CARACTERIZAÇÃO DE TRÊS DIFERENTES AMBIENTES EDÁFICOS E SUA INFLUÊNCIA SOBRE O PESO DE FOLHAS DE Maytenus ilicifolia (ESPINHEIRA-SANTA), ESPÉCIE MEDICINAL NATIVA DA REGIÃO SUL DO BRASIL.

rv.321

Maria Izabel RADOMSKI⁽¹⁾, Marcos F. G. RACHWAL⁽²⁾ & Gustavo R. CURCIO(2)

(1) Estudante de Pós-Graduação, bolsista da CAPES, Departamento de Solos, UFPR, Cx. Postal 2959, 80001-050, Curitiba-PR, (2) Pesquisadores CNPF-EMBRAPA

Este trabalho é parte de um estudo sobre a influência de diferentes ambientes no desenvolvimento e na composição química de Maytenus ilicifolia (Espinheira-Santa), espécie medicinal nativa da região Sul do Brasil. Sua distribuição atual está restrita às áreas de mata ciliar, ou aos solos inaptos para a agricultura intensiva, ocupando geralmente os estratos inferiores das formações vegetais. Após a comprovação das suas propriedades medicinais, as coletas têm se intensificado através do extrativismo predatório, colocando em risco os germoplasmas existentes. Devido à escassez de informações sobre a auto-ecologia da espécie, as recomendações de manejo das áreas nativas ou de cultivos tornam-se limitadas. Neste sentido, foram caracterizados alguns ambientes de ocorrência natural da espinheira-santa, em área localizada no município da Lapa-PR (entre 25°42' e 25°45' S, e 49°34' e 49°36' L e 970 m a.n.m.), coberta originalmente pela Floresta Ombrófila Mista, selecionando-se uma toposequência com as seguintes classes de solo:

1) CAMBISSOLO GLEICO DISTRÓFICO EPIEUTRÓFICO A proeminente textura argilo-siltosa relevo plano posição de dique marginal.

Material de origem: Sedimentos aluviais do Holoceno

Cobertura vegetal atual: Mata ciliar - fase Capoeirão

2) CAMBISSOLO PROFUNDO ÁLICO A proeminente textura franco-argilosa relevo forte ondulado posição de encosta substrato migmatitos.

Situação: Terço inferior de encosta Cobertura vegetal atual: Capoeira

3) SOLO LITÓLICO A chernozêmico textura franco-argilosa cascalhenta fase pedregosa relevo forte ondulado contato lítico substrato migmatitos.

Situação: Terço médio, em colo de encosta com inflexão

Cobertura vegetal atual: Capoeirão

Os resultados das análises químicas e físicas estão nos Quadros 1 e 2:

Quadro 1. Resultados da análise química dos solos estudados na toposequência.

	Profundidade	pH	Al+3	Ca ⁺²	Mg ⁺²	K ⁺	P	C	V	Fe	Mn	Cu	Zn
Amostra	cm	CaCl		meq	/100g		mg/kg	g	/100g-		-mg/	kg	
Cambissolo	0-20	4,7	0,2	7,4	4,2	0,28	8	4,4	54,7	87,2	327	2	17
gleico	30-50	4,4	2,1	4,3	2,8	0,16	2	1,0	45,3	110	117,3	3	3
Cambissolo	0-20	3,9	2,8	0,5	1,1	0,19	4	2,6	14,4	117	33,7	2	2
profundo	30-50	4,0	2,7	0,4	0,3	0,08	1	1,2	9,3	68,3	8,7	2	1
Solo Litólico	0-15	5,2	0	10,4	2,3	0,44	7	8	60,0	16,3	439	0,6	31

Quadro 2. Resultados da análise física dos solos estudados na toposequência.

Amostra	Profundidade (cm)	% Argila	% Areia	%Silte
Cambissolo	0-20	45	8	47
gleico	30-50	42	10	48
Cambissolo	0-20	39	37	24
profundo	30-50	38	37	25
Solo Litólico	0-15	25	41	34

Sobre cada solo foram demarcadas três parcelas, coletando-se ao acaso ramos finos com folhas, simulando a forma de colheita dos coletores da região. Após limpeza e secagem do material, foram separadas ao acaso 100 folhas representativas de cada parcela, obtendo-se uma quantidade padrão de folhas secas, para comparação de seu peso entre os solos.

Observando-se os valores obtidos no Quadro 3, verifica-se que a espinheira-santa aparentemente não respondeu à fertilidade do solo, considerando que o menor valor do peso de 100 folhas foi obtido justamente no solo com maior disponibilidade de bases (Quadro 1). Em se tratando de um sítio onde o grau das limitações é bastante acentuado, principalmente no que se refere à disponibilidade de água e profundidade do solo para o desenvolvimento das raízes, presume-se que fatores físicos estejam contribuindo para o baixo peso foliar da espécie.

Quadro 3. Peso de 100 folhas secas de Maytenus ilicifolia

Amostra	Peso de 100 folhas secas (g)*
Solo Litólico	15,3 a
Cambissolo gleico	19,5 ab
Cambissolo profundo	21,9 b

^{*} Médias seguidas pela mesma letra não diferem estatísticamente pelo teste de Tukey ao nível de 5% de probabilidade.

Os valores apresentados no Quadro 4, demonstram correlações negativas entre o P100 e elementos essenciais como K e Ca, e correlações positivas com elementos geralmente exigidos em pequenas quantidades, como o Fe e o Cu. No caso deste dois elementos, deve-se considerar inclusive que as condições para sua absorção são limitadas pelo pH dos solos, e, principalmente, pelo alto teor de carbono encontrado.

Quadro 4. Coeficientes de correlação (r) e de determinação (r²) entre o peso de 100 folhas secas (P100) de *Maytenus ilicifolia* e os teores de K, Ca, Fe, Cu, e Al dos solos.

Relação	Coeficiente de correlação (r)	Coeficiente de determinação (r²)
P100 x K	-0,77	0,60
P100 x Ca	-0,63	0,41
P100 x Fe	0,81	0,67
P100 x Cu	0,74	0,54
P100 x Al	0,68	0,46

As condições analisadas neste trabalho são bastante particulares, no entanto permitem concluir que o fator fertilidade não pode ser isolado de outras características do ambiente quando se trata da produção de massa seca foliar da espinheira-santa. Neste caso, sugere-se a condução de estudos mais específicos, relacionando aspectos nutricionais e fisiológicos da espécie com diferentes ambientes edafo-climáticos.