981) [5], a partir dos dados do analisador granulométrico de solos [6]. previamente realizada e de potencial mátrico. A ferramenta também permite o mapeamento das regiões de uma propriedade rural utilizando as informações fornecidas pelo módulo GPS de um dispositivo móvel.

O mapeamento da propriedade rural pode ser feito também com o QM, que ainda oferece recursos para facilitar o uso prático como conversão entre unidades de medida de área, umidade e vazão.

Material e Métodos

A. O Qualisolo Mobile

O Qualisolo Mobile utiliza a equação de van Genuchten [4] para possibilitar a aferição da umidade a partir da leitura tensiométrica.

A equação utilizada é a seguinte:

$$\theta = \theta_{\rm r} + \frac{\theta_{\rm s} - \theta_{\rm r}}{\left[1 + \left|\alpha \phi_{\rm m}\right|^n\right]^m}$$

em que θ_r e θ_s são as umidades volumétricas residual e de saturação, respectivamente, expressas em m³m⁻³, φ_m é o potencial matricial (cm de água), e α , n e m, são constantes empíricas.

A equação acima é utilizada recebendo parâmetros que são lidos a partir de arquivos gerados pelo analisador granulométrico [6].

As razões que levaram à utilização dessa equação e detalhes sobre as operações matemáticas envolvidas no funcionamento do programa podem ser encontrados em trabalhos anteriores sobre o Qualisolo, uma vez que o presente trabalho é um continuação deste.

O software também permite que o usuário acione o receptor GPS para georreferenciar os dados coletados e, assim, possibilitar o cálculo do tempo de irrigação necessário para que uma determinada umidade seja atingida naquela região da propriedade rural.

B. Hardware Utilizado

O equipamento utilizado para testes durante o desenvolvimento do Qualisolo Mobile é um PDA Mio P350, que é equipado com um receptor de GPS SiRF Star III [7] de 20 canais padrão NMEA [8] e utiliza o sistema operacional Windows Mobile 5.0.

O receptor SiRF Star III é bastante preciso, oferecendo dados geográficos com no máximo 3m de erro [9], o que garante a consistência dos dados georreferenciados.

C. Software Utilizado

O QM utiliza SuperWaba [1], que é uma plataforma para desenvolvimento de aplicações para PDA (Personal Digital Assistants) e Smartphones.

Devido ao modo com que foi projetada, o desenvolvimento de programas em SuperWaba pode ser feito utilizando as ferramentas da plataforma Java [10]. Entretanto, essas plataformas não atendem às mesmas especificações.

D. Testes de usabilidade

Como já fora mencionado anteriormente, o QM encontra-se em desenvolvimento e será testado, em breve, na fazenda Sasaki, localizada no lote 180 do Perímetro Irrigado Senador Nilo Coelho, Núcleo 5 que apresenta um solo classificado como Neossolo Quartzarênico. Serão feitos testes utilizando o QM no dia-a-dia do trabalho na fazenda e comparando com a utilização paralela da planilha de auxílio no manejo de irrigação.

Os testes de usabilidade terão como objetivo comprovar no campo a corretude dos resultados obtidos com o uso do QM em comparação com a planilha, como já foi verificado no Laboratório de Eletrônica e Desenvolvimento da Embrapa Instrumentação Agropecuária e cujos resultados são apresentados na seção subsequente.

Além disso, os testes a serem realizados na Fazenda Sasaki terão a finalidade de demonstrar o ganho em agilidade no manejo de irrigação com a utilização do Qualisolo Mobile. Espera-se que, em relação à utilização da planilha para auxílio do manejo de irrigação, exista uma economia significativa de tempo, pois o produtor poderá saber in loco e quase instantaneamente qual a quantidade de água presente nos talhões e o tempo de irrigação necessário para que estes atinjam a umidade desejada; o que possibilita tomar decisões sobre o manejo de irrigação com maior rapidez do que utilizando a planilha eletrônica que só pode ser acessada utilizando o computador instalado na sede da fazenda.

Resultados

Este trabalho busca unificar e tornar portável a planilha de auxílio ao manejo de irrigação e as funções oferecidas pelo Qualisolo. Sendo assim, os testes iniciais constituíramse da comparação dos resultados apresentados pelo Qualisolo Mobile com os resultados obtidos na planilha tendo como entrada o mesmo conjunto de dados. Esses testes foram realizados no Laboratório de Eletrônica e Desenvolvimento da Embrapa Instrumentação Agropecuária, situado em São Carlos, no Estado de São Paulo. A Tabela 1 apresentada dados obtidos pela análise laboratorial do solo da Fazenda São Francisco Tropical Fruit, localizada no Município de Petrolina, no Estado de Pernambuco.

Os dados da Tabela 1 foram utilizados na planilha de manejo de irrigação para calcular a umidade do solo em função de seu potencial matricial e são Apresentados na Tabela 2.

Os mesmos dados presentes na Tabela 1 foram utilizados no Qualisolo Mobile, que produziu os resultados apresentados na Tabela 3.

O QM ainda está em desenvolvimento e, portanto, futuramente serão realizados os testes de interface e de usabilidade. Nas Figuras 1 e 2 são apresentadas telas da versão atual da interface gráfica do programa.

Discussão

Os resultados obtidos mostram que o Qualisolo Mobile consegue reproduzir os resultados obtidos com a planilha de manjeo de irrigação, são notadas diferenças mínimas que devem estar ligadas às restrições computacionais da plataforma SuperWaba.

Ainda são necessários testes de usabilidade para aperfeiçoar a interface do programa, bem como para identificar possíveis falhas ou funcionalidades que precisarão ser implementadas para auxiliar ainda mais o produtor no manejo de irrigação.

A versão móvel (Mobile) do Qualisolo teve sua interface totalmente redesenhada em relação à versão original. Isto porque as dimensões das telas dos PDAs são muito menores que as de um computador pessoal convencional, sendo assim, a solução natural é dividir as janelas originais em várias novas janela sequenciais de área menor.

Existem muitos trabalhos como [11] e [12] que tratam especificamente deste aspecto, que não tange ao ponto central do trabalho aqui apresentado.

Em PDAs com receptores GPS pouco precisos haveria a necessidade de utilizar algum método para aumentar a confiabilidades dos dados georreferenciados. Uma das possíveis soluções seria a utilização de *Kriging* [13] para interpolar os dados e permitir correções no posicionamento georreferenciado e em outros dados de interesse.

Conclusões

O Qualisolo Mobile pode ser utilizado para facilitar a introdução da agricultura de precisão no manejo de irrigação de culturas perenes. A ferramenta ainda precisa ser aperfeiçoada e poderá incorporar outras funções, como a opção para utilização em culturas que utilizem irrigação por gotejamento (atualmente é compatível apenas com sistemas que utilizem irrigação por micro-aspersão).

Agradecimentos

Os autores agradecem à Embrapa pelo apoio financeiro e institucional.

Referências

- NASCIMENTO, P. S.. Análise do uso da curva de retenção de água no solo determinada por diferentes métodos e planilha de manejo da irrigação. 2009. Dissertação (Mestrado em Ciências Agrárias) - Universidade Federal do Recôncavo da Bahia.
- [2] SUPERWABA Informações. Disponível em <h ttp://superwaba.com.br >. Acesso em: 20 jun. 2009
- QUALISOLO Informações. Disponível em http://www.cnpdia.embrapa.br/qualisolo.php Acesso em: 22 jun. 2009
- [4] VAN GENUCHTEN, M. Th., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J, 44, 892–898.
- [5] VAZ, C M P; IOSSI, M D; NAIME, J de M; MACEDO, A., Automated soil particle size analyzer based on gamma-ray attenuation, Computers and Electronics in Agriculture, Volume 31, Issue 3, May 2001, Pages 295-304, ISSN 0168-1699, DOI: 10.1016/S0168-1699(00)00188-5.
- [6] VAZ, C M P; IOSSI, M D; NAIME, J de M; MACEDO, A.; REICHERT, J M; REINERT, D J; COOPER, M. Validation of the Arya and Paris Water Retention Model for brazilian soils. Soil Science Society of America Journal, Estados Unidos, v. 69, n. 3, p. 77-583, 2005.
- [8] LANGLEY, R. B., NMEA 0183: A GPS Receiver Interface Standard, GPS World, 54–57, July 1995.
- [9] SIMON, R. and P. FRÖHLICH. "GeoPointing: Evaluating the Performance of an Orientation-Aware Location Based Service under Real-World Conditions." Proceedings, LBS2007, Hong Kong, 2007.
- [10] LINDHOLM, T. and YELLIN F., The Java Virtual Machine Reading, MA: Addison-Wesley, 1996.
- [11] MYERS, B.A.; BEIGL, M., "Handheld computing," Computer , vol.36, no.9, pp. 27-29, Sept. 2003
- [12] Suprateek Sarker , John D. Wells, Understanding mobile handheld device use and adoption, Communications of the ACM, v.46 n.12, December 2003
- [13] Oliver and Webster, 1990. M.A. Oliver and R. Webster, Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information Systems 4 3 (1990), pp. 313–332.

Tabela 1. Dados obtidos da análise do solo em laboratório*

Profundidade	alfa	m	n	teta r	teta s	teta i	s-r
1 (0-20 cm)	0,0067	0,5605	2,2752	0,036	0,206	0,132	0,17
2 (20-40 cm)	0,009	0,5593	2,269	0,045	0,208	0,137	0,163
3 (40-60 cm)	0,0116	0,3988	1,6634	0,021	0,223	0,143	0,202

^{*}Dados que serão utilizados em: teta (umidade) = teta r + (s-r/(1+((-1*alfa*pot.mat.)^n))^m)) - modelo de van Genuchten

Tabela 2. Resultados (umidades) obtidos utilizando a planilha de auxílio ao manejo de irrigação

Potencial Matricial	60 cm	100 cm	330 cm	600 cm	1000 cm	15000 cm
3 (40-60 cm)	0,191	0,166	0,101	0,076	0,060	0,028
2 (20-40 cm)	0,189	0,163	0,084	0,064	0,055	0,045
1 (0-20 cm)	0,195	0,177	0,093	0,064	0,051	0,036
Profundidade						

Tabela 3. Resultados (umidades) obtidos utilizando o Qualisolo Mobile

Potencial Matricial	60 cm	100 cm	330 cm	600 cm	1000 cm	15000 cm
3 (40-60 cm)	0,191	0,167	0,100	0,076	0,060	0,029
2 (20-40 cm)	0,190	0,163	0,084	0,064	0,055	0,045
1 (0-20 cm)	0,195	0,178	0,094	0,064	0,051	0,036
Profundidade						

Figura 1. Janela inicial do Qualisolo Mobile, resumindo as funcionalidades que o usuário pode utilizar dentro do programa.

Figura 2. Janela que possibilita o carregamento automático de informações a partir do posicionamento geográfico do PDA.