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Abstract
Complex forest structure and abundant tree species in the moist tropical regions often cause
difficulties in classifying vegetation classes with remotely sensed data. This paper explores
improvement in vegetation classification accuracies through a comparative study of different image
combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution
Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A
maximum likelihood classifier was used to classify the different image combinations into thematic
maps. This research indicated that data fusion based on HRG multispectral and panchromatic data
slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa
coefficient compared with the classification results based on original HRG or TM multispectral
images. A combination of HRG spectral signatures and two textural images improved the kappa
coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based
on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an
important role in improving vegetation classification accuracy. Overall, optical remote-sensing data
are still insufficient for accurate vegetation classifications in the Amazon basin.

Introduction
The moist tropical forests in the Amazon have special importance in the biodiversity and
climate of the world. High deforestation rates in the Amazon have been associated with the
expansion of highways and roads and the growth of Amazonian cattle ranching and soybean
farming (Skole et al., 1994; Laurance et al., 2004). Large areas of primary forests have been
converted into a mosaic of agricultural lands, pastures, and different successional formations
(Lucas et al., 2000; Roberts et al., 2002). The unprecedented tropical deforestation rates have
been regarded as an important factor in the climate change and environmental degradation at
regional and global scales (Skole et al., 1994). In order to better understand the consequences
caused by deforestation and landscape transformations in the region, an international research
program called Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), has been
carried out since 1997 (http://lba.cptec.inpe.br/lba/). Through this program, an important
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research topic is the mapping and monitoring of land-use/land-cover changes. A research team
from the USA (Indiana University and Indiana State University) and Brazil (Embrapa:
Brazilian Company of Farming Research and INPE: National Institute of Space Research) has
made great efforts to improve the accuracy of vegetation classifications, especially
successional vegetation classification (Mausel et al., 1993; Moran et al., 1994; Brondízio et
al., 1996; Lu, 2005a).

In the moist tropical regions, complex forest stand structure and abundant tree species often
cause difficulties in classifying vegetation classes using remotely sensed data. Most previous
research in the moist tropical regions provided only coarse vegetation classes, such as primary
forest and successional vegetation (Adams et al., 1995; Roberts et al., 2002). However, the
biomass densities of different successional stages vary considerably, ranging from less than 2
kg/m2 in initial successional vegetation to greater than 20 kg/m2 in advanced successional
vegetation (Lu, 2005b). The biomass densities of primary forests also vary considerably,
ranging from approximately 12 kg/m2 to greater than 50 kg/m2 due to different environments.
Obviously, a single class of primary forest or successional vegetation is not suitable for many
applications such as carbon estimation or land degradation assessments. Lu (2005a) has
provided a detailed summary of the previous efforts on vegetation classification using field
measurements and satellite images. A new approach based on the complexity of forest stand
structure was then developed for successional vegetation classification. But in practice, the
collection of a large number of field measurements, including vegetation stand attributes (e.g.,
height, diameter at breast height), is often very challenging, especially in the Brazilian Amazon
due to the difficult access to some remote areas and the intensive labor required in an
environment characterized by such high biodiversity. Thus, it is important to find a suitable
approach for improving vegetation classification performance based on the use of remote-
sensing features, such as spectral, spatial, and temporal characteristics to address these needs.
Without accurate land-cover classification, estimates of biomass and carbon are fraught with
degrees of error that make modeling subject to unacceptable uncertainties.

Time series of Landsat Thematic Mapper (TM) data have been extensively used for land-cover
or vegetation classification in the moist tropical regions (Mausel et al., 1993; Moran et al.,
1994; Adams et al., 1995; Foody et al., 1996; Brondízio et al., 1996; Roberts et al., 2002;
Vieira et al., 2003; Lu et al., 2004), but a fine vegetation classification based on the medium
spatial resolution images have proven difficult. Although higher spatial resolution data, such
as SPOT High Resolution Visible (HRV), and recently SPOT High Resolution Geometric
(HRG) instrument data are readily available, they are frequently used for urban-related studies
(Marceau et al., 1990; Gong et al., 1992; Shaban and Dikshit, 2002), and their roles for
improving vegetation classification, especially in the moist tropical regions have not been
examined in detail. Increased spatial resolution considerably reduces the mixed pixel problem,
and effective use of spatial information may improve detailed vegetation classification
accuracies. Two image processing techniques for making use of the higher spatial resolution
information are often used for improving land-cover classification performance. One approach
is based on data fusion through the integration of multispectral and high spatial resolution
information. Previous research has explored the data fusion approaches for improvement of
land-cover or vegetation classification (Welch and Ehlers, 1987; Yocky, 1996; Haack et al.,
2002). The second approach is to use the spatial information inherent in high spatial resolution
imagery. In particular, textures have proven useful in improving land-cover classification
accuracy (Marceau et al., 1990; Shaban and Dikshit, 2001; Chen et al., 2004). Many texture
measures have been developed since the 1970s (Haralick et al., 1973; Kashyap et al., 1982).
Of the many texture measures, the grey-level co-occurrence matrix (GLCM) texture measure
is frequently used.
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In the moist tropical regions, the classification of detailed vegetation classes with remotely
sensed data is still very difficult and the use of higher spatial resolution images in improving
vegetation classification accuracy is poorly understood. Hence, this paper aims to explore the
possibility of mapping fine vegetation classes through a comparative analysis of different
image combinations, such as the incorporation of the spectral features in the Landsat TM image
and the spatial features in the SPOT HRG image, as well as the combinations of textures and
spectral signatures. A maximum likelihood classifier was used to classify different image
combinations into thematic maps, followed by an accuracy assessment using reference data to
evaluate the classification performance and to identify suitable image processing procedures
for vegetation classification in the study area.

Study Area
The study area is located at Machadinho d’Oeste in northeastern Rondônia (Figure 1). A well-
defined dry season lasts from June to August. The annual average precipitation is 2,016 mm
and annual average temperature is 25.5° C (Rondônia, 1998). The terrain is undulating, ranging
from 100 to 450 m above sea level. Several soil types, mainly alfisols, oxisols, ultisols, and
alluvial soils, have been identified (Bognola and Soares, 1999). Although Machadinho d’Oeste
has a specific institutional and architectural design (Batistella et al., 2003), the study area is
representative of rural settlements in the Amazon and mimics the dynamics of deforestation
and land-use cycles found in other parts of the region, specifically in the state of Rondônia.

The settlement of Machadinho d’Oeste covers about 2,000 km2 and is adjacent to the borders
with the states of Amazonas and Mato Grosso. The major deforestation began in late-1980s.
Due to land-use intensification, most successional vegetations are in the initial and intermediate
stages, and limited areas are in the advanced stage. The majority of successional vegetation
has biomass density of less than 15 kg/m2, but most of the primary forest has biomass density
greater than 20 kg/m2 (Lu, 2005a). In deforested areas, pastures, perennial crops (e.g., coffee,
cocoa), agroforestry (e.g., cocoa associated with the rubber tree), and small fields of annual
crops are the most common land-uses. Because of the high temperature and precipitation, the
soil nutrients are lost rapidly and soil erosion can be severe, thus the land degrades rapidly if
not properly used, resulting in the land being left to fallow, setting the stage for the return of
successional vegetation. Settlers, rubber tappers, and loggers inhabit the area, transforming the
landscape through their economic activities and use of resources (Batistella, 2001). Farming
systems are mainly household-based, and little depends on larger group efforts. Rubber tappers
have rights over communal forest reserves where they practice extraction. Loggers play a major
role in providing access to remote areas within the settlement as they open trails through the
forest to reach valuable species.

Methods
Before implementing field data collection and image classification, a suitable vegetation
classification system was required. The selection of a vegetation classification scheme was
motivated by two factors: our previous experience in vegetation classification since the
mid-1990s (e.g., Mausel et al., 1993; Brondízio et al., 1996; Lu et al., 2004) and the requirement
of detailed vegetation information for our Amazonian research (Batistella and Moran, 2005).
Table 1 summarizes the major characteristics of the vegetation classification system used in
this study. Pastures were separated from other vegetation classes based on the percentage of
grass cover and the limited presence of seedlings and saplings. Successional vegetations were
assigned solely to the vegetation areas where grass cover was less than 25 percent, which
generally occurred in sites that had been abandoned for more than two years. The separation
of different successional stages was based on stand structural parameters: biomass and averages
of forest stand diameter and height. The primary forest was separated into upland dense forest,
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upland open forest, and flooding forest based on biomass density, moist conditions, and
topographic factors. The coffee and cocoa plantations and the association of these species with
other economic or successional species were grouped as an agroforestry/perennial agriculture
class.

Field Data Collection
Our first fieldwork in this study area was conducted during the dry season of 1999. Preliminary
image classification, based on a 1998 TM image and band composite printouts, indicated
candidate areas to be surveyed, and a flight over the areas provided visual insights about the
size, condition, and accessibility of each site (Batistella, 2001). The surveys were carried out
in areas with relatively homogeneous ecological conditions (e.g., topography, distance from
water, and land-use) and uniform physiognomic characteristics. After defining the area to be
surveyed (plot sample), three nested subplots (1 m2, 9 m2, and 100 m2) were randomly selected
to accurately represent the variability within the plot sample (Figure 2). A detailed description
of field data collection methods is found in Batistella’s dissertation (2001). During fieldwork,
stand parameters, such as total tree height and diameter at breast height, in 26 sample plots
covering different stages of successional vegetation and 14 sample plots covering primary
forests were measured in this study area. These measurements were analyzed for separation of
different successional stages and primary forest classes with the Canonical discriminant
analysis (Lu et al., 2003a).

The majority of fieldwork was conducted in August 2002 and August 2003. During fieldwork
in August 2002, an Ikonos color composite (acquired on 28 May 2001) was used to assist field
data collection for different successional stages, agroforestry/perennial agriculture, and
degraded and cultivated pastures. In August 2003, a SPOT HRG color composite was used to
assist collection of more ground data. Every sample plot was registered with a global
positioning system (GPS) device to allow further integration with spatial data in both
geographic information systems (GIS) and image processing systems. Some primary forest
sample plots were identified with visual interpretation of Ikonos or HRG color composite based
on our field experiences. The collected sample plots were then separated into two groups: one
group to be used for training samples in the maximum likelihood classification, and another
group to be used for assessing classification results.

Image Data Collection and Preprocessing
Two sensor data, Landsat-5 TM and SPOT5 HRG, were used in this research. The TM image
with 30-meter spatial resolution has six bands, covering three visible bands (blue, green, and
red), one near-infrared (NIR) band, and two shortwave-infrared (SWIR) bands. The HRG
image has five bands, covering one panchromatic band with 5-meter spatial resolution, two
visible (green and red) bands, one NIR band with 10-meter spatial resolution, and one SWIR
band with 20-meter spatial resolution. The TM image was acquired on 08 July 2003 with sun
elevation angle of 42.966° and sun azimuth angle of 45.719°. The HRG image was acquired
on 26 June 2003 with sun elevation angle of 51.065° and sun azimuth angle of 31.848°. Both
sensor data were acquired during the dry season with similar climate conditions. Ikonos data
(4-meter spatial resolution), acquired on 28 May 2001, were employed during the fieldwork
to assist the collection of sample plots for different vegetation classes.

Accurate image registration and atmospheric correction are two important aspects in an image
preprocessing procedure. Image-to-image registration between TM and HRG images was
conducted, using the HRG image as a reference image, so that both TM and HRG images have
the Universal Transverse Mercator coordinate system. A nearest-neighbor algorithm was used
to resample the TM images to 30-meter spatial resolution. A registration error of 0.1816 pixels
(x error: 0.1409, y error: 0.1145) for the TM image was obtained during image registration.
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Many approaches, ranging from simple relative calibration and dark-object subtraction to
complex model-based calibration approaches (e.g., the 6S radiative transfer code for
atmospheric correction), have been developed for radiometric and atmospheric normalization
or correction (Chavez, 1996; Vermote et al., 1997; Tokola et al., 1999; Song et al., 2001; Canty
et al., 2004). Because the dark-object subtraction approach was strictly an image-based
procedure, and corrected for the effects caused by sun zenith angle, solar radiance, and
atmospheric scattering (Chavez, 1996; Lu et al., 2002), this approach was used in this study
for atmospheric correction of TM and HRG images, based on the following equations:

(1)

(2)

(3)

In these equations, Lλ is the apparent at-satellite radiance for spectral band λ, DNλ is the digital
number for band λ, Aλ is the calibration factor for spectral band λ of the HRG image, and Rλ is
the calibrated reflectance. Lλ.haze is path radiance, Esunλ is exo-atmospheric solar irradiance,
D is the distance between Earth and the Sun, and θ is the Sun zenith angle. The path radiance
for each band was identified based on the analysis of water bodies and shades in the images.

Wavelet-merging Technique
Images from different sensors contain distinctive features. Integration of multi-sensor or multi-
resolution data takes advantage of the strengths of distinct image data for improvement of
visual interpretation and quantitative analysis. Solberg et al. (1996) broadly divided data fusion
methods into four categories: statistical, fuzzy logic, evidential reasoning, and neural network.
Pohl and Van Genderen (1998) provided a literature review on the methods of multi-sensor
data fusion. Of the many approaches, the intensity-hue-saturation (IHS) transform may be the
most frequently used method for improving visual display of multi-sensor data (Welch and
Ehlers, 1987). However, the IHS approach can only employ three image bands and the resultant
image may not be suitable for further quantitative analysis, such as classification. Principal
component analysis (PCA) is often used for data fusion because it can produce an output that
can better preserve the spectral integrity of the input dataset. In recent years, the wavelet-
merging technique has shown to be another effective approach to generate a better
improvement of spectral and spatial information contents (Li et al., 2002; Ulfarsson et al.,
2003). Hence, the wavelet-merging technique was used in this research to integrate TM or
HRG multispectral bands and the HRG panchromatic band.

The wavelet theory is similar to Fourier transform analysis, but the wavelet transform uses
short, discrete wavelets, instead of long continuous waves as in Fourier transforms. One key
step in wavelet transform is to select the mother wavelet. The input image is broken down into
successively smaller multiples of the mother wavelet. The derived wavelets have many
mathematically useful characteristics that make them preferable to simple sine or cosine
functions. Once the mother wavelet is defined, a family of multiples is created with
incrementally increasing frequency. Then, the image is decomposed by applying coefficients
to each of the waveforms. In theory, an image can be decomposed into high-frequency and
low-frequency components. The low-frequency image is the lower spatial resolution image
and the high-frequency image is the higher spatial resolution image containing the details of
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the image. In general, the high spatial resolution image is a single band, such as an HRG
panchromatic band in this study. Figure 3 illustrated the concept of data fusion with the discrete
wavelet transform based on multi-resolution images. In order to integrate the high spatial
information into the multispectral image, it is necessary to select one image from the
multispectral image to replace the low-frequency image from the wavelet transform. Different
transforms, such as IHS or PCA can be used to create a new image from the multispectral
image. In this research, PCA was used to convert the multi-spectral bands into a new dataset
and the first principal component (PC1) was used to replace the low-frequency image, because
PC1 contained most of the information. A detailed description of the wavelet-merging
technique is found in Lemeshewsky (1999) and the ERDAS Field Guide (ERDAS, 2003).
During wavelet-merging processing based on TM data, TM bands 1 and 7 were not used
because of the high correlations between TM-1 and two other visible bands and between TM
SWIR bands 5 and 7. Also, the wavelengths of HRG multispectral bands correspond to TM
bands 2 to 5.

Texture Analysis
Previous research has indicated that the grey-level co-occurrence matrix (GLCM) texture
measures are important in improving land-cover classification accuracies (Gong et al., 1992;
Shaban and Dikshit, 2001). However, for a specific study area, it is often difficult to identify
a suitable textural image because it varies with the characteristics of the landscape under
investigation, the texture measure selected, the size of the moving window, and the image band
(Franklin et al., 1996; Chen et al., 2004). The difficulty in identifying suitable textural images
and the computation cost for calculating textures limit extensive use of textures in image
classification, especially over a large area. In this research, eight texture measures (i.e., mean,
variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation) with
nine sizes of moving windows (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 15 × 15, 19 × 19, 25 × 25,
and 31 × 31) on the HRG panchromatic band were examined. Because not all textural images
are useful in improving vegetation classification performance, it is necessary to identify the
best textural images that can maximize the separation of vegetation classes. Therefore, the
textural images were rescaled to an 8-bit integer format (0 to 255). The texture feature for each
training sample plot was extracted, and separability was analyzed using a transformed
divergence (TD) algorithm (Mausel et al., 1993; Landgrebe, 2003). The textural images with
TD values greater than 1,900 were initially selected for further analysis. Pearson’s correlation
analysis was used to analyze the correlation coefficients for the initially selected textural
images. The textural images with high separability and low correlation coefficients were finally
selected. If two or more textural images were used, the following equation was used to identify
the best textural image combination:

(4)

where TDi is the transformed divergence value based on the training sample plots on the textural
image i, Rij is the correlation coefficient between two textural images i and j, and n is the
number of textural images.

Analysis of Image Classification Results
The potential images used for image classification included TM or HRG multispectral images,
the data-fused images based on TM (or HRG) multispectral and HRG panchromatic images,
the combinations of HRG multispectral and textural images (from one to four), and the
combinations of HRG multispectral and panchromatic data-fused images and textural images

Lu et al. Page 6

Photogramm Eng Remote Sensing. Author manuscript; available in PMC 2009 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(from one to four). The image classifications based on the extensive combinations attempted
to answer the following questions:

1. Comparing HRG and TM multispectral images, can the HRG image, with its higher
spatial resolution, improve vegetation classification performance?

2. Comparing data-fused images between TM multispectral and HRG panchromatic
images and between HRG multispectral and panchromatic images, which one can
provide better vegetation classification accuracy? Can the data-fused images improve
the vegetation classification accuracy comparing their original multispectral images?

3. Can incorporation of textural images as extra bands into multispectral images improve
vegetation classification performance? Can incorporation of textural images into
HRG multispectral-panchromatic data-fused images further improve vegetation
classification accuracy? How many textural images are suitable?

Before implementing image classification, all images, including multispectral and textural,
were rescaled to 8-bit integer format (0 to 255). Then non-vegetation types (e.g., water, urban
and residential area, and bare soils) were masked, based on the analysis of an unsupervised
classification (ISODATA) image on the HRG multispectral image. In the vegetated areas, a
classification system with nine vegetation types was adopted (see Table 1 for the characteristics
of each vegetation type). About 12 to 20 sample plots were selected for each class, with a
polygon size of 9 to 40 pixels being used for each plot depending on the homogeneity of the
vegetation type. A maximum likelihood classier was then used to classify each combined
image. The same training sample plots were used to implement image classification for each
image combination.

In order to evaluate the classification accuracy for each image combination, a common method
for accuracy assessment is through the use of an error matrix. Previous literature has provided
the meanings and calculation methods for overall accuracy, producer’s accuracy, user’s
accuracy, and kappa coefficient (Congalton, 1991; Smits et al., 1999; Foody, 2002). In this
study, a total of 306 test samples were used for accuracy assessment. Most of these test plots
were collected during fieldwork in 2002 and 2003. The HRG and Ikonos color composites
were also used to collect more test samples based on visual interpretation. The second author
has studied this area for more than a decade and collected extensive datasets through LBA and
Embrapa projects, which is important for the validation of the classification procedures. The
producer’s accuracy and user’s accuracy for each class, and overall accuracy and kappa
coefficient for each image combination were calculated based on the error matrix.

Results
Analysis of Textural Images

Different texture measures have various capabilities in separating vegetation classes. Different
sizes of the moving window on the same texture measure also affect this capability. Therefore,
there exists a best combination of texture measure and size of moving window suitable for the
separation of vegetation classes. Table 2 summarized the separability analysis results of 72 test
cases. It indicates that the size of the moving window is important in the separability of
vegetation classes. The best window size varies, depending on the use of texture measures. For
example, the best sizes for entropy and second-moment texture measures were 9 × 9 and 11 ×
11, respectively, but for dissimilarity and contrast texture measures, the best window sizes
were 15 × 15 and 25 × 25, respectively. In general, window sizes that were too small, such as
3 × 3 and 5 × 5, or too large, such as 31 × 31, produced poor separability of vegetation classes.
Some texture measures, such as entropy and second-moment texture measures, provided better
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separability of vegetation classes than others, such as variance and correlation texture
measures.

Visual analysis of the textural images indicated that some textural images provided very similar
textural information, implying that not all textural images were needed in vegetation
classification. Our analysis of the correlation coefficients between the textural images indicated
that the textural images from the same texture measure but different window sizes were strongly
correlated; for example, the coefficient between two textural images from entropy with 9 × 9
and 11 × 11 windows was as high as 0.97. On the other hand, some different texture measures
with similar window sizes were also strongly correlated, such as between entropy, dissimilarity,
and second moment because they highlighted the similar (or homogeneous) information. The
analysis of Best Texture Combination (BTC) helps identify the textural images with the best
capability in vegetation separation but less correlation each other. The identified four textural
images were from the entropy texture measure with a window size of 9 × 9, the second moment
with 11 × 11, dissimilarity with 15 × 15, and contrast with 25 × 25 (Figure 4). The selected
four textural images have a common feature: highlighting the linear features such as roads and
boundaries between land-covers. The selected textural images were then incorporated into
spectral features as extra bands to explore their roles in improving vegetation classification
performance.

Analysis of Image Classification Results
Higher spatial resolution images have an important role in improving successional vegetation
classification accuracy, while relatively lower spatial resolution images are helpful for the
primary forest classification (Table 3). For example, HRG images (e.g., HRG-MS and HRG-
Fusion) provided higher classification accuracies in SS1, SS2, and SS3 than TM images, but
TM images (e.g., TM-2-3-4-5 and TM-ALL) provided higher classification accuracies for the
upland dense forest and flooding forests. Higher spatial resolution in HRG multispectral images
reduced the mixed pixel problem, resulting in improved successional vegetation classification
accuracy, but higher spatial resolution also increased spectral variations, especially in primary
forests, because of their complex forest stand structure and canopy shadows, resulting in poor
classification accuracies. In this situation, relatively lower spatial resolution images such as
TM with 30-meter spatial resolution reduced the spectral variation within the primary forests,
thus produced better classification accuracy, but this spatial resolution image included mainly
mixed pixels for the successional vegetation.

Interesting to note in Table 3 is that the HRG multispectral and panchromatic data-fused images
slightly improved overall classification accuracy, but the TM multispectral and HRG
panchromatic data-fused images significantly reduced the overall classification accuracy (61.8
percent for HRG-Fusion versus 52.9 percent for TM-Fusion). The TM-Fusion approach
especially decreased the classification accuracies of SS2, SS3, DGP, AGF, and UOF. Although
the TM multispectral and HRG panchromatic data-fused image improved visual interpretation
effects, the large difference in spatial resolutions between TM and HRG panchromatic images
(30 m versus 5 m) exaggerated spectral variations within the same land-cover classes and
introduced noise in the fused images, thus reducing image classification performance. This
implies that direct use of the data-fused images without further image processing to remove
the noise is not suitable for vegetation classification.

Overall, the HRG-Fusion provided the best classification accuracies of 61.8 percent for nine
vegetation classes, a 3.1 percent increase in kappa coefficient compared with HRG-MS, and
4.6 percent increase compared with the TM-ALL approach. Comparing TM-2-3-4-5 and TM-
ALL images, although both have similar overall classification accuracy (approximately 58
percent), the TM-2-3-4-5 data provided slightly better classification accuracies for most of the
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vegetation classes than TM-ALL data, implying that the addition of more spectral bands with
high correlation coefficients to each other may decrease classification accuracy.

Incorporation of textural and multispectral images improved vegetation classification
performance (Table 4). For example, the combination of entropy texture image and HRG
multispectral image (MS-Txt1) improved the vegetation classification accuracies for all except
SS1. Overall classification accuracy and kappa coefficient were increased by 5.2 percent and
5.8 percent, respectively, compared with the results from the original HRG multispectral image.
The incorporation of textural images and HRG-Fusion images, as well as two textural and HRG
multispectral images (MS-Txt2) can further improve the classification accuracy. However, use
of more textural images (e.g., MS-Txt3, MS-Txt4, or Fusion-Txt3 and Fusion-Txt4) cannot
further improve classification accuracy because of the correlation between the images. Table
4 also indicates that use of textural images was especially helpful in improving primary forest
classification. This implies that textural images can reduce the spectral variations of primary
forests caused by complex forest stand structure and canopy shadows in the high spatial
resolution image.

Discussion
The complex biophysical environments in the moist tropical region may be the most important
factor resulting in the difficulty of vegetation classification. Based on the vegetation vertical
structure complexity (Lu, 2005a), a concept showing the relationships among the vegetation
types is illustrated in Figure 5. Degraded pastures can be regarded as a transition between
cultivated pastures and SS1, because some saplings and seedlings appeared in degraded
pastures indicating the degraded pastures may become SS1 after a couple years, if they are not
properly managed. Also, if no disturbance occurs, SS1 will progress to SS2 and then to SS3.
However, there are no clear boundaries between the adjacent stages that separate SS2 from
SS1 and SS3 because of the smooth transitions in their vegetation stand structures. Therefore,
classification of successional vegetation stages is often difficult, even on the ground. Another
difficulty is separating AGF from successional vegetations. The agroforestry/perennial
agriculture class can include a variety of vegetation types, from coffee, cocoa, or rubber tree
plantations to arrangements of many plants, including successional and economic species. This
class is often confused with different successional stages, especially SS2. Also, agroforestry/
perennial agriculture and different successional vegetation stages usually appeared in small
patches in the landscape (i.e., 0.5 to 3 ha). This implies that most of these vegetation types
appear on Landsat TM images as mixed pixels. This often results in difficulty in collecting
sufficient and suitable training and test samples for these vegetation classes. The trend toward
land-use intensification has reduced the extension of successional vegetation patches and
shortened the cycle of conversion of fallow areas into agricultural production. Thus, use of
subpixel information benefit these vegetation classification accuracies (Roberts et al., 2002;
Lu et al., 2003b). In this study area, lack of typical SS3 samples is another important factor
resulting in poor SS3 classification accuracy. The selected SS3 samples are mainly in early
stages of advanced secondary succession and often confused with old SS2 vegetation because
of their similar vegetation stand structure. The limitation in finding SS3 areas also created
difficulties for the selection of sufficient test sample plots for accuracy assessment. In this
situation, the use of expert rules based on the forest stand structure can significantly improve
the classification accuracies (Lu, 2005a).

Classification of primary forests into multiple classes is also a challenge because the similar
forest stand structures and the influence of canopy shadows which leads to data saturation in
optical remote-sensing data. However, the abundant moisture can reduce the reflectance values
of flooding forests. Poor soil conditions and the topographic effects of upland open forests on
steep slopes may produce different tree species composition and vegetation vigor compared to
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upland dense forests. Conversely, non-forest vegetations (e.g., successional vegetations,
agroforestry) are usually distributed in relatively flat areas with easy access. Topography and
moisture are not important factors in separating successional vegetation stages in this study
area.

The optical sensor data, such as Landsat TM and SPOT HRG that mainly capture canopy and
associated shadow information, create difficulties in vegetation classification. The shadow
problem often reduces vegetation reflectance, and the complex forest stand structure causes
data saturation making it difficult to classify forest and advanced successional vegetation
classes, even though their biomass densities may vary significantly (Lu, 2005b). Use of radar
data, especially the long wavelengths such as L- and P-bands, may improve the vegetation
classification because radar can penetrate the canopy to a certain depth to capture more
information under the canopy (Leckie, 1998; Santos et al., 2003). The integration of optical
sensor and radar data may provide new insights for vegetation classification in the moist
tropical regions.

This research has shown the importance of high spatial resolution images in improving
vegetation classification accuracies, especially the successional vegetation. High spatial
resolution images greatly reduce the mixed pixel problem because non-forest vegetation often
has small patch sizes on the ground. On the other hand, high spatial resolution images have
rich spatial information, but also show high spectral variation within the same land-cover class.
Effective use of spatial information and reduction of the impacts of spectral variation are critical
for improving overall classification performance. This study has indicated the importance of
textural images in improving vegetation classification accuracies. One critical step in a study
is to identify suitable textural images that can provide the best separability for the specified
classes. However, selection of suitable textural images is still a challenge, because textures
vary with the characteristics of the landscape under investigation and images used. In particular,
the selection of a suitable size of moving window is important for a textural image, but no
window size is perfect for all vegetation types because the field sizes of the vegetation types
vary greatly, i.e., from less than one hectare for some successional vegetation and agroforestry
to hundreds of hectares for some primary forests. Therefore, there are tradeoffs among moving
window size, spatial resolution of images, and the sizes of vegetation types on the ground. For
this study, the selection of window size is based on the overall separability of vegetation types,
but the best window size for extraction of textural images for the separation of non-forest
vegetation types and the separation of primary forest classes may vary because of their different
vegetation stand structures and patch sizes. A stratification of primary forests and non-forest
vegetation types may be necessary before the selection of suitable textural images. Two
approaches may be used to evaluate the textural images: qualitative assessment based on visual
interpretation to see whether the specified information was highlighted or not on the selected
textural image; and quantitative analysis, such as the calculation of separability of vegetation
classes based on training samples, as used in this paper. For the selection of a single textural
image, one can select the textural image with highest separability, but for the selection of two
or more textural images, the BTC approach developed in this paper provides an easy way to
identify the suitable combination of textural images that can be used for improving
classification performance.

Conclusions
High spatial resolution images benefit the classification of successional vegetation stages, and
relatively low spatial resolution is useful for primary forests. The incorporation of textural
images into an HRG multispectral image is an effective approach to improve vegetation
classification performance. The entropy or second-moment texture measure with a window
size of 9 × 9 or 11 × 11 pixels provided the best separability for vegetation classes. Overall,
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vegetation classification with optical sensor data in the moist tropical region remains difficult,
especially for the separation of different successional vegetation stages and the separation of
agroforestry from other non-forest vegetation types. More research is needed to incorporate
optical sensor and radar data to improve vegetation classification.
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Figure 1.
Location of the study area: Machadinho d’Oeste in the state of Rondônia, Brazil.
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Figure 2.
Strategy of field data collection for successional vegetation and primary forests.
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Figure 3.
Wavelet-merging approach based on multiple spatial resolution images (PCA and PC1
represent principal component analysis and the first principal component, DWT and IDWT
represent discrete wavelet transform and inverse discrete wavelet transform, HP and LP
represent high pass and low pass, and c and r represent column and row decimation)
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Figure 4.
Comparison of selected four textural images with corresponding window sizes based on the
SPOT HRG panchromatic image (part of the study area): (a) entropy texture measure with 9
× 9 window size, (b) dissimilarity texture measure with 15 × 15 window size, (c) second
moment texture measure with 11 × 11 window size, and (d) contrast texture measure with 25
× 25 window size.
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Figure 5.
A concept of vegetation stand structure complexity among different vegetation classes (CUP
and DGP represent cultivated and degraded pastures; SS1, SS2, and SS3 represent initial,
intermediate, and advanced successional vegetations; AGF represents agroforestry/perennial
agriculture; UOF, UDP, and FLF represent upland open forest, upland dense forest, and
flooding forest)
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Table 1
Characteristics of Vegetation Types

Vegetation Types Parameters Main Characteristics

Cultivated pasture (CUP) Grass > 75% Pastures managed to keep the dominance of grass species

Degraded pasture (DGP) Grass ranges from 25% to
75%

Limited seedlings and saplings appeared in the ground

Agroforestry/Perennial agriculture (AGF) Coffee, rubber, banana, cacao plantations or their
association with other economic or non-economic species

Initial succession (SS1) ASD: 2 to 5
ASH: 2 to 6
AGB: 0.5 to 5
Age: 1 to 5

Herbaceous plants, seedlings, and saplings together are
responsible for over 90 percent of total biomass, with a
vertical structure characterized by a full profile of saplings
and herbaceous plants. Saplings are the main structure
element and represent the majority of the aboveground
biomass.

Intermediate succession (SS2) ASD: 5 to 15
ASH: 6 to 12
AGB: 4 to 10
Age: 4 to 15

Saplings still account for most of the biomass in SS2.
Vegetation structure provides a mix of dense ground cover
of saplings and young trees with higher canopy than SS1
and small internal differences between canopy and
understory individuals. Stratification between canopy and
understory begins in SS2.

Advanced succession (SS3) ASD: 10 to 25
ASH: 9 to 17
AGB: 8 to 25
Age: 10 to 50

Stratification is obvious in SS3 with trees dominating the
canopy. In this stage, there is a major shift in structure that
differentiates understory from canopy individuals; that is,
the presence of saplings is less significant than that of
trees. One can find differences between the canopy and
understory in terms of height and density of species.

Upland dense forest (UDF) ASD: 17 to 30
ASH: 12 to 25
AGB: 20 to 50

In a typical primary forest, trees account for the majority
of the aboveground biomass, reaching over 90 percent.
Large trees occupy the canopy. Trees with DBH of 25 to
30 cm dominate, and a considerable number of individuals
have a DBH over 40 cm. Many tree individuals are taller
than 17 m and some between 25 and 30 m are present,
followed by a few scattered emergent individuals over 35
m high.

Upland open forest (UOF) ASD: 12 to 20
ASH: 10 to 15
AGB: 10 to 20

Usually located in the areas with steep slopes and poor soil
conditions

Flooding forest (FLF) Similar with UDF Usually located along water courses with seasonal
flooding conditions

Note: ASD and ASH represent average stand diameter (cm) and average stand height (m), AGB means aboveground biomass (kg/m2), and DBH means
diameter at breast height.
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