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Abstract

This paper presents a novel model for combining
projection and image filtering in computerized
tomography. First, it is used an a priori one-
dimensional projection filtering, through an Extended
Kalman Fi/ter with Joint Estimation. Then, the
reconstructed images, obtained filtered backprojection
algorithms (including the use of Hamming windows),
are filtered using the two-dimensional DWT and
wavelet thresholding, a non-linear technique.
Experiments considering only one filtering stage (a
priori l-D filtering or 2-D DWT imagefiltering) show
images with significant higher noise levels and the
combination showed great noise reduction. The
obtained results lead to the conclusion that the
proposed combining model is a valid and interesting
toolfor tomographic image analysis.

1. Introduction

Tomography consist in the action of light an object
in many proportional directions and then store a set of
obtained values that represents samples of projection.
Each stored data is the mean of several inherent
parameters of the beam light propagation path. The
projections can be proceeding from several sources,
like the X and y-rays, magnetic resonance or ultra-
sound. Based on the emitted intensity by the x-ray
source and the captured intensity by the receptor
located on the other extrernity, the attenuation weight
of the studied sample can be measured. This is a
crucial data for the reconstruction process, making
possible to hold a map of linear attenuation
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coefficients from the transversal plan of the object.
This map is represented through pixels whose values
are given by the CT numbers (computerized
tomography). This numbers are normalized based on
the water attenuation coefficient and defined by:

where fl is the attenuation coefficient of the analyzed
body. With this number, it's possible to obtain an
attenuation coefficient map, which allows a detailed
analysis of the studied body. Using a reconstruction
algorithm, it's possible to translate the coefficient
attenuation map into a pixe1 representation and
visua1ize the tomography as an image.
The reconstructive x-rays tomography had its first
indicatives on the studies of Takahashi, whose study
aimed to elirninate the undesirable plans, putting the x-
ray source and the film on the same plan [22].
Oldendorf, in 1961, developed a rustical instrument to
obtain images through the transmission of y rays [20].
Later on, researchers as Hounsfield [8] and his team
from EM! Corporation developed the first
computerized tomographic scanner, commercially
viable, dedicated to medical applications, and Cormack
[2] formulated a coefficient matrix to sectional cuts,
which could be obtained by the transrnission of x-rays
in many angles through a body.

1.1. CT and Soil Physics

Evaluating the evolution that has been occurring in
the soil physics area, it is possible to notice the
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increasing interest of the scientific community to the
development and application of non-invasive
techniques for the study of soil characteristics.
Amongst the used techniques, the x-ray computerized
tomography excels in relation to others techniques, as
gravimetrical and neutron probe [23], due to its
precision in the extraction of physical attributes, as
density and humidity [1, 3]. The main advantage
offered by the computerized tomography is the
possibility to use, after the reconstruction, image
processing tools to assist the inquiry of the physical
phenomena that occur in the soil, such as water and
solute movement, formation of pores, textures and the
distribution of roots. To evaluate these characteristics,
a set of dedicated tomographic scanners was designed
for application in soil physics in the last 20 years by
the researchers of Embrapa Agricultural
Instrumentation [4, 5, 12, 13, 18, 19]. Allied to the
improvement of agricu1tura1tomographic scanners, the
development of filtering techniques carne (surgiu) to
improve the precision of the images, resulted from
reconstruction algorithms, beyond the development of
computational tools to assist the users in the
information extraction [16, 17].

1.2. Noise

The term noise in tomographic images refers to a
variation of the attenuation coefficients about the mean
value when an image is obtained from a uniform object
[26]. The image noise can be based on the standard
deviation calculation and also on the power spectrum
of the Wiener filter, which is visualized as a spatial
frequency function, allowing the observation of the
intensity and noise nature of the system, influencing
the obtained image. The main source of noise in the
Te images is the quantum mottle, defined as the
statistical spatia1and temporal variation on the photon
number of the absorbed by the detector. Normally,
reconstruction algorithms uses smooth filter to
rninimize the visual effect of this noise, together with
some lost of spatial resolution. The electronic noise
can have its origin in non-ideal electronic devices,
such as non-pure resistors, non-ideal contact terminals,
Joule effect and externa1 interferences, independent
from the signal (mechanical causes).

1.3. Objective

This study presents as objective, the application of
an a priori filtering, using the Extended Kalman Filter
with Joint Estimation and a non-linear bidimensional
filter with the Wavelet Transform, applied over
tomographic images of soil physics. The methods are

described, implemented and combined m a novel
model, for their results analysis.

2. Methodology

To obtain the data adopted in the experiments
along this study, an X and y ray tomographic scanner,
from Embrapa Agricultural Instrumentation was used,
making possible the composition of coefficient
attenuation map with spatial reso1ution above 1mm
[12, 13]. Hence, with the obtained projections, an
Extended Kalman filtering with joint estimation was
used, performing an a Priori filtering for noise
reduction, based on predictions. The section 2.1 and
2.2 describe this process in details.

Later, the same l-D projections used for the
Kalman filtering are reconstructed using a Filtered
Back:Projectionalgorithm with and without Hamming
Windows usage, producing filtered 2-D images. Thus,
independent of the Kalman process, a non-linear
filtering algorithm with Wavelet Transform was used.
Taking use of the Haar basis (two coefficients), the
algorithm divides the image into quadrants and then
uses low-pass and high-pass functions, smoothing the
image and preserving details and edges. The sections
2.4 and 2.5 describe these events.

As last approach, the two filtering methods are
combined, making a novel model of tomographic
image denoising. Following the same methodology as
the independent approaches described in sections 2.2,
2.3, 2.4 and 2.5, the two methods are applied in
sequence into the I-D and 2-D data. The Figure 1
shows the schematic diagram of the proposed
combining filtering model.

Projections B• t
Kalman Wavelets
Filtering Filtering

• t
Filtered

Backprojection
Reconstruction

Figure 1. Schematic diagram of the combining
filtering model
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2.1. A Priori Projection Filtering

An a priori filtering allows projection noise
separation before the tomographic projection
reconstruction, with the objective of obtaining a best
image quality. The tomographic projection is a discrete
signal with its values based on the measurement of a
photon, which crosses the soil samples e arrives at the
receiver/counter. These samples are obtained with a
constant energy in a deterrnined time. The number of
samples is dependent directly of the linear and angular
steps, making a set of digital signals, elirninating the
need of analogical-digital encoders usage. A digital
filter characterizes itself by using one or a set of
equations to treat digital signals, allowing the use of
adapta tive techniques, according to the signal, and
other greater order filters [7].

2.2. Kalman Filter

Given a system with two equations, a process and
a system equation (2, 3), where only the output can be
observed, the discrete Kalman possess a way to
estimate a process using feedbacks [25][11].

Xk = FXk_1 +BUk_1 +nk_1

Zk =Hxk +vk

This filter estimates the process states in the time
and, then, gets (noisy) measurements in a feedback.
Then, the equations can be divided in two moments:
time (4,5) and measurements update equations (6, 7,
8). The time update equations are responsible for the
current estimation and error covariance of forward
projections (in the time) to obtain the a priori
estimation of the next time step. The measurement and
correction update equations are responsible for
feedback - in example, the incorporation of a new by
measurement in a priori estimation to obtain an a
posteriori estimation. The time update equations can
be treated as prediction equations while the
measurement equations can be treated as correction
equations. Thus, the estimation algorithm joins a
predictor-corrector algorithm to solve numerical
problems as illustrates the Figure 2. It is possible to
note that these equations project the time and
covariance estimations through time in k-l step at k
step.

K = P- HT (HP- HT +R)-l (4)k k k

Xk =x; +Kk(Zk -Hx;)

~ = (I - KkH)~-

Measurement update

s, = P; HT (HP; HT + R)-l
Xk = xi; + Kk(Zk - Hx;;)

Pie = (l - K:cH)P;

Time updatex; = AXk_1 + BUI(

P;; = APIe_1Ar + Q

Figure 2. Discrete Kalman filter algorithm

x; = AXk_1 +BUk
P,,- = AP,,_IAT +Q

(7)

(8)

(2)

(3)

The first task in measurement update is to compute
the Kalman gain (K k)' The next step is to update the

measurement process and obtain Z k' generating an a

posteriori estimated state (7). The final step is to
obtain an error estimation covariance (8).
However, the process equation for tomography
projections is affected for other non-Gaussian noises,
as Poisson. Thus, the use of a filter for non-linear
systems became itself necessary.

2.2.1. Extended Kalman Filter

A solution for non-linear systems is the extended
Kalman filter [10]. Analyzing the Kalman filter
prediction function is possible to observe that the filter
behaves in linear formo The use of non-linear function
can obtain an optimal prediction for next states,
characterizing the extended Kalman filter. This
algorithm applies the Kalman filter for non-linear
system, linearizing all non-linear models and then the
discrete filter equation can be applied. The non-linear
system can be written in the form:

Xk = !(Xk_1, Uk-1' nk-1)

Zk = h(xk, vk)

(9)

(10)

(5)

(6)

The algorithm can be adapted to solve non linear
problems, as illustrates Figure 3. For the variance
propagation, the Jacobians states or the Hessians
matrices of the transition and observation functions
must be known.
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Measurement update
Time update

Xk = f(Xk-1' Uk-l' O)
P;; = APk_1AT +Q

Kk = P;HT(HP;HT +R)-l
Xk = xi; + Kk[Zk - H (x; ,O)]

Pk = (1- KkH)P;

Figure 3. Extended Kalman Filter

2.2.2. Joint Estimation

The main problem is when the states and
parameters functions must be identified. The prediction
equations are described as:

Xk = !(xk_l'nk_l)
Zk = h(xk, vk)

(11)

(12)

The parameters estimation involves the non linear
mapping determination as:

(13)

where xk is the input, Wk is the weight and Yk is the

output, while G is parameterized by vector Wk• The

non linear mapping can be made by an artificial neural
network, where W is the weight. The leaming process
corresponds to the W parameters estimation. The
training can be made with the samples pairs, which
consists in a know input and a desire output {xk , dk }.

The machine leaming errors are defined by equation
(14). The learning objective is to rninimize the
expected squared error:

(14)

Using a model for neural network training, the
extended Kalman filter can be used for parameter
estimation, writing a new state-spatial representation
[21]:

Wk = Wk_1 +vk
Yk = G(xk, wk)+ek

(15)

(16)

where the w parameter corresponds to a stationary
process with a identity state transition matrix, which
was govemed by process noise v (the variance chose
determines the filtering perforrnance). The output y

corresponds of a non-linear observation of w. The
extended Kalman filter can be applied directly, as a
second order technique for parameters correction.
The problem in question consists in work on no
observed input x and require an union between states
and parameters, needed to consider a dual estimation
problem, considering the non-linear discrete-temporal
system dynamic:

Xk = !(Xk_pWk,nk_l)

Zk = h(xk, vk)

(17)

(18)

where both the system state Xk and the parameter Wk,

for the dynarnic system, must be estimated from noisy
signal Z k . The dynarnic system can be understood as a

neural network, where W is the set of weights. Thus,
applying these equations in the extended Kalman filter,
it has a new function for estimation and observation
[14]. A filter's simplified forrn often is used by the
joint estimation, where there is a possibility of
estimation from Hidden Markov Chains, where the
neural network weights are unobserved e can be
trained by Kalman filter itself. The new equations can
be written as:

(19)

(20)

The linearization matrix can be defined by the
jacobian's functionfand the function h, as observation
matrix occulting the weights. The neural network used
in this work was a perceptron multilayer with 1-10-1
neurons with a sigmoidal and linear transfer functions.

2.3. Two-Dimensional Reconstruction

The reconstruction algorithm based on the
backprojection of the tomographic projections has its
base on both the Fourier sections theorem and Radon
transformo This theory established that the Fourier
transforrn ofthe projection ofan image g(x,y) taking
the angle B, is equivalent to a piece of the two-
dimensional transforrnation ofg(x,y). In other words,
the Fourier transforrn of ?o(t) supplies the values of

G(ú\, ál2) over the line BB' as illustrated in Figure 4.

A way to facilitate the visualization of filtered
backprojected reconstruction is to separate them in two

222

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 13:30 Irom IEEE Xplore. Restrictions apply.



different equations. The first is to filter the projection
data for each angle B , as follows:

Qe(t) = [Se(úJ)lmlejlll/dúJ (21)

where SeCm) represents the Fourier transform of the

convoluted projections with a filter in a frequency
domain. After, the filtered projections are back
projected to obtain an object function, given by:

g(x,y) = rQe(xcosB+ ysenB)dB (22)

where each component represents a pixel of coordinate
(x,y) in the reconstructed image g(x,y). In a
distinguishing manner, the discrete filtered
backprojection is represented by the (21):

A 7r K
g(x,y) =- LQe(xcosB; + ysenB;) (23)

K ;~l

where K angles B; are the discrete values of () for each

Pu (t) known.

~
B'

frequence domam

B

Figure 4. A schematic diagram for the Section
Fourier Theorem

2.4. Two-Dimensional Filtering

The motivation for the inclusion of a two-
dimensional filtering stage is the noise amplification
caused by the filtered backprojection reconstruction
technique, since the I-D tomographic projections are
filtered by a high pass filter, known as the Ram-Lak
filter (a ramp filter). The presence of this filter is
justified by the mathematical derivation of the filtered
backprojection method. Thus, even these smooth I-D
projections, possibly with small amounts of noise, can
generate noisy reconstructed images. Hence, we
propose the use of the 2-D Discrete Wavelet
Transform (DWT) in computerized tomography (CT)
image filtering.

2.5. Wavelet Transform

One of the main advantages of the two-
dimensional filtering, taking use of the Discrete
Wavelet Transform, is that it preserves important
image characteristics, by filtering smooth noisy areas,
without much interference on edges and objects details
presented on the image. This is possible by creating
several well defined frequency subbands. In a wavelet
decomposition, the image is decomposed in a set of
subbands, which represent spatial oriented details at
different scales [15]. The proposed methodology
consists in, given a CT reconstructed image, convert it
to the wavelet domain and perform noise reduction by
wavelet thresholding.

2.5.1. The 2-D Discrete Wavelet Transform

The 2-D Discrete Wavelet Transform is a
multiresolution representation of the original image
data [24]. The DWT/IDWT is implemented by a
Perfect Reconstruction Fi/ter Bank (PRFB). The
transformed signal is obtained by a sequence of low-
pass/high-pass filtering stages followed by decimation
operators, as shown in Figure 5.

Thus, the DWT can be completely characterized
in terms of the analysis filters, defined by h[], and its
QMF pair (Quadrature Mirror Filter) g[]. Similarly,
the IDWT is characterized in terms of the synthesis

filters h[] and g[]. Examples of wavelet filters are the
Haar and Daubechies family [6].

··8"'0' a3(n)

80
B G B 0 d3(n)

x(n) . B 0 d2(n)

B 0 dl(n)

Figure 5. DWT decomposition by a filter bank

The 2-D separable DWT, also known as Square
Wavelet Transform, is based on consecutive one-
dimensional operations on colurnns and rows of the
pixel matrix. The method first perforrns one step of the
l-D DWT on all rows, yielding a matrix where the left
side contains down-sampled low-pass (h filter)
coefficients of each row, and the right contains the
high-pass (g filter) coefficients, as indicates Figure 6
[9]. Next, we apply one step to all colurnns, resulting
in four types of coefficients:
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1. HH coefficients: obtained by high-pass
filtering in both directions (represent the diagonal
features).

2. HL coefficients: obtained by high-pass filtering
of the colurnns followed by low-pass filtering of the
rows (represent the horizontal structures).

3. LH coefficients: obtained by low-pass filtering
of the colurnns followed by high-pass filtering of the
rows (represent the vertical structures).

4. LL coefficients: obtained by low-pass filtering in
both directions and further processed on next levels
(represent the approximation image).

LH
LL LH,.............1--
HL HH

LL

L
HL HH

Figure 6. lIIustration of a 2-D Wavelet
Transform

2.5.2. Wavelet Thresholding

The analysis of a signal or image wavelet
coefficients suggests that small coefficients are
dominated by noise, while coefficients with a large
absolute value carry more signal information. Thus,
replacing the smallest, noisy coefficients by zero and
applying the Inverse Wavelet Transform (IDWT) may
lead to a reconstruction with the essential signal or
image characteristics with less noise. More precisely,
this idea is motivated by three assumptions [33]:

a.) The decorrelating property of a DWT creates a
sparse signal, where most coefficients are zero or close
to zero.
b.) Noise is spread out equally over all coefficients and
the important signal singularities are still
distinguishable from the noise coefficients.
c.) The noise levei is not too high, so that we can
recognize the signal wavelet coefficients.

In all experiments along this work, the wavelet
thresholding was implemented by the suppression of
the entire HH subband, since it concentrates the
smallest coefficients (high frequency information).

3. Results
To test and evaluate the results of the presented

model, the rehearsals were based in the study of two
different samples, both ones provided from soi!
physics area, taking use of the tomographic scanner
previously cited. In this work, all the experiments were
executed in a Dual Core workstation with 2GB of
memory. Both 2-D image reconstruction and a

posteriori filtering via wavelet thresholding stages
were implemented in C programming language. The
Kalman filtering stage was built using the MATLAB
environrnent.

First, it was adopted a sand sample acquired with 56
KeV under 10 seconds of exposure. Their results are
shown in Figure 7, divided into: just reconstructed,
Kalman filtering, Wavelet filtering and both. Later, the
filtering algorithms were applied in a latosoil sample
acquired with 58 KeV under 4 seconds of exposure, as
shown in Figure 8, following the same arrangement.

4. Conclusions
In this paper, it was discussed the use of

computerized tomography image filtering combining
an a priori l-D Kalman filtering and an a posteriori 2-
D wavelet filtering. The contribution is to show that
the combined approach can improve noise reduction in
the final image.

The obtained results demonstrated that only an
isolated filtering stage, by applying Hamming
windows for example, would not be sufficient to
completely noise removal, indicating that noise
reduction on the computerized tomography acquired
data can be further improved. A detailed interpretation
of the obtained results in terrns of noise removal,
through visual inspection of a specialist, may be
necessary to perform a correct analysis, since for each
image or application there is an optimum trade-off
between noise suppression and fine detail preservation.
Future works may include a deeper analysis of noise
removal effects on other type of images, such as
medical data and the use of more complex wavelet
thresholding techniques.
The original reconstructed images obtained only
through the Filtered Backprojection algorithm are
completely dominated by noise amplification. Even
after the application of Hamming windows still shows
significant levels of noise. The same behavior occurs
for the images reconstructed using only l-D
projections Kalman filtering and images filtered with
2-D Wavelet filtering.

Finally, is possible to conclude that the filtering
combination approach produced satisfactory noise
reduction in the reconstructed images, leading to very
different and interesting results. An important point,
however, is to note that even the smoother
reconstructed images preserve the relevant details, like
edges and small inner structures. Thus, the possibility
to combine a priori Kalman filtering, Hamming
windows and a posteriori 2-D Wavelet filtering
provided a very use fui and valid model for
computerized tomography image analysis.
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Figure 7. Filtering application over the sand
sample: (a) Reconstructed image with Filtered
Backprojection, (b) Reconstructed image using
Backprojection with Hamming Window, (c)
Extended Kalman filter, (d) Extended Kalman filer
with Hamming Window, (e) Wavelet filtering with
Haar basis, (1)Wavelet filtering with Haar basis
and Hamming Window, (g) Extended Kalman
filtering combined with Haar basis Wavelet, (h)
Extended Kalman filtering combined with Haar
basis Wavelet and Hamming Window.
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g
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d

f

h

Figure 8. Filtering application over the latosoil
sample: (a) Reconstructed image with Filtered
Backprojection, (b) Reconstructed image using
Backprojection with Hamming Window, (c)
Extended Kalman filter, (d) Extended Kalman filer
with Hamming Window, (e) Wavelet filtering with
Haar basis, (1)Wavelet filtering with Haar basis
and Hamming Window, (g) Extended Kalman
filtering combined with Haar basis Wavelet, (h)
Extended Kalman filtering combined with Haar
basis Wavelet and Hamming Window.
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