CARACTERIZAÇÃO E GÊNESE DO PODZÓLICO VERMELHO-AMARELO ÁLICO DE ARGILA DE ATIVIDADE ALTA DA REGIÃO ÚMIDA DO NORDESTE BRASILEIRO

IDARÊ AZEVEDO GOMES

Orientador: Prof. Dr. JOSÉ LUIZ IORIATTI DEMATTÊ

Tese apresentada à Escola Superior de Agricultura "Luiz de Queiroz", da Universidade de São Paulo, para obtenção do título de Doutor em Agronomia. Área de Concentração: Solos e Nutrição de Plantas,

PIRACICABA
Estado de São Paulo - Brasil
Julho, 1985

A minha esposa Ruth e meus filhos Andréia e Idarê

 $\mathcal{D} \in \mathcal{D} \subset \mathcal{O}$

AGRADECIMENTOS

- Ao Prof. Dr. José Luiz I. Demattê, orientador e amigo, meus agradecimentos especiais pelo incentivo e apoio na execução deste trabalho.
- À Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) pelo superte financeiro na realização do curso e deste trabalho.
- À Escola Superior de Agricultura "Luiz de Queiroz" pela opor tunidade de aperfeiçoamento através do curso de Pós-Graduação.
- Ao Serviço Nacional de Levantamento e Conservação de Solos EMBRAPA, pela realização de parte das análises físicas, químicas e mineralógicas.
- Ao Instituto Agronômico de Campinas, através de seus pesquisadores Dr. Antônio Carlos Moniz e Dr. Jorge Vega, pela elaboração das micrografias eletrônicas.
- Ao Departamento de Mineralogia e Recursos Naturais do Instituto de Geociências e Ciências Exatas da UNESP, "Campus" de Rio Claro, através de seu Professor Dr. Jairo Roberto Jimenez Rueda pelas facilidades, auxílio e paciência na obtenção das fotomicrofias das lâminas delgadas.
- Ao Projeto RADAMBRASIL, através do Dr. Ari Délcio Cavedon, di retor da Divisão de Pedologia, pelo apoio e auxílio concedido na fase de coleta dos solos no estado da Bahia.
- Ao pesquisador científico Dr. Igo Fernando Lepsch pelas opor tunas sugestões e observações no desenvolvimento deste trabalho e na defese da tese.

- Aos Professores Arary Marconi, Dr. Toshiaki Kinjo e Dra.Wolmir Aparecida Carvalho pelas sugestões e observações durante a defesa da tese.
- Ao Dr. Tarcísio Ewerton Rodrigues pelas constantes trocas de idíeas e o apoio amigo nas horas mais difíceis.
- Aos Drs. Jorge Olmos Iturri Larach, Paulo Klinger Tito Jacomine, Heráclio F. Raposo de Mélo Filho e Osório O. Marques da Fonseca pela valiosa colaboração e auxílio na coleta dos solos.
- Ao Dr. João Luiz Rodrigues da Silva pelo auxílio na execução dos limites de consistências.
- Ao técnico de laboratório do SNLCS Sinézio F. Chagas pelo au xílio nas execuções das lâminas delgadas.
- Aos técnicos de laboratório da ESALQ, Sr. Mário Benedito Lodovico e Sra. Maria Elisabete H.B. Guimarães e à Secretária Sra. Nelci Maniero, pelas suas valiosas colaborações e auxílio.
- Aos professores, colegas e amigos pelo estímulo e apoio rece bidos.

INDICE

		Pāgina
1.	INTRODUÇÃO	1
2.	REVISÃO DE LITERATURA	3
	2.1. Mineralogia e classificação dos solos	3
	2.2. Transformações mineralógicas	7
	2.3. Formação do horizonte argílico	16
3.	CARACTERIZAÇÃO DAS ÁREAS DE ESTUDO	21
	3.1. Solos selecionados	21
	3.2. Geologia	22
	3.3. Geomorfologia	29
	3.4. Caracterização climática	31
	3.4.1. Classificação do clima	31
	3.4.2. Regime térmico e hídrico dos solos	31
	3.5. Vegetação	33
4.	MATERIAL E MÉTODOS	39
	4.1. Descrição e coleta dos solos	39
	4.2. Análises rotineiras de laboratório	40
	4.2.1. Análises físicas	40
	4.2.2. Análises químicas	41
	4.3. Outras determinações químicas	4 2
	4.3.1. Ferro e alumínio pelo "CBD"	4 2
	4.3.2. Ferro e alumínio pelo oxalato de	
	amônio	4 2
	4.3.3. Aluminosilicatos amorfos por dis -	
	solução seletiva	4 3
	4.4. Análises mineralógicas	4 4
	4.4.1. Preparo do material	4 4
	4.4.2. Métodos óticos	4 5
	4.4.3. Difração de raios-X	4 5
	4 4 4 Análise térmica diferencial	17

	Página
4.5. Análises micromorfológicas	4 9
5. RESULTADOS E DISCUSSÃO	5 1
5.1. Características morfológicas	51
5.2. Características físicas	5.8
5.3. Características químicas	6.8
5.4. Mineralogia	8 2
5.5. Micromorfologia	119
5.6. Considerações gerais a respeito da pedogê-	
nese	132
5.7. Classificação dos solos	141
6. CONCLUSÕES	146
LITERATURA CITADA	149
Δ PÊND I CE	

CARACTERIZAÇÃO E GÊNESE DO PODZÓLICO VERMELHO-AMARELO ÁLICO DE ARGILA DE ATIVIDADE ALTA DA REGIÃO ÚMIDA DO NORDESTE BRASILEIRO

Candidato: Idarê Azevedo Gomes

Orientador: Prof. Dr. José Luiz Ioriatti Demattê

RESUMO

O presente trabalho foi conduzido com a finalidade de se obter informações sobre a caracterização e gênese do Podzólico Vermelho-Amarelo Álico, argila de atividade alta, distribuídos principalmente na zona costeira dos estados da Bahia, Alagoas e Pernambuco em ambiente údico ou perúdico de umidade e isohipertérmico de temperatura. Foram amostrados qua tro pedons, sendo dois desenvolvidos de folhelhos (pedons 1 e 2) e dois de conglomerados constituído por calhaus e matacões de granito e guaisse em matriz arcosiana (pedons 3 e 4).

A caracterização dos solos incluiu análises mor fológica, física, química, mineralógicas das frações areia, sil te e argila, e micromorfológica dos seus principais horizontes. As análises físicas e químicas executadas foram as de rotina de levantamento de solos acompanhadas da determinação dos limites de liquidez, plasticidade e contração, ferro e alumínio pelo citrato-bicarbonato-ditionito (CBD) e oxalato de amônio. amorfos por dissolução seletiva e potássio total pelo ataque ácido. Nas análises mineralógicas foram empregados métodos óticos, análise térmica diferencial (ATD) e Raios-X.

Tais solos apresentam coloração vermelha, as vezes variegada, no horizonte B associada a cores mais amare-

ladas e mosqueados com cromas altos nos horizontes superficiais, principalmente no topo do horizonte B. A estrutura do horizon te B é prismática composta de blocos subangulares e angulares bem desenvolvidos, algumas vezes herdada do material de origem. É comum em certos pedons, a ocorrência de superfícies de fricção. O horizonte A apresenta textura média que contrasta a argilosa e muito argilosa do horizonte B, conferindo aos solos um caráter abrúptico. Os solos possuem horizonte A modera do sobre horizonte B textural, argila de atividade alta, dessaturados, álicos e os teores de alumínio trocável (Al-KCl N) são superiores a 6,0 meg/100 g de solo no horizonte B textural, teores estes que aumentam com a profundidade do solo. O índice de atividade da fração argila no horizonte B apresenta valo res no limite entre materiais de baixa e alta expansão, indicando um grau de intemperismo moderado.

O quartzo é o mineral predominante nas frações areia e silte, acompanhado nos horizontes inferiores por felds pato e muscovita ou biotita. A haloisita ocorre na fração sil te principalmente nos horizontes inferiores. Os principais mi nerais que ocorrem na fração argila desses solos são caulinita, ilita, esmectita-cloritizada, interestratificados ilita-esmectita e ilita-vermiculita, aluminosilicatos amorfos, hematita e goetita. Os interestratificados só ocorrem nos pedons 1 e desenvolvidos de folhelho, enquanto que a esmectita-cloritizada só aparece nos pedons 3 e 4 desenvolvidos de conglomerado. A esmectita e esmectita-cloritizada são muito instáveis nos ho rizontes superficiais, principalmente a partir do Btl. A caulinita é o argilo-mineral predominante em todos pedons e os seus teores aumentam em direção à superfície solos. Este mineral é formado a partir da alteração dos felds patos, haloisitas e esmectitas, ou em parte herdado do rial de origem.

Na classificação brasileira os solos foram en quadrados em Podzólico Vermelho-Amarelo Álico que apresentam argila de atividade alta ou média a alta no horizonte B textural. Na classificação americana esses solos foram classificados como Epiaquic Tropudult (pedons 1, 2 e 3) e "Epiaquic" Paleudult (pedon 4) e a nível de família como clayey, kaolinitic ou mixed, isohyperthemic. As características morfológicas do pedon 4 sugerem a necessidade de criação do subgrupo Epiaquic para os Paleudults.

CHARACTERIZATION AND GENESIS OF THE RED-YELLOW PODZOLIC ALIC HIGH ACTIVITY CLAY OF THE BRAZILIAN NORTHEASTERN HUMID REGION

Candidate: Idarê Azevedo Gomes

Adviser: Prof. Dr. José Luiz Ioriatti Demattê

SUMMARY

The present work was carried out with the objective to obtain informations about the characterization and genesis of the Red-Yellow Podzolic Alic of high activity clay distributed, mainly, in the coastal areas of Bahia. Alagoas and Pernambuco states, in regions of udic or perudic and isohyperthemic regimes. Four pedons were collected, two soils are formed from shales (pedons 1 and 2) and the others are developed from conglomerates composed of cobbles and stones, derived from granites and gneisses, in a arkosic matrix (pedons 3 and 4).

Characterization of these soils was accomplished through morphological, physical, chemical, mieralogical and micromorphological analyses. The physical and chemical analyses determined were those from routine analysis in soil survey, plastic and liquid limits, iron and aluminium by citrate-bicar bonate-dithionite (CBD) and ammonium oxalate extraction amor phous aluminosilicate by selective dissolution, and total potassium by acid attack. In the study of mineral composition of the soils fractions were used optical methods, differential ther mal analysis (DTA) and X-ray diffractions.

These soils have red colours, sometimes variegated, in the B horizons associated with yellowish colours and mottles with high chroma in the upper horizons, mainly in the

top of the B horizon. The B horizons structure is prismatic breaking to well developed subangular and angular blocky structure, sometimes inherited from the parent material. The medium texture in the A horizon change to a clayey, fine or very fine, in the B horizon. These soils have an argillic horizon with high activity clay, ochric epipedon, and abrupt textural change. They have low base saturation, high Al saturation, and the exchangeable Al (AL-KCl N) are more than 6,0 meq/100 g of soil in the argillic horizon, and this content increase with depth.

The clay activity index in the B horizon shows contents in the boundary between low and high expansion materials, this suggest a moderate stage of weathering.

Quartz is the predominant mineral in sand and silt fractions, followed by feldspar and muscovite or biotite in the lower horizons. Halloysite is found mainly in the silt fraction of lower horizons. The clay fraction of these soils is composed predominantly of kaolinite, illite, chloritized smectite, interstratifieds illite-smectite and illite-vermiculite, amorphous aluminosilicate, hematite and goetite. tratifieds clay minerals are found only in pedon 1 and 2, rived from shale. On the other hand, chloritized smectite only present in pedons 3 and 4, formed from conglomerate. smectite and chlorized smectite are very unstable in the upper horizons of these soils, and they tend to become depleted since Btl horizon. Kaolinite is the most abundant clay mineralin these soils, and its content increase with proximity to the soil surface. This mineral was formed from weathering feldspars, halloysites and smectites. or it may be inherited from the parent material.

In the Brazilian soils classification these soils are classified as Red-Yellow Podzolic Alic with medium and high clay activity. According to the American Classification System these soils are classified as Epiaquic Tropudult

(pedons 1, 2 e 3) and "Epiaquic" Paleudult (pedon 4) and in the soil family level as clayey, kaolinitic or mixed, isohyperthemic.

Based on morphological characterics of pedon 4, there is suggestion for establishing the Epiaquic subgroup for the Paleudults.

1. INTRODUÇÃO

Através dos trabalhos de levantamento de solos realizados pelo SNLCS-EMBRAPA, assim como por outros órgãos de pesquisa, entre eles o projeto RADAM, foi constatado uma classe de solos apresentando acúmulo de argila no horizonte B, ele vados teores de alumínio trocável e evidências de argila de al ta atividade.

Os solos são relativamente pouco profundos, apresentam grande contraste de textura entre os horizontes A e B, estrutura muito bem desenvolvida, coloração amarelada nos horizontes superficiais e que se tornam vermelhas com a profundida de. O material de origem é extremamente variável, porém a maior parte desses solos em áreas de folhelhos e conglomerados de granito e gnaisse, é uma evidência marcante no campo.

As maiores ocorrências dessa unidade estão nas regiões costeiras dos estados da Bahia, Alagoas e Pernambuco, onde se encontram em regime de umidade údico ou mesmo perúdico e isohipertérmico de temperatura. Tais solos correlacionam com vários outros encontrados no sul do país, como o Podzólico Vermelho-Amarelo variação Piracicaba, Podzólico Bruno-Acinzentado Álico e Rubrozens. Diferem deste último, principalmente, por não apresentarem horizonte A proenimente. Apesar

de serem solos de elevada saturação com alumínio são muito utilizados na agricultura, principalmente com cana-de-açúcar, dendê, piaçava, cravo-da-Índia, pimenta-do-reino, além de culturas de subsistência e pastagens.

Praticamente pouca coisa tem sido feito em termos de pesquisa em tais solos, salientando-se principal - mente os trabalhos de DEMATTÊ (1970), SOUZA (1971), DECHEN (1978) em solos do estado de São Paulo, e de LIMA <u>et alii</u> (1977) e VOLKOFF e MELFI (1980) que trabalharam com os Rubrozens do estado do Paraná. Por outro lado, há necessidade de um melhor conhecimento desses solos tanto no aspecto agronômico como no taxonômico, informações estas que serão muito úteis para um melhor entendimento das características dessa classe. As informações detalhadas de suas propriedades forne ceram também subsídios aos trabalhos de levantamento de solos, além de propiciarem elementos para seu melhor uso e manejo. Os principais objetivos pretendidos neste trabalho são:

- Estudar as características morfológicas, físicas, químicas, mineralógicas e micromorfológicas dos solos;
- Correlacionar estas características com al guns aspectos da pedogênese e verificar suas implicações na classificação dos solos;
- 3. Classificar os solos.

Para isto foram selecionados e descritos quatro pedons, sendo dois localizados no estado da Bahia e os demais nos estados de Alagoas e Pernambuco, de modo a abranger os diversos relevos e unidades geomorfológicas ocupados pelos solos.

2. REVISÃO DE LITERATURA

2.1. Mineralogia e classificação dos solos

Vários Ultissolos estudados na Carolina do Norte e Virginia, Estados Unidos, apresentam características e propriedades similares aos solos objetos do presente trabalho.

RICH e OBSENSHAIN (1955) estudando um Ultissolo desenvolvido de muscovita-xisto, muito conhecido local mente por sua baixa fertilidade e pela grande quantidade calcário requerida para mudar, significativamente, o seu pH, mostraram que o solo era pobre em bases, apresentava altos teores em alumínio trocável e média a alta capacidade de troca de cations. Segundo esses autores a fração argila apresentava vermiculita dioctaédrica, interestratificado ilita-vermi culita (regular e irregular), caulinita que aumentava com profundidade do solo, quartzo e óxidos de ferro. A vermiculi ta dioctaédrica era o argilo-mineral dominante e apresentava quantidades variáveis de alumínio não trocável nas intercama-O interestratificado e a vermiculita formavam-se a partir da muscovita, enquanto que a albita dava origem a caulini ta.

COLEMAN et alii (1959) mostraram que alguns solos desenvolvidos de folhelho, siltito e arenito apresenta vam elevada capacidade de troca de cátions, altos teores de alumínio trocável, chegando a atingir 25 meq/100 g nos horizontes inferiores, e teores de cálcio e magnésio muito bai - xos. Os solos desenvolvidos de folhelho pertencem a série "White Store" e foram classificados como Vertic Hapludult, fine, mixed, thermic. A fração argila destes solos é domina da por caulinita ou haloisita, minerais interestratificados e montmorilonita cuja percentagem cresce com a profundidade.

Os Ultissolos desenvolvidos de arenito e siltito, segundo os autores, apresentavam a percentagem de caulinita igual ou pouco maior que a de vermiculita, a ilita es tava presente em quase todos os horizontes e a esmectita ocorria nos horizontes C e R. Foi constatada, ainda a presença da gibbsita nos horizontes superficiais desses solos. Os solos foram classificados como Typic Hapludult, fine-loamy, siliceous, thermic e Typic Hapludult, clayey, kaolinitic, thermic.

Em região de clima tropical, os Podzólicos Álicos foram conhecidos, através dos trabalhos de levantamen to desenvolvidos nos estados do Acre, Alagoas, Pernambuco e Bahia pelo Serviço Nacional de Levantamento e Conservação de Solos da EMBRAPA. Sendo caracterizados por baixa saturação de bases, elevados teores de alumínio trocável e alta capacidade de permuta de cátions, tendo sido classificados como Podzólico Vermelho-Amarelo Álico argila de atividade alta A moderado. Entretanto, tem-se poucos dados relativos à mineralo gia dos mesmos e eles permanecem pouco estudados até a presente data.

Todavia, em clima subtropical os Podzólicos Álicos têm recebido bastante atenção e muitos dados importantes para o seu estudo tem sido acrescentados.

Em 1960, solos originados de folhelhos e argilitos foram descritos e analisados no decorrer do levantamen to de solos do Estado de São Paulo, pela então Comissão de Solos do Ministério da Agricultura (Comissão de Solos, 1960). Esses solos foram classificados como Podzólico Vermelho-Amarelo-variação Piracicaba, sendo solos moderadamente drenados, ácidos, com baixa saturação de bases, teores elevados de alumínio trocável e média a alta capacidade de permuta de cátions. A mineralogia da fração argila revelou presença de caulinita, montmorilonita, gibbsita e quartzo.

DEMATTÊ (1970) estudando várias classes de solos originados de folhelhos, constatou que o Podzólico Verme lho-Amarelo-variação Piracicaba com argila de atividade baixa apresentava a fração argila dominada pela caulinita com teores entre 42 e 76 %, acompanhada da mica, vermiculita e materiais "amorfos" com percentagens em torno de 10 %. Foi ainda detectada a presença de montmorilonita, argilo-minerais interestratificados em quase todos os horizontes do solo, e da gibbsita nos horizontes superficiais. O solo foi classificado como Typic Paleudult, clayey, kaolinitic, isothermic.

SOUZA (1971) constatou que a fração argila do Podzólico Vermelho-Amarelo-variação Piracicaba apresentava caulinita (36 a 46 %), mica (12 %), vermiculita (18 %), mont morilonita (15 %) e materiais amorfos (14 %) e gibbsita nos quatro primeiros horizontes com valores em torno de 1,0 %. Ressaltando, através de micrografia, que a caulinita era mal cristalizada no horizonte BC(B3). O solo foi classificado como Oxic Tropudult, clayey, kaolinitic, isothermic.

CARVALHO (1975) encontrou na fração argila do Podzólico Vermelho-Amarelo-variação Piracicaba a caulinita , ilita, vermiculita e gibbsita, sendo que a caulinita era o argilo-mineral dominante nos horizontes B e C.

DECHEN (1979) trabalhando com o Podzólico Vermelho-Amarelo-variação Piracicaba mostrou que a mineralogia da fração areia era dominada por quartzo, seguido de mica e quantidades bem menores de feldspatos. Por outro lado, a fração silte apresentava quartzo, mica, minerais interestratificados e caulinita. A fração argila, segundo a autora, mostrou a dominância de caulinita, mica (com picos bastante intensos ao Raios-X), minerais interestratificados, vermiculita e quartzo.

Mais ao sul do Brasil, solos semelhantes ao Podzólico Álico foram constatados nos levantamentos de solos realizados pelo SNLCS-EMBRAPA, nos estados do Paraná, Santa Catarina e Rio Grande do Sul. Tendo sido classificados como Podzólico Bruno-Acinzentado Álico, Podzólico Vermelho-Amarelo Álico argila de atividade alta e Rubrozens, destes o último en contrado, principalmente, no Paraná acha-se melhor estudado.

LIMA (1974) mostrou que a fração argila dos Rubrozens era composta por caulinita (40 %), seguida de montmo rilonita (21 %), mica (20 %), vermiculita (10 %), "amorfos" (9 %) e gibbsita (3 %) somente nos horizontes superficiais. Ocorrendo, ainda, a clorita e minerais interestratificados. Se gundo o autor, alguns pedons foram classificados como Typic Palehumult, muito argiloso, misto (mixed), térmico e outros como Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, muito argiloso, misto (mixed), térmico e ocomo Humoxic Palehumult, mui

VOLKOFF e MELFI (1980) estudando a mineralogia dos Rubrozens constataram que a partir de um material de origem essencialmente esmectítico, desenvolve-se um solo com horizonte Bt vermelho, rico em ilita, caulinita e hematita. Os horizontes superiores apresentavam a fração argila constituída de caulinita, vermiculita aluminosa, goetita aluminosa e gibbsita.

2.2. Transformações mineralógicas

As micas presentes nos solos, normalmente são herdadas dos materiais de origem dos mesmos (FANNING e KERAMI DAS, 1977). Micas dioctaédricas, como a muscovita, são geral mente muito mais resistentes ao intemperismo que as micas trioctaédricas, como as biotitas, e a liberação de potássio pe las primeiras é bem mais lenta.

JACKSON <u>et alii</u> (1952) estudando a decomposi ção da mica, encontraram a seguinte sequência de alteração:
mica→ ilita → vermiculita → esmectita.

KELLER (1964) relatou que o primeiro estágio na intemperaização da mica é caracterizado quimicamente pela remoção, por dissolução, de potássio e magnésio e do ferro por oxidação. Ocorrendo expansão do mineral para formar interestratificados ilita-esmectita e/ou vermiculita. A vermiculita pode ser relativamente estável, mas nas frações mais finas é transformada em esmectitas, sendo a transformação um processo tipicamente de dessilicatização. A transformação das micas em argilo-minerais 2:1 expansíveis ocorre, assim, pela troca de potássio por cátions hidratados e é uma transformação simples porque a estrutura da mica é mantida nos produtos de transformações. Todavia, essas transformações podem sofrer outras alterações, particularmente em meios ácidos, onde pode

ocorrer a destruição dos argilo-minerais expansíveis formados e/ou a precipitação de polímeros de alumínios nas intercama - das das vermiculitas e esmectitas dando origem a cloritas pedogênicas e/ou argilo-minerais aluminosos.

A vermiculita no solo pode ser um produto de alteração da biotita, muscovita ou clorita. No solo a vermiculita dioctaédrica é mais comum que a trioctaédrica (JACKSON, 1959). Isto se deve provavelmente a maior estabilidade da estrutura da muscovita em relação a biotita e/ou à estabilidade produzida pela precipitação de polímeros de alumínio nas intercamadas desses argilo-minerais. A transformação da muscovita em vermiculita tem sido constatada em solos.

RICH e OBENSHAIN (1955) concluiram que a vermi culita aluminosa, presente nos Ultissolos por eles estudados, era proveniente do intemperismo da muscovita através da perda do potássio e a sua substituição pelo alumínio.

DEMATTÊ <u>et alii</u> (1977) constataram em solos d<u>e</u> senvolvidos de folhelho, a alteração da mica(muscovita) em vermiculita e desta em caulinita que dava origem a gibbsita nos horizontes superiores.

Segundo DELVIGNE (1982) a transformação da bio tita em vermiculita ocorre em várias etapas. A primeira etapa na transformação é a substituição parcial dos íons potás sios por moléculas de água, dando formação a hidrobiotita. O ferro ferrroso é geralmente oxidado. Numa segunda etapa o restante do potássio é eliminado, assim como os íons de ferro e titânio. Os folhetos da biotita não sendo mais unidos pelos íons potássios, permitem que as moléculas de água e os cátions trocáveis se alojem entre eles e, assim, tem-se uma expansão apreciável na transformação da biotita em vermiculita.

O aumento de volume criado pela formação da vermiculita provoca o aparecimento de uma fissura autígena intermineral e transmineral que acelera a alteração dos minerais vizinhos à vermiculita e dela própria.

Em condições de pH menor que 6,0 a vermiculita pode se transformar diretamente em caulinita (ISMAIL, 1970).

KITTRICK (1973) considerou a vermiculita um produto intermediário instável no intemperismo das micas, que desaparece do solo dando formação a esmectita e/ou caulinitas.

A presença da vermiculita em solos tropicais, como produto intermediário da alteração da mica em caulinita, já foi constatada por vários autores (MONIZ e JACKSON, 1967; ESCOBAR <u>et alii</u>, 1972; DEMATTÊ <u>et alii</u>, 1977; LIMA <u>et alii</u>, 1977).

Segundo BORCHARDT (1977) a beidelita nos solos deve ser esperada como produto da intemperiza - ção das micas, porque este mineral apresenta uma estrutura se melhante à mica. Por outro lado, a montmorilonita forma-se a partir de soluções do solo rica em Si, Al e Mg. Segundo este mesmo autor, existe a possibilidade de um mesmo solo formar caulinita durante os meses úmidos quando a lixiviação dos ele mentos é intensa e dar formação a esmectita nos meses secos, quando as concentrações de silício e magnésio são relativamen te altas.

A transformação de esmectitas em caulinitas é bem provável em solos sob intensa lixiviação (WEAVER <u>et alii</u> 1971).

Tem sido constatado que certas formas de alum<u>í</u> nio podem ser adsorvidas pela vermiculita nas suas intercamadas e que esses ions não são facilmente trocáveis (RICH e OBENSHAIN, 1955; KLAGES e WHITE, 1957).

De acordo com RICH (1958) sob condições de intenso intemperismo, como as evidenciadas pelas condições ácidas do solo, a vermiculita normalmente possui hidróxidos de alumínio nas suas intercamadas.

JACKSON (1963) , concluiu que os argilo-minerais expansivos no solo tendem a evitar a formação da gibbsita, através da precipitação dos polímeros de alumínio nas suas intercamadas, o que foi chamado por ele de efeito "anti-gibbsítico".

HSU e BATES (1964) em experimentos realizados concluiram que a vermiculita pode funcionar como um ânion que tem forte afinidade pelos polímeros de alumínio, podendo assim inibir ou mesmo evitar a formação da gibbsita, nos solos onde ela está presente.

RICH (1968) concluiu que os vários argilo-mine rais expansivos podem reter polímeros de alumínio hidroxila - dos. Ele relatou que as condições mais favoráveis para ocorrer a formação destes interestratificados cloritizados são: pH entre 4,6 e 5,8, repetidas fases de umedecimento e secamen to e baixo teor de matéria orgânica no solo.

CARSTEA <u>et alii</u> (1970) em experimentos conduz<u>i</u> dos em laboratório mostraram que condições ácidas favorecem a precipitação do alumínio e ferro nas intercamadas das esmect<u>i</u> tas e só do alumínio no caso da vermiculita. A precipitação do ferro nas intercamadas da vermiculita só aconteceu em condições alcalinas.

FEIGENBAUM e SHAINBER (1975) mostraram que durante o intemperismo das ilitas sob condições ácidas, as últimas frações de potássio localizadas nas intercamadas são menos acessíveis aos prótons do que os cátions, principalmente alumínio, localizados nas camadas octaédricas do mineral.

T'SERSTEVENS et alii (1978) em experimentos rea lizados em laboratório, mostraram que durante o intemperismo da muscovita, realizado por água destilada, o potássio e a sílica eram perdidos e que as muscovitas ficavam expontaneamente recobertas por polímeros de alumínio, semelhante àqueles encontrados nas intercamadas dos argilo-minerais cloritizados em condições naturais. Por outro lado, a medida que o ataque prosseguia a relação K/Si da solução de alteração decrescia indicando que o processo de pura vermiculização era menos favorecido em relação à acumulação relativa do alumínio.

HERBILLON (1980) baseando-se nos dois achados anteriores, sugeriu que a formação dos interestratificados cloritizados não precisa ser a vermiculização seguida, posterior mente, pela precipitação de polímeros de alumínio nas intercamadas da vermiculita, mas pode ser devido a um processo contínuo que ocorre durante o intemperismo das micas em condições ácidas.

VOLKOFF e MELFI (1980) concluiram que a aluminização superficial transforma as ilitas residuais da alteração em vermiculita aluminosa.

Assim o intemperismo químico em solos ácidos onde ocorrem argilo-minerais expansíveis se faz, preferencialmente, pela retenção por estes argilo-minerais do alumínio trocável e polímeros de alumínio hidroxilados, em lugar de levar a formação da gibbsita. Assim, vermiculitas e esmec

titas aluminosas, principalmente sob a forma de interestratificados, ocorrem nos solos como produto do intemperismo em condições ácidas.

Esses argilo-minerais aluminosos podem provir, também, da degradação das cloritas herdadas do material de origem (BARNHISEL, 1977).

Devido ao fato da capacidade de troca de cátions de um solo estar bastante concentrada nos argilo-mine - rais 2:1, um efeito prático que resulta da precipitação dos polímeros de alumínio nas intercamadas dos mesmos é a diminuição na capacidade de troca de cátions e na fixação de potás - sio.

WEED e NELSON (1962) mostraram que a capacidade de troca de cátions é bastante reduzida ou bloqueada pela presença de alumínio e/ou ferro nas intercamadas dos argilominerais. Assim, a capacidade de troca dos argilominerais aluminosos pode variar bastante e vai depender do grau de aluminização das intercamadas destes minerais, podendo estar próximos da CTC (capacidade de troca de cátions) das cloritas, vermiculitas ou esmectitas.

Segundo LIU e THOMAS (1961) a adsorção de ânions não acontece só na superfície dos hidróxidos de alumínio livres, mas também nas intercamadas aluminizadas dos argilominerais, que contribui como fonte para uma maior adsorção de ânions como fosfato e sulfatos.

JUO e KAMPRATH (1979) concluiram que os solos que contêm clorita aluminosa, vermiculita aluminosa, ou minerais interestratificados aluminosos apresentam uma fitotoxida de potencial, devido a presença do alumínio nas intercamadas.

WADA (1980) relatou que a presença do alumínio ativo no solo pode ser constatada:

- a. Nos silicatos aluminosos não cristalinos;
- b. Nos polímeros de alumínio hidroxilados presentes nas intercamadas dos argilo-minerais
 2:1 e 2:1:1;
- c. Nos complexos formados por humus e alumínio;
- d. E nos alumínios trocáveis (Al³⁺) retidos p<u>e</u> los argilo-minerais.

O alumínio ativo, segundo o autor, determina ou modifica a característica de carga do complexo de troca , cria acidez, e reage com ânions como fosfatos e sulfatos comtribuindo para sua maior adsorção pelo solo.

A formação de minerais interestratificados, se jam regulares ou irregulares, é devido ao intemperismo pela remoção parcial do potássio ou pela remoção parcial dos hidróxidos de alumínio das cloritas. Quando no solo eles tem um efeito pronunciado nas reações com o potássio e fósforo. Por exemplo, o potássio é mais fortemente retido pelo interestraticado mica-vermiculita do que por estes componentes individualmente (SAWHANES, 1977).

McCALEB (1959) trabalhando com Ultissolo mostrou que o feldspato transformou-se em caulinita e haloisita, e que a biotita e muscovita tansformaram-se em vermiculita que dava origem depois à caulinita.

LOUGHNAM (1969) relatou que a caulinita e haloisita são os produtos mais comuns no intemperismo dos felds patos, todavia ele chamou a atenção para o fato de que os feldspatos potássicos podem dar origem a ilita ou esmectitas em determinadas condições de intemperismo. CERRI (1974) concluiu que os feldspatos podem conservar sua forma característica nos primeiros estágios de alteração da rocha, mas estarem química e mineralogicamente transformados em caulinita através da formação de um gel amor fo.

ESWARAN e BIN (1978) estudando um solo, desenvolvido de granito, que apresentava regime údico e isohiper - térmico, constataram que o feldspato e a biotita se intemperizavam de maneira similar. Nos horizontes R e C que ainda apresentavam a estrutura da rocha esses dois minerais, sob a forma de pseudomorfos, davam origem a haloisita e caulinita. Eles relacionaram este fato ao baixo teor de ácidos orgânicos presentes nestes dois horizontes que permitia condições de pH um pouco mais elevada nos mesmos. Quando o horizonte C já não apresentava mais a estrutura da rocha indicando uma melhor po rosidade, a biotita dava origem a caulinita e goetita, enquan to que o feldspato transformava-se em caulinita. No solum o feldspato passou a dar origem à caulinita e gibbsita.

CERRI (1979) estudando a pedogênese em áreas de granito constatou pelo exame de amostras de micas e feldspatos que esses minerais evoluem de diferentes maneiras de acordo com o clima no qual se encontram. As biotitas sob clima tropical quente e úmido com estação seca de um a dois meses, onde os processos de hidrólise são bastante atuantes , transformam-se em vermiculita e caulinita. Porém sob a ação de uma hidrólise moderada, característica das regiões climáticas menos agressivas como clima subtropical e subtropical de altitude sem etação seca, as biotitas evoluem mais lentamente dando formação a interestratificados regulares mica-vermiculita, vermiculita e caulinita. Em clima tropical subquente e subúmido, em clima tropical quente e também em clima semi-árido, com precipitações concentradas em alguns meses, a biotita

dá formação a caulinita. Os feldspatos devido a sua pequena resistência à alteração decompõem-se muito rapidamente em todas as regiões climáticas resultando na formação da caulinita. Todavia, nos climas tropical quente e subtropical de altitude o feldspato evolui também para gibbsita. Ressalta, este autor, que sob qualquer região climática os solos Podzólicos apresentam a mesma mineralogia da "arena", não havendo formação de nenhum outro argilo-mineral na sua evolução para o solo.

Segundo DELVIGNE (1982) a caulinita na pseudomorfose do feldspato aparece sempre após uma fase intermediária de degradação, constituída por um gel amorfo incolor. Durante esta evolução lenta, o ferro oriundo da alteração dos
minerais vizinhos pode penetrar na pseudomorfose, mas não é
aceito na rede cristalina da caulinita, concentrando-se entre
ou sobre os cristais de caulinita colorindo de vermelho ou
bruno as suas superfícies.

A hematita e a goetita são os compostos de <u>fer</u> ro mais comuns nos solos bem drenados.

Segundo SCHWERTMANN (1971) a hematita é instável na presença de matéria orgânica e umidade e se transforma em goetita. Esta transformação pedogênica pode ser facilmente detectada no campo, pois, é acompanhada por uma mudança da cor vermelha, presente nos horizontes onde predomina a hematita, para uma cor amarelada onde passa a predominar a goetita (SCHWERTMANN, 1971; BIGHAM et alii, 1978b; MONIZ et alii,1983).

SCHWERTMANN e TAYLOR (1977) relataram que sendo a ferridrita precursora da hematita, esta só será formada em ambientes que favoreçam a estabilidade da primeira. A solubilidade da ferridrita aumenta com a diminuição do pH o que favorece a formação da goetita sobre a hematita. Por outro lado, os compostos orgânicos complexam o ferro liberado pelo intemperismo evitando, ou dificultando, a formação da ferridrita favorecendo, deste modo, a formação da goetita.

A goetita formada em um meio rico em aluminio acarreta a substituição do ferro pelo aluminio na sua estrutura (NORRISH e TAYLOR, 1961). Essa substituição resulta em um menor grau de cristalinidade, partículas de tamanho menores, e um significante aumento na superfície específica desse mineral. Este aumento na superfície específica vai acarretar uma maior carga dependente do pH, assim como uma maior capacidade de adsorção de fosfato pela goetita.

BIGHAM <u>et alii</u> (1978a) mostraram que solos go<u>e</u> títicos, geralmente, adsorvem mais fósforo do que os seus similares hematíticos.

2.3. Formação do horizonte argílico

McCALEB (1959) estudando a gênese do Podzólico Vermelho-Amarelo concluiu que a alteração dos minerais "in si tu" no horizonte C e no solum era responsável por grande parte da argila presente nestes horizontes. Concluiu ainda que o movimento de argila do horizonte A para o B, era significante e realizado por processos físicos, onde a variação no teor de umidade promovia o transporte, deposição e orientação das partículas de argila no solo.

BREWER (1968) estudando os Podzólicos concluiu que nos solos examinados a proporção de argila iluvial era pouca e, assim, outros processos deveriam estar envolvidos na formação dos horizontes com acúmulo de argila, os quais poderiam ser intemperismo diferencial entre os horizontes A e B e/ou presença de extratos com diferentes texturas no material originário.

OERTEL (1968) sugeriu que a variação no teor de argila que aumenta do horizonte A para o B, poderia ser explicada pela perda de argila pelo horizonte A no processo de intemperismo. Todavia, segundo o autor a hipótese mais aceita é a da eluviação da argila através do transporte pela água. O autor mostrou várias razões contrárias a esta hipótese e argumentou que todos os dados conduziam à conclusão de que o processo dominante nesta diferença, no teor de argila, era o intemperismo "in situ" ocasionando maior destruição das partículas mais finas no horizonte A.

SOIL SURVEY STAFF (1975) na gênese do horizonte argílico enfatizou que ele representa um horizonte iluvial no qual houve significante acúmulo de argila através do processo de iluviação, com a argila deslocando-se, de um horizon te para outro ou de um local para outro dentro de um mesmo horizonte. Foi assumido que a argila é transportada pela água como argilo-mineral ao invés de seus produtos de decomposição, e que milhares de anos são necessários para se formar um horizonte argílico. Os autores, ressaltaram que o clima e a vege tação são fatores importantes na evolução do horizonte, porque em regiões onde ocorre alternância de períodos úmidos e secos e vegetação de floresta há melhor desenvolvimento desse horizonte. Em climas perúmidos as evidências de migração de argila são poucas.

O umedecimento de um solo seco aliado ao teor de matéria orgânica concorrem para a dispersão da argila. Assim, segundo os autores anteriores, para que haja movimento da argila no solo, o material de origem deve conter argila dispersa (argila muito fina normalmente tem tendência para se dispersar) ou o intemperismo deve promover a dispersão da mesma. parece translocar-se com a água que per argila cola no solo depositando-se no local em que a água seca. ressaltado que o horizonte argílico deve representar a domi nância do processo de translocação de argila sobre os processos que promovem a destruição e/ou remoção da mesma do solo, e sobre os processos que realizam a mistura do material no so lo, dentro dos horizontes, como o realizado por animais e con tração e expansão do solo. Reconhecem os autores, que a argi la que se translocou representa uma pequena parcela da argila total e que a maioria da mesma é formada "in situ" ou herdada do material de origem. Chamaram, ainda, a atenção para o fato de que um horizonte subsuperficial pode apresentar um teor maior de argila que o sobrejacente sem ser por isso caracteri zado como argílico, pois, esta diferença de textura pode devida à uma estratificação do material de origem, a perda de argila pelo horizonte sobrejacente sem uma significante iluvia ção, e à destruição ou formação diferencial da argila.

LEPSCH (1977) relacionou a ocorrência do horizonte óxico e argílico às características do relevo, uma vez que o óxico ocupava sempre as superfícies mais elevadas e pla nas enquanto que o horizonte argílico ocorria sempre na porção inferior adjacente de declive mais acentuado. A formação do horizonte argílico seria devido a movimentos laterais da água nos horizontes superficiais, que criariam condições anae róbicas provocando a redução do ferro. Uma vez reduzido o ferro seria removido liberando a argíla, que dispersa poderia então migrar. Uma das evidências apresentadas foram os valores mais elevados da relação ferro "livre"/argíla no horizonte E, quando comparado com o horizonte argílico subjacente.

Segundo ESWARAN e SYS (1979) os três processos envolvidos na formação do horizonte argilico são: dispersão, translocação e acumulação da argila . A dispersão e floculação são propriedades eletroquímicas da argila, sendo influenciada pelo pH do meio, concentração eletrolítica, e natureza dos ar gilo-minerais presentes. Estando, também, relacionadas à ação dos vários agentes cimentantes como os sesquióxidos e ma téria orgânica. O teor de argila dispersa em agua nos dá uma idéia do comportamento do argilo-mineral no solo. Em solos com abaixo de 5,0 o alumínio promove a floculação da argila, bloqueando os sítios de carga permanente dos argilo-minerais. A translocação da argila é realizada pela água e sua acumulação pode ocorrer por deposição física e/ou floculação. Os auto res chamaram à atenção para o fato de que a argila depositada por floculação deve apresentar um arranjamento ao acaso, mostrar uma orientação definida.

MONIZ et alii (1983) estudando a gênese dos ho rizontes argílico e óxico em Itatiba e Mogi-Guaçú concluiram que as diferenças relacionadas com o fluxo lateral e o basal da água são os dois fatores mais importantes na formação e de senvolvimento desses horizontes. Segundo esses autores, a sa turação do solo pela água, seguida sempre de períodos de seca mento proporciona condições favoráveis para o desenvolvimento de uma estrutura em blocos, pois, os materiais do solo são comprimidos devido à pressão causada pela tensão da água poros durante o processo de secamento. Após desenvolvimento da estrutura em blocos a concentração de plasma que se forma na superfície dos agregados, no horizonte argílico, foi atribuída à migração das partículas grosseiras para o interior do agregado. Ocorrendo depois uma reorientação das partículas mais finas, dando formação a argilans nos quais a fração argi la apresenta-se orientada, devido às altas pressões exercidas nas superfícies dos agregados nos processos alternados de ume

decimento e secagem do solo. A formação do horizonte A foi explicada por uma degradação da estrutura em blocos quando a parte superficial do solo torna-se saturado com água e a coesão aparente é neutralizada. Isto acarretaria a desestabilização dos agregados com consequentes perdas de argila, a qual seria eliminada em parte do sistema através do fluxo lateral da água.

3. CARACTERIZAÇÃO DAS ÁREAS DE ESTUDO

3.1. Solos selecionados

Utilizando-se os trabalhos de Levantamento de Solos dos estados de Pernambuco, Alagoas e Bahia, realizados pelo SNLCS-EMBRAPA, foram escolhidas quatro áreas com o objetivo de se estudar os solos, de clima tropical, que apresentam horizonte B textural, argila de atividade alta e aluminização intensa, indicando forte dessaturação e altos teores de alumínio trocável (MELFI e PEDRO, 1977b).

Esses solos têm sido classificados como Podzólico Vermelho-Amarelo Álico argila de atividade alta. Apresen
tam grande diferença de textura entre os horizontes A e B, sen
do pouco profundos ou profundos, argilosos e normalmente moderadamente drenados. No horizonte B há ocorrência de bastante
cerosidade, a estrutura é prismática e/ou em blocos e a cor é
vermelha ou bruno-avermelhada com mosqueados na parte superior
deste horizonte.

Geograficamente os Podzólicos Álicos ocorrem na Bahia, nas regiões do Recôncavo e Cacaueira, e nos estados de Alagoas e Pernambuco nas zonas do Litoral e Mata que compreendem a fa<u>i</u> xa úmida costeira e caracterizam-se por um clima quente úmido ou subúmido.

Através estudos de campo nas áreas de ocorrência desses solos, foram selecionados e descritos quatro pe dons cuja localização pode ser visualizada na Figura 1. Na Bahia os dois pedons descritos são desenvolvidos a partir de folhelho, sendo um na região do Cacaueira (pedon 1) e outro na região do Recôncavo (pedon 2). Em Alagoas e Pernambuco os pedons descritos (pedon 3 e pedon 4, respectivamente) encontram-se na região do Litoral, ambos tendo como material de origem o conglomerado.

3.2. Geologia

O desenvolvimento deste item restringe-se apenas à geologia de superfície e ao possível material originá rio dos solos. Os Podzólicos Álicos argila de atividade alta são desenvolvidos de rochas sedimentares como folhelho, siltito, arenito feldspático e conglomerados.

Na Bahia esses solos se relacionam litologicamente com as rochas do Grupo Brotas, da Formação Itaparica, do Grupo Ilhas e da Formação São Sebastião que pertencem ao Supergrupo Bahia do Cretáceo Inferior.

O Grupo Brotas, unidade inferior do Supergrupo Bahia, é constituído de folhelhos e siltitos de cor vermelha ou marrom, localmente estriados por manchas brancas ou verdes de argila, intercalados a arenitos finos a grosseiros de mineralogia variada, podendo ser arcosiana ou quartzosa. Na parte basal deste grupo ocorrem depósitos de evaporitos.

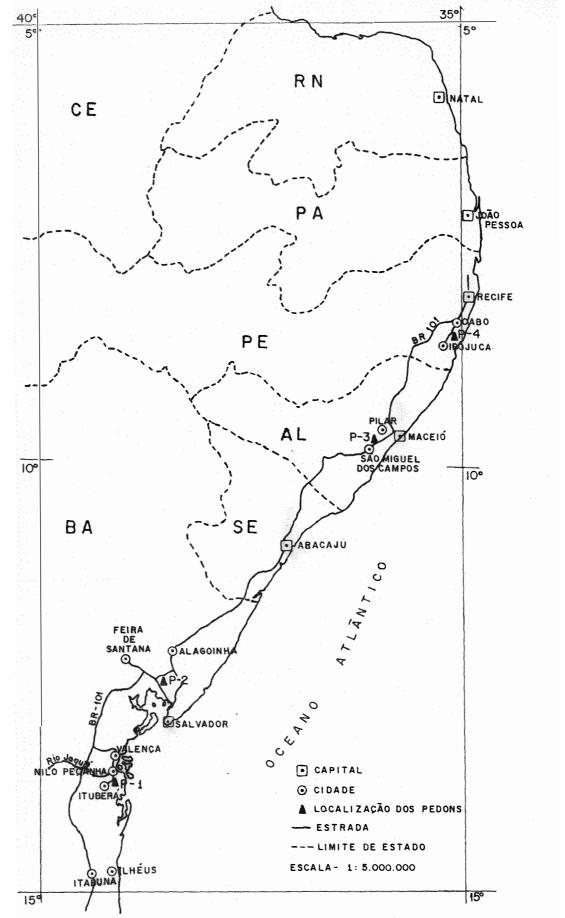
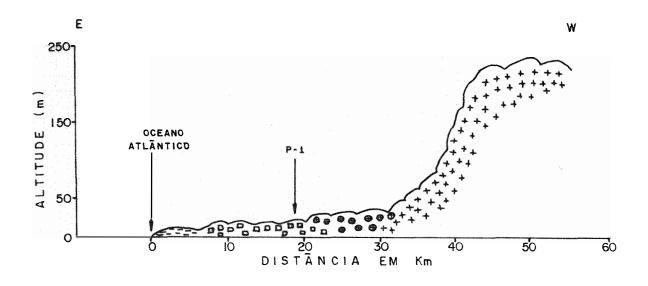


Figura 1 - Localização aproximada dos pedons descritos nos estados da Bahia, Alagoas e Pernambuco.


O pedon 1, que se localiza na zona cacaueira, é desenvolvido a partir de folhelho vermelho micáceo que parece pertencer ao Grupo Brotas (Figura 2).

A Formação São Sebastião, que ocupa o topo do Supergrupo Bahia, apresenta arenitos finos, médios ou grosseiros de coloração amarela e cinza-amarelada intercalados a folhelhos e siltitos, às vezes micáceos, de coloração verdecinza, vermelho ou violeta. Essa formação, que recobre dois terços da zona do Recôncavo, pode estar localmente recoberta, discordantemente por sedimentos argilo-arenosos do Grupo Barreiras (Figura 3).

O pedon 2, que se localiza na Bacia do Recônca vo, tem como material de origem o folhelho avermelhado que pertence a Formação São Sebastião.

Em Alagoas, os Podzólicos Álicos se originaram a partir das rochas da Formação Muribeca (Figura 4) que per tence ao Cretáceo Inferior. Essa Formação foi dividida cinco membros, dos quais o membro Carmópolis, aflorante nа área em estudo, é constituído por conglomerados em matriz de arcóseo, arcóseo conglomeráticos e arcóseos, biotíticos, com ocasionais intercalações de folhelhos cinza-esverdeados. conglomerado, provável material de origem do pedon 3 apresenta cores cinzas ou castanhas, sendo formado por calhaus e matações de tamanho e composição variadas provenientes de chas graníticas e gnaissicas. A Formação Muribeca aflora geralmente nos terços inferiores das encostas dos tabuleiros do Grupo Barreiras, ocupando os sopés das mesmas.

No estado de Pernambuco os solos em pauta se for mam a partir de rochas da Formação Cabo (Figura 5) que pertence ao Grupo Pernambuco do Cretáceo Inferior. A Formação Cabo segun-

SEDIMENTOS DO HOLOCENO (FLUVIO-MARINHO)

GRUPO BROTAS (FOLHELHO)

coluvio do complexo jequié

GRANULITOS DO COMPLEXO JEQUIÉ

Figura 2 - Perfil esquemático da geologia e relevo na área do pedon 1, na estrada Nilo Peçanha-Ituberá, a 9,6 km da ponte do Rio Jequié, no estado da Bahia.

GRUPO BARREIRAS (SEDIMENTOS ARGILO-ARENOSOS)

FORMAÇÃO SÃO SEBASTIÃO (FOLHELHOS E ARENITOS)

GRUPO ILHAS (FOLHELHOS E SILTITOS)

Figura 3 - Perfil esquemático da geologia e relevo na área do pedon 2, BR-324 (Salvador-Feira de Santana) no entroncamento com a estrada São Sebastião do Passé-Candeias.

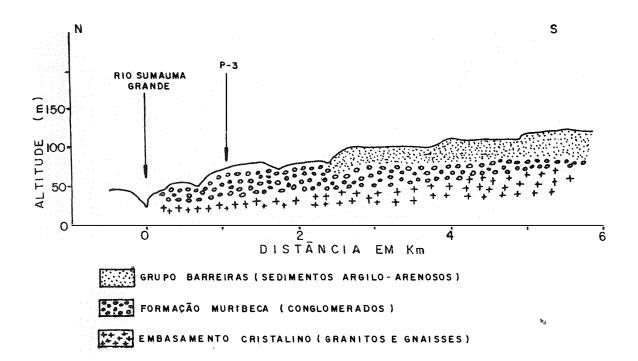


Figura 4 - Perfil esquemático da geologia e relevo na área do pedon 3, na BR-101 no trecho Maceió-Aracajú entre os quilômetros 114-115, no vale do Rio Sumauma Grande.

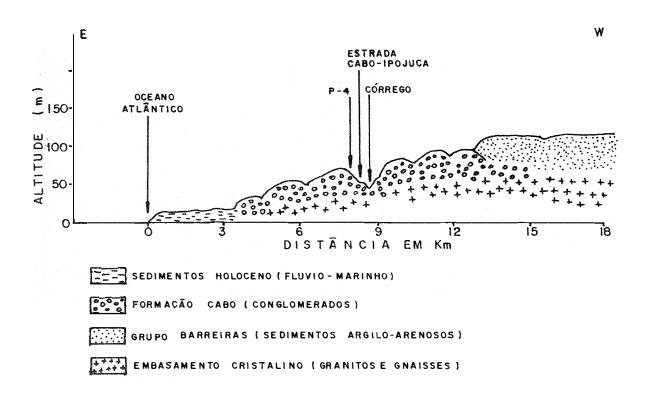


Figura 5 - Perfil esquemático da geologia e relevo na área do pedon 4, estrada Cabo-Ipojuca a 5 km de Ipojuca, no estado de Pernambuco.

do MELLO (1971) apresenta três facies: conglomerática, arcoseana e síltico-argilosa. O pedon 4 tem seu material de origem na facies conglomerática, a mais representativa da formação, que é constituída por matacões e calhaus arredondados , mal selecionados, com diâmetro variável que pode atingir até um metro e de composição granítica ou gnaíssica relacionada às rochas do embasamento cristalino regional. O cimento que liga estes seixos é arcoseano, contendo feldspato, quartzo, mi ca e uma fração argilosa caulinítica.

3.3. Geomorfologia

Na Bahia o Podzólico Álico encontra-se, principalmente, na unidade geomorfológica conhecida como Baixada Litorânea que se caracteriza por colinas rebaixadas e restos de tabuleiros com altitudes raramente superiores a 100 metros, esculpidas em arenitos, folhelhos, siltitos e conglomerados (Figuras 2 e 3). Localmente, encontra-se áreas ainda cobertas pelo Grupo Barreiras. Os interflúvios são geralmente converxos e o entalhe das ravinas das vertentes tem aspecto côncavo, dando origem a um modelado de dissecação fluvial homogêneo. O relevo resultante, nas áreas em estudo, é ondulado e suave on dulado, localmente plano, com altitudes entre 10 e 100 m.Constituído por colinas de topos arredondados, vertentes ligeiramente convexas de dezenas de metros, declividade entre 5 e 25 % e vales abertos.

Em Alagoas a área de ocorrência dos solos abrange a unidade geomorfológica dos Tabuleiros Costeiros que apresentam interflúvios planos, geralmente entalhados por canais de margens abruptas, localmente dissecados em forma de colinas convexas de topos concordantes formando um relevo ondulado. Os topos tabulares coincidem com os sedimentos do Grupo

Barreiras, enquanto que um modelado de dissecação fluvial homogênea se desenvolve através destes sedimentos atingindo as rochas do embasamento cristalino e/ou as rochas sedimentares da Formação Muribeca que formam o material de origem dos solos (Figura 4). O Podzólico Álico nesse estado ocorre em relevo suave ondulado e, principalmente, ondulado com declives variando de 5 a 25 %, com altitudes entre 10 e 100 metros, ocupando a porção das encostas que ocorrem nos sopés das elevações que mar geiam as várzeas úmidas costeiras.

No estado de Pernambuco o Podzólico Álico ocor re na unidade geomorfológica chamada por NOU et alii (1983) de Piemonte Oriental da Borborema. Esta unidade caracterizase por intensa dissecação, feições convexas, e localmente agu çadas formando linhas de cumeadas. Esta unidade geomorfológi ca abrange as partes baixas com formas colinosas convexas que se relacionam com os sedimentos da Formação Cabo, ocorrendo em areas restritas mais ou menos paralela ao litoral, faixa ao longo do contato do Pré-Cambriano com o Terciário, ou com outros sedimentos costeiros. Localmente, o modelado pode apresentar topos planos indicando presença de rochas do Grupo Barreiras que capeiam as rochas da Formação Cabo (Figura 5). Tem-se assim um modelado de dissecação fluvial homogênea resulta num relevo dominantemente ondulado, constituído colinas de topos arredondados, vertentes ligeiramente conve xas de dezenas de metros, declividade entre 8 e 25 % e vales de fundo chato e em "V" aberto. As altitudes oscilam 10 e 100 metros. Localmente, no entanto, o relevo pode ser suave ondulado ou forte ondulado este último de ocorrência mais comum.

3.4. <u>Caracterização climática</u>

A caracterização climática das áreas foi estabelecida por correlação com as estações meteorológicas mais próximas das mesmas. Na Tabela 1 tem-se uma idéia das condições climáticas reinantes nas áreas em foco.

3.4.1. Classificação do clima

De acordo com a classificação de Köppen tem-se que:

- na Bahia as areas de ocorrência dos solos em estudo se enquadram nos tipos de clima Af (pedon 1) e Am (pedon 2), que são climas tropicais chuvosos com a diferença de que no tipo Af o mês mais seco tem precipitação igual ou superior a 60 mm, enquanto que o tipo Am apresenta o mês mais seco com precipitação inferior a este valor;
- em Alagoas os solos se encontram no tipo de clima As' que é um clima tropical chuvoso com verão seco, no qual a estação chuvosa se adianta para o outono;
- e em Pernambuco os solos são encontrados em clima Am s' que é um clima tropical chuvoso de monção, com verão seco e com menos de 60 mm de precipitação no mês mais seco.

3.4.2. Regime térmico e hídrico dos solos

Baseando-se na Soil Taxonomy (SOIL SURVEY STAFF, 1975) pode-se arbitrar que somando-se 2^oC à temperatura média anual do ar, ter-se-á uma idéia da temperatura média anual do

Tabela 1 - Caracterização climática das áreas em estudos.

	Precipita	Trimestre	stre	Tempera	Temperatura média em C ^O	m Co	Classifica-
Área	çao media anual (mm)	Mais Úmido	Mais Seco	Anua1	Mês mais quente	Mês mais frio	çao cıımatı ca de Köp - pen
Pedon 1	1 750	MAM	A S 0	24	26	2.2	A£
Pedon 2	1 500	AMJ	S 0 S	24	26	22	Am
Pedon 3	1 500	МЈЈ	O N O	24	26	2.2	As'
Pedon 4	1 750	ЛЈЛ	O N O	24	26	2.2	Ams'

solo à profundidade de 50 cm. Assim procedendo para todas as áreas chega-se a conclusão que a tempera tura média anual dos solos à 50 cm atinge um valor mínimo de 26° C, isto para as áreas de menores temperaturas médias anual de ar. Como a diferença entre as médias de verão e as de inverno é inferior a 5° C, tem-se que o regime térmico dos solos é isohipertérmico.

Embora seja apenas parcialmente função do clima do ar, o regime hídrico do solo é uma importante proprieda de do mesmo. Levando-se em conta que o regime térmico dos solos é isohipertérmico e procedendo-se o estudo dos balanços hídricos das estações meteorológicas mais próximas das áreas em foco (Tabela 2), chega-se à conclusão que o regime hídrico dos solos, de acordo com a Soil Taxonomy (SOIL SURVEY STAFF, 1975), é perúdico para o pedon 1 e údico para os outros três pedons.

3.5. <u>Vegetação</u>

Este item focaliza a vegetação primária das áreas visando principalmente a obtenção de informações relacionadas com o clima atual da mesma, pois, a vegetação primária deve refletir condições relacionadas ao regime hídrico e térmico dos solos.

Na Bahia a vegetação primária que ocupava as áreas em estudo é a Floresta tropical perenifólia (pedon 1) e a Floresta tropical subperenifólia (pedon 2).

A Floresta tropical perenifólia _{OCOTT}ia em áreas de elevados índices pluviométricos, sem estação seca,re lacionados com o tipo de clima Af de Köppen. Predominava na fai

						- Property		**					
Mês	Jan	Fev	Mar	Abr	Maio	Jun	Jul	Ago	Set	Out	Nov	Dez	Ano
Estação:	Olinda -		Pernambuco	nco	L	Lat. 08 ⁰ 01	301'		Long.	34051	I .	Im = +38	
Ь	46,8	108,8	156,5	225,6	260,4	256,6	186,2	116,4	52,3	30,3	27,6	33,3	1500,8
EP	51,2	135,8	147,0	133,6	125,4	105,6	0,86	100,0	114,0	139,9	141,8	154,0	1546,3
ER	46,8	103,8	147,0	133,6	125,4	105,6	0,86	100,0	114,0	9,89	27,6	33,3	1108,7
ARM	0	0	9,5	100,0	100,0	100,0	100,0	100,0	38,3	0	0	0	547,8
Exc.	0	0	0	1,5	135,0	151,0	88,2	16,4	0	0	0	0	392,1
Def.	104,4	27,0	0	0	0	0	0	0	0	71,3	114,2	120,7	437,6
Estação:	Pilar	ì	Alagoas		Lê	Lat. 09 ⁰ 35'	, 32 '	1	Long.	35054	H -	Im = +38	
Ь	57,0	79,3	113,6	174,3	317,9	281,3	268,0	157,4	96,1	69,1	31,9	32,6	1678,5
EP	132,8	120,3	128,1	113,8	101,0	83,5	0,08	80,8	0,06	107,0	120,6	132,0	1289,9
ER	57,0	79,3	113,6	113,8	101,0	83,5	80,0	80,8	0,06	107,0	94,0	32,6	1032,6
ARM	0	0	0	60,5	100,0	100,0	100,0	100,0	100,0	62,1	0	0	622,6
Exc.	0	0	0	0	177,4	197,8	188,0	9,92	6,1	0	0	0	642,9
Dof	L	(טער	C	C	C	<u> </u>	C	0	<u> </u>	26.6	7 00	7 7 7

Continua

Tabela 2 - Continuação.

Ano	2	1556,5	1174,2	1032,7	8,769	523,8	141,5		1895,8	1266,7	1257,8	8,098	638,0	8,9
Dez	n = +37	89,5	123,2	123,2	7,4	0	0	n = +50	103,1	132,2	132,2	61,2	0	0
Nov	Im	95,3	111,3	111,3	41,1	0	0	Im	110,1	119,8	119,8	90,3	0	0
Out	38022"	64,5	9,66	9,66	57,1	0	0	38045'	119,6	107,0	107,0	100,0	12,6	0
Set	Long.	70,2	78,0	78,0	92,2	0	0	Long.	96,2	87,0	87,0	100,0	9,5	0
Ago	L	109,8	70,7	70,7	100,0	39,1	0		119,6	79,0	79,0	100,0	40,6	0
Jul	19,	186,6	0,69	0,69	100,0	117,6	0	12035'	234,9	73,7	73,7	100,0	161,2	0
Jun	Lat. 12 ⁰ 19	190,0	73,0	73,0	100,0	117,0	0	Lat.	216,0	80,8	80,8	100,0	135,2	0
Maio	La	327,8	88,9	88,9	100,0	238,9	0	- Bahia	301,2	94,1	94,1	100,0	207,1	0
Mar Abr		213,2	102,0	102,0	100,0	11,2	0	Conde	279,8	108,8	108,8	100,0	72,1	0
	ia	103,9	120,8	103,9	0	0	16,9	sco do	129,2	128,1	128,1	1,1	0	0
Fev	- Bahia	61,4	113,5	61,4	0	0	16,9	Francisco do Con	102,5	119,6	110,7	0	0	8,9
Jan	Catú	44,3	124,2	51,7	0	0	72,5	São	83,6	136,6	136,6	8,2	0	0
Mês	Estação:	Q,	EP	ER	ARM	Exc.	Def.	Estação:	<u>Q</u>	EP	ER	ARM	Exc	D ef

Continua

Tabela 2 - Continuação.

	ט מוו	FeV	Mar	Abr	Maio	Jun	Jul	Ago	Set	Out	Nov	Dez	Ano
Estação:		Itaparica	- Bahia	a	La	Lat. 12 ⁰ 55	55 t	Lo	Long. 38 ⁰ 30'	30301	inch diskinosan	Im = +2	7
Д	82,7	8,65	131,7	237,9	362,0	192,3	248,4	108,1	94,6	88,9	87,2	35,7	1729,3
EP 1	159,0	140,1	144,9	127,4	105,8	85,5	78,6	87,0	100,0	124,1	139,1	156,8	1448,3
ER	82,7	59,8	131,7	127,4	105,8	85,5	78,6	87,0	100,0	124,1	139,1	43,2	1164,9
ARM	0	0	0	100,0	100,0	100,0	100,0	100,0	94,6	59,4	7,5	0	662,5
Exc	0	0	0	10,5	256,2	106,8	169,8	21,1	0	0.	0	0	564,4
Def	76,3	80,3	13,2	0	0	0	0	0	0	0	0	113,6	283,4
Estação:		Ilhéus - B	Bahia		La.	Lat. 14 ⁰ 48	48,	Long.	g. 39 ⁰ 04'	04'		Im = +64	4
) 1	149,2	186,7	262,9	287,6	210,4	164,8	174,2	134,8	113,3	114,5	183,9	151,6	2133,9
EP 1	147,8	128,4	131,2	109,8	95,1	79,9	72,8	82,0	83,0	111,3	119,8	140,0	1301,1
ER 1	147,8	128,4	131,2	109,8	95,1	79,9	72,8	82,0	83,0	111,3	119,8	140,0	1301,1
ARM 1	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	1200,0
Ехс	1,4	53,3	131,7	177,8	115,3	84,9	101,4	52,8	30,3	3,2	64,1	11,6	832,8
Def	0		C	0	0				0	0		C	C

armazenada no solo; Exc = excesso de água; DEP = deficiência hídrica; Im = índice de umidade. P = precipitação; EP = evapotranspiração potencial; ER = evapotranspiração real; ARM = água

xa litorânea de Salvador para o sul do estado, em altitudes in feriores a 100 metros. É uma formação arbórea, de porte considerável apresentando árvores com alturas que variam entre 20 e 30 metros, muito rica em epifitas, musgos, liquens e bromeliáceas. É constituída por fanerófitas ombrófilas, geralmente apresentando os brotos foliares sem proteção à seca, e folhagem sempre verde em todos os estratos. Entre as espécies arbóreas podemos citar: Hymenae sp (jatobá), Nectandra sp (canela), Tabebuia obtisulfolia (tabebuia), Laecythis pisonis Camb. (sapucaia) e Manilkara elata (Er. All.) Monal. Entre as palmáceas destacam-se a Attalea funifera (piaçava) e a Elaeis guianensis (dendê), esta última bastante explorada para extração de óleo.

A Floresta tropical subperenifólia ocorria nas áreas da zona úmida costeira que apresenta de 1 a 2 meses cos e que se relaciona na Bahia com o tipo climático Am de Köp pen. É uma formação arbórea também exuberante, porém menos den sa e alta, rica em espécies, com presença comum de lianas e epí fitas e de muitas bromeliáceas. Caracteriza-se por perder parcial mente as folhas no extrato arbóreo superior durante a estação se ca. Destacam-se no extrato arboreo as seguintes espécies: Parkia pendula Benth (visgueiro), Lecythis pisonis Cambess (sapucaia), Bowdichia virgilioides H.B.K. (sucupira), Sloanea obtusifolia (Moric), Schum (marmajuda), Caraíba densifolia Mart. (camaçari), Byrsonima sericea DC. (murici-da-mata), Sclerolobium den siflorum Benth (ingá-de-porco), Gallezia forazema Moq. (pau d'alho), Copaifera sp. (pau-óleo), Hymenaea latifolia Hayne (jatoba), Octea sp. (louro), Attalea sp. (pindoba), Simaruba amara Aubl. (praiba) e outras. Entre as epífitas tem-se bromiláceas e orquidáceas: Cattleya sp., Oncidium sp., Cyrtopo dium andersonii R.Br., Encyclia sp., Catasetum sp. e várias outras.

Nos estados de Alagoas e Pernambuco a vegetação primária nas áreas ocupadas pelos solos foi a Floresta tropical subperenifólia, com as mesmas características da flores ta subperenifólia da Bahia. É a vegetação que ocupava a zona costeira úmida desses estados que apresenta 1 a 2 meses secos, e cobria extensas áreas dos tabuleiros bem como do Cristalino na região do Litoral e da Mata. Relacionando-se nesses dois estados com os tipos climáticos As' e Ams' de Köppen.

A floresta subperenifólia nas \tilde{a} reas desses so los quase não \tilde{e} encontrada mais, pois, cedeu lugar \tilde{a} cultura da cana-de-açucar e \tilde{a} s pastagens.

4. MATERIAL E MÉTODOS

4.1. Descrição e coleta dos solos

A descrição e coleta dos pedons foram realizadas em trincheiras, tendo sido seguidas as normas do SOIL SUR VEY MANUAL (1951) e do Manual de Método de Trabalho no Campo, SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO (1976).

A designação dos horizontes está de acordo com a definição e notação de horizontes e camadas do solo adotada pelo SNLCS (EMBRAPA, 1984).

Coletou-se cerca de 2 kg de terra por horizonte, num total de 38 amostras. Em todos os locais foram fei tas coletas de amostras de rochas, suposto material de origem do solo, assim como de amostras indeformadas dos horizontes B e C para análises micromorfológicas.

Descrições completas dos pedons com suas anál \underline{i} ses físicas, químicas e mineralógicas de rotina são apresent \underline{a} das no Apêndice.

4.2. Análises rotineiras de laboratório

No laboratório, as amostras dos diversos horizontes coletados foram secas ao ar, destorroadas e passadas através de peneiras com malha de abertura de 2 mm. A fração maior que 2 mm foi lavada, peneirada e guardada para posterior análise mineralógica. A fração inferior a 2 mm que constitui a terra fina seca ao ar, foi usada para as determinações físicas, químicas e mineralógicas descritas a seguir. Quando necessário, os resultados das análises foram referidos à terra fina seca à $105^{\circ}\mathrm{C}$.

4.2.1. Análises físicas

As análises físicas foram realizadas no Serviço Nacional de Levantamento e Conservação de Solo - EMBRAPA, seguindo os métodos constantes do Manual de Métodos de Análises de Solos (EMBRAPA, 1979), que contém as descrições deta - lhadas dos métodos utilizados. Deste modo, foram realizadas as seguintes determinações: densidade aparente (método SNLCS 1.11.1); densidade real (método SNLCS 1.12); porosidade total; composição granulométrica (método SNLCS 1.16.2); argila dispersa em água (método SNLCS 1.17.2); grau de floculação ; equivalente de umidade (método SNLCS 1.8); retenção de umidade a 1/10 e a 1/3 atmosfera (método SNLCS 1.6) e a 15 atmosfera (método SNLCS 1.5); e limites de consistências.

Todos os métodos anteriores são de rotina nos trabalhos de levantamento de solos à exceção dos limites de consistências em cujas determinações foram utilizadas amostras de terra fina seca ao ar nos seguintes métodos:

a. Limite de liquidez (LL) - foi seguido o método de SOWERS (1965), com utilização do aparelho de Casagrande, (método SNLCS 1.27).

- b. Limite de plasticidade (LP) os ensaios foram realizados com a utilização da placa de vidro de superfície esmerilhada (método SNLCS 1.28).
- c. Índice de plasticidade (IP) foram obtidos pela diferença entre os respectivos valores dos LL e LP.
- d. Limite de contração (LC) foi utilizado me<u>r</u> cúrio metálico, cápsula de contração, cuba de vidro e placa de vidro com três pinos metálicos, conforme especificações do Método de Ensaio do DNER (1972).
- e. Grau de contração (GC) foram obtidos pela relação da diferença entre os volumes inicial e final da pastilha, após secagem desta em estufa a 105°C, para o volume inicial e foram expressas em porcentagem (DNER, 1972).
- f. Inverso do grau de contração dado por 1/GC, que é uma relação cuja ordem de grandeza se aproxima daquele fornecido pelo índice COLE.
- g. Índice de atividade da fração argila ca $\underline{1}$ culado de acordo com SKEMPTON (1953), sendo o valor da rela ção entre o índice de plasticidade (IP) e a porcentagem de a \underline{r} gila total.

4.2.2. Análises químicas

As determinações de rotina, foram realizadas no SNLCS-EMBRAPA, de acordo com os métodos do Manual de Análises de Solos (EMBRAPA, 1979): pH em água e KCl N (métodos SNLCS 2.1.1. e 2.1.2.); carbono orgânico (método SNLCS 2.2.); nitrogênio total (métodos SNLCS 2.4.1.); bases trocáveis (métodos SNLCS 2.7.1, 2.9, 2,10, 2,11, 2,12 e 2,13); alumínio

trocável (métodos SNLCS 2.7.1 e 2.8); teor de H^+ + Al^{+++} (m<u>é</u> todo SNLCS 2.15); e ataque sulfúrico (métodos SNLCS 2.22 , 2.23.3, 2.24, 2.25 e 2.26).

As extrações referentes ao ataque sulfúrico além de terem sido realizadas na terra fina de todos os horizontes, foram também feitas na fração de argila (<0,002 mm) dos principais horizontes dos solos.

4.3. Outras determinações químicas

4.3.1. Ferro e alumínio pelo citrato-bicarbonato-di - tionito (CBD)

A extração foi feita de acordo com o método de JACKSON (1973), a partir de 2 g de terra fina e todas as amos tras foram submetidas a duas extrações de 15 minutos. Uma alíquota do extrato do CBD, foi submetida ao tratamento do HNO3 mais $\rm H_2SO_4$ concentrados para destruição do citrato. Após o que determinou-se o ferro livre pelo método colorimétrico com ortofenantrolina e o alumínio com o aluminon.

4.3.2. Ferro e alumínio pelo oxalato de amônio

Utilizou-se 0,5 g de terra fina e a extração foi feita com oxalato de amônio 0,2 M a pH 3,0, por um período de 4 horas de agitação, de acordo com o método de McKEAGUE e DAY (1966). A determinação do ferro e alumínio após tratamento de uma alíquota com HNO₃ e H₂SO₄ concentrados, foi feita colorimetricamente do mesmo modo que no método anterior.

4.3.3. Aluminosilicatos amorfos por dissolução selet \underline{i}

Os aluminosilicatos amorfos foram determinados na fração argila (<0,002 mm), que havia sofrido a remoção prévia do "ferro livre" pelo método do citrato-bicarbonato-ditionito (CBD). O silício e o alumínio extraídos com KOH 0,5 N fervente (JACKSON, 1973), foram determinados colorimetricamen te empregando-se o método do molibdato de amônio para o silício e do aluminon para o alumínio. O resíduo do ataque por KOH foi submetido a uma extração com o CBD, sendo a leitura do ferro feita no colorímetro pelo método da ortofenantrolina.

Como pela análise térmica diferencial não foi constatada a presença de gibbsita nos solos, os materiais amor fos foram calculados pelos fórmula: % SiO $_2$ + % Al $_2$ O $_3$ /O,79.

4.3.4. Determinação do potássio total

O potássio total da fração argila (< 0,002 mm) foi extraído por digestão com ácido fluorídrico mais ácido perclórico, de acordo com PRATT (1965). Utilizou-se 0,1 g de argila e na determinação do teor de potássio utilizou-se o fotômetro de chama. A percentagem de ilita (mica) presente na amostra foi determinada baseando-se em JACKSON (1973), isto é, assumindo que 1% de K2O corresponde a 10% de ilita. Nesta determinação não foi descontado o potássio proveniente dos feldspatos, pois, somente os pedons 3 e 4 apresentam traços deste mineral na fração argila.

4.4. Análises mineralógicas

O estudo mineralógico dos solos foi feito com o auxílio de métodos óticos, usando-se o microscópio polari - zante e estereoscópico, da difração de raios-X, da análise térmica diferencial, e de análises químicas com o intuito de se proceder a análise qualitativa e semi-quantitativa dos diversos minerais presentes nos solos coletados.

4.4.1. Preparo do material

No preparo do material foram eliminados os sais solúveis, matéria orgânica e "ferro livre" de todas as amostras. Os métodos empregados foram os propostos por JACKSON (1973). Sendo os sais solúveis removidos por ace tato de sódio pH 5,0, a matéria orgânica por H₂O₂ 30 % e o ferro livre pelo método citrato-bicarbonato-ditionito. Após esses tratamentos as amostras foram saturadas com sódio, usan do o NaCl 1N. A seguir, procedeu-se o fracionamento das mesmas por tamizagem via úmida, centrifugação e sedimentação, sen do separadas as seguintes frações: areia (2-0,05 mm), silte (0,05-0,002 mm) e argila (<0,002 mm).

Tendo em vista o estudo mineralógico dos óxi—dos de ferro, novas amostras foram submetidas aos tratamentos anteriores sem a eliminação do "ferro livre". Essas amostras, sem a remoção do "ferro livre", foram dispersas com NaOH 1N e fracionadas do mesmo modo anterior. As frações argila (<0,002 mm) foram tratadas com NaOH 5M à quente para concentração dos óxidos e hidróxidos de ferro (NORRISH e TAYLOR, 1961), para posteriores análises mineralógicas dos mesmos.

4.4.2. Métodos óticos

Utilizados na identificação e determinação quantitativa dos componentes mineralógicos das frações areia fina (0,05-0,20 mm), areia grossa (0,20-2 mm), cascalho (2-20 mm) e calhaus (> 20 mm), frações essas separadas durante a análise granulométrica dos solos. Essas determinações foram realizadas no SNLCS-EMBRAPA, seguindo os métodos constantes do Manual de Análises de Solos (EMBRAPA, 1979).

A identificação das espécies minerais foi realizada de acordo com WINCHELL e WINCHELL (1959), mediante o uso de microscópio estereoscópico, microscópio polarizante, radiação ultravioleta (UV mineral lights) e microtestes químicos (PAR FENOFF et alii, 1970). Para exame no microscópio polarizante foi feita montagem do material com líquidos de índice de refração conhecido, (método SNLCS 4.22, 4.3.1., 4.3.2., 4.5.1., 4.5.2. e 4.5.3.

A determinação quantitativa consistiu na avalia ção volumétrica mediante exame do material sob microscópio estereoscópico, para averiguação das percentagens estimadas em papel milimetrado (método SNLCS 4.2.2. e 4.4.1.).

4.4.3. Difração de raios-X

Os estudos qualitativos dos minerais por difração de raios-X foram realizados nas amostras de rochas, frações silte (0,05-0,002 mm) e argila (<0,002 mm) das amostras de solos coletados.

. As amostras de rochas previamente trituradas e da fração silte desferrificadas foram analisadas, por difração

de raios-X, em forma de pó (não orientadas), usando-se uma lâmina especial de alumínio. Essas amostras foram irradiadas no intervalo de 2 a 62º0, utilizando-se um aparelho de raios-X de marca Rigaku, com radiação de cobre, filtro de níquel, corrente do tubo de 40 Kw e 20 mA, variação do ângulo 20 de 2º/min e velocidade do registrador de 10 mm/min. A identificação qualitativa dos minerais presentes foi realizada através de suas reflexões mais intensas de acordo com BROWN (1961), JACKSON (1973), WARSHAW e ROY (1961) e JOINT COMMITTEE ON POW DER DIFFRACTION STANDARDS (1974).

O estudo qualitativo dos principais óxidos de ferro presentes nos solos, foram realizados em amostras da fração argila, que não sofreram a remoção do "ferro livre", após tratamento com NaOH 5M à quente (KAMPF e SCHWERTMANN, 1982). Analisou-se essas amostras do mesmo modo anterior, is to é, em forma de pó (não orientada), utilizando-se uma lâmina especial de alumínio. A irradiação foi no intervalo de 20 a 60° 2 θ, usando-se o mesmo aparelho anterior.

A identificação qualitativa dos minerais presentes na fração argila desferrificada foi feita baseando-se na saturação das amostras com potássio e magnésio, glicolação e efeitos do aquecimento em diversas temperaturas. Os méto-dos seguiram as recomendações de JACKSON (1973). Na satura -ção da amostra com magnésio utilizou-se o MgCl₂ IN e na saturação com potássio o KCl IN. A glicolação foi realizada com uma solução de etileno-glicol a 10 %, em amostras previamente saturadas com magnésio.

A partir desses tratamentos foram confeccionadas lâminas orientadas das amostras com o auxílio de uma pipeta. Essas lâminas foram secas à temperatura ambiente (25°C).

As lâminas saturadas com potássio secas à 25° C, após irradiadas foram submetidas a sucessivos tratamentos térmicos. Tendo sido aquecidas à 110° C, 350° C e 550° C por um tempo de duas horas e novamente irradiadas ao raios-X.

Para a obtenção dos difratogramas de raios-X dos diversos tratamentos empregados utilizou-se do mesmo aparelho anterior com tubo de cobre e filtro de níquel. Todas as amostras foram irradiadas no intervalo de 2 a 40° 2 θ e a identificação dos minerais baseou-se nos espaçamentos basais de acordo com os autores anteriormente citados.

4.4.4. Análise térmica diferencial

A análise térmica diferencial foi usada para a determinação quantitativa da caulinita na fração argila(<0.002 mm). O método utilizado foi o preconizado por DIXON (1966), sendo empregado o Al₂O₃ calcinado como material inerte para a diluição das amostras. Analisou-se os padrões de caulinita di luídas a 10, 20, 30 e 40%. Determinou-se então as áreas dos picos da caulinita padrão pelo método da pesagem e traçou-se um gráfico com as percentagens conhecidas da caulinita padrão ver sus as áreas dos picos (Figura 6).

A fração argila desferrificada e saturada com magnésio foram diluídas a 50 %, com Al_2O_3 calcinado, e aquecidas da temperatura ambiente até 700°C . Determinou-se depois as áreas dos picos das diversas amostras por pesagem e por comparação destas áreas com a da curva padrão de caulinita, foram determinadas as percentagens da caulinita presentes nas amostras.

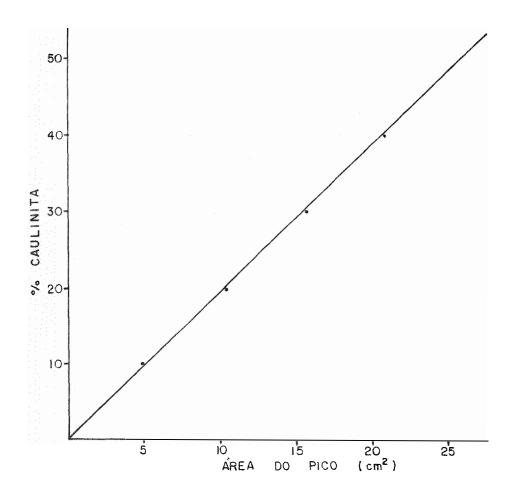


Figura 6 - Curva padrão para determinação das percentagens de caulinita.

O aparelho utilizado nessas análises foi da marca Rigaku com registrador gráfico e a velocidade de aquecimento foi de $10^{\rm O}/{\rm minuto}$, em atmosfera normal.

4.5. Análises micromorfológicas

Para a análise micromorfológica foram coleta - das amostras indeformadas dos horizontes B e C, tendo sido anotada a posição vertical original das amostras no perfil. Foram, ainda, coletadas amostras das rochas material de origem dos solos.

Na impregnação dessas amostras seguiu-se o método proposto por MENDES <u>et alii</u> (1973), com algumas modific<u>a</u> ções e adaptações, utilizando-se como solução impregnante uma mistura da resina Polylite T-208 diluída em duas porções de monômero de estireno e como catalizador foi utilizado 3 a 4 gotas de Peroxol G-10, para cada 150 ml da mistura.

As amostras foram previamente secas ao ar e de pois colocadas em estufa à uma temperatura de 40° C por três ou quatro dias; a impregnação foi realizada em vácuo à uma pressão de 27 polegadas de mercúrio, através do uso de uma bomba elétrica, que foi mantida durante todo o processo de adição da solução impregnante o que foi realizado lentamente gota à gota. Terminada a adição da solução as amostras foram deixadas no vácuo por determinado tempo e depois à temperatura ambiente até completar as reações de polimeriza - ção, após o que as amostras impregnadas foram levadas à estufa à uma temperatura de 40° C por dois dias.

Foram feitos cortes horizontais e verticais nas amostras impregnadas e secas, tendo-se conseguido secções que

foram polidas em uma face e fixadas sobre uma lâmina de vidro, utilizando-se o bálsamo do Canadá. Estas amostras sofreram novo corte ficando com a espessura de 1 mm. Procedeu-se então o desgaste e polimento das mesmas com o emprego de óxido de alumínio até se conseguir a espessura de 30 µm.

O estudo das lâminas delgadas foi feito com o auxílio do microscópio polarizante e seguiu-se as recomenda - ções de BREWER (1976).

5. RESULTADOS E DISCUSSÃO

5.1. Características morfológicas

As principais características morfológicas dos solos estão relacionadas na Tabela 3.

O pedon 1, apesar de se encontrar atualmente em um regime de umidade perúdico, apresenta a espessura do so lun (A + B) menor do que os pedons 3 e 4, que se encontram em clima údico com 1 a 2 meses secos. A explicação para este fato, talvez esteja na diferença do material de origem, pois, o pedon 1 é desenvolvido a partir de folhelho que normalmente dá origem a solos argilosos, relativamente pouco permeáveis e consequentemente pouco profundos. Enquanto que os pedons 3 e 4, são desenvolvidos de conglomerado formado de calhaus e matações provenientes de granito e gnaisse, que devido ao seu elevado teor de quartzo, dão origem a solos mais permeáveis e profundos.

Os mosqueados em quantidades comum e abundante que aparecem no topo do horizonte B dos pedons 1, 2 e 4, indicam ligeiro acúmulo de água durante certa época do ano.

Tabela 3 - Principais características morfológicas dos solos.

Horizon	Profundi	Cor	r úmida	Estrutura	Superfi cie de	Cerosi	Cerosi Fragmen	
tes	dade-cm	Matriz	Mosqueado			dade	rocha (%)	vações
				Pedon 1				
Al	0-10	10YR 3/1	į	Mod,P a G,Gr	i	i	i	Fendas da
Ш	10- 18	10YR 3/5	í	Mod,P a G,Gr	ţ	1	ì	base do E
er er	18- 30	Variegada: 7,5YR 4/4,5YR 4/5 e 2,5YR 4/5		F, G, Pr (BS)	ı	Po, Fr	ı	ate o Bt2, com 0,5 a 1,0 cm de
Btl	30- 45	2,5YR 4/6	(A, 5YR 4/5 e Po,7,5YR 4/4)	F, G, Pr (BS)	ŧ	C, Mod	ţ	largura
Bt2	45- 65	2,5YR 4/8	(A, 3,5YR 4/5 e Po,10YR 5/4)	F, M, Pr (BS)	ì	A, Mod	f	
Bt3	65-90	1YR 4/5	(1YR 5/6	F,MP e M,BS	ì	A, F	i	
Bt4	90-125	1YR 3,5/5	Po, 10YR 5/2 e 10R 4/8	F,MP e M,BS e BA	3	С, Б	7	
BC	125-145	1YR 3/4	(Po, 10YR 5/2 e 10R 4/8)	Mod, P, BS	1	C, Mod	10	
C	145-180	2,5YR 4/6	(Po 10R 4/8 e 10YR 8/2)	Fr, P, BS	ŧ	Po, Fr	>50	
Crl	180-210+	1YR 4/4	í	i	ŧ	Ī	I	
Cr2	+ 500	10R 4/4	(7,5Y 7/4)	Ĭ	ŧ	i	ı	52.

Continua

Tabela 3 - Continuação.

and the state of t	ADDER AND RECORDS OF DESCRIPTIONS OF PROPERTY AND ADDERSONS AND ADDERSONS OF THE PROPERTY OF T	The plantage and the property to company the plantage and	TO THE PROPERTY OF THE PROPERT	e (Palata) priming distribution in a construction in an exemply for existence and appropriate for the person were				
Horizon	Profundi	Cor	úmida		Super		Fragmen	Obser-
t. e	dade-cm	Matriz	Mosqueado	Estrutura	fricção	sıda- de	tos de rocha (%)	
				Pedon 2				
Ap	0- 10	10YR 5/6	ł	Mod, MP, BS	ı	ı	ţ	Menos de
BA	10- 25	4YR 3/4	j	Mod, P, BS	ţ	P, Fr	ł	5 % de
Bt1	25- 40	2,5YR 3/6	C, 10YR 5/3	F,P, BS e BA	Ť	C, Fr	ı	plinti ta
Bt2	40- 65	2,5YR 3/6	A, 10YR 5/3	F,P, BS e BA	ı	C, Mod		entre o BC
Bt3	65-107	2,5Y 6,5/4	A, 2, SYR 4/6	Mod, P, Pr (BA)	1	A, Mod	í	e 2Crl.Fen
BC	107-128	2,5Y 6/3	A, 2,5YR 4/6	Mod, MP, Pr (BA)	Ą	A, Mod	Ť	das desde a
2Cr1	128-137	10YR 4/4	A, 2,5YR 3/6 e 2,5 YR 4/8	Fr, P, BS	ŧ	Po, Fr	40	até o BC, com
2Cr2	+ 500	Variegada: 7,5YR 5/8 5Y 7/3 e 3,5YR 5/8		Pedon 3	1	1	1	0,5 a 1,0 cm de largura
Ap	0-10	SYR 3/3	į	Mod, M e G, Gr	i	ì	ı	Fendas da ba
ВА	10- 22	2,5YR 3/4	C, 2,5YR 4/6	Fr, MP e P, Pr (BS)	i	Po, Mod	1	se do Ap até
Bt1	22- 43	2,5YR 4/5	C, 10R 4/6	Fr, MP e P, Pr (BS)	Í	A, Mod	Ŧ	0,5 a 1,0 cm
Bt2	43-67	Variegada: 7,5YR 5/6 e 2,5YR 3/6		Fr, MP e P, Pr (BS)	Ро	A, Mod	1	de largura

Continua

Tabela 3 - Continuação.

Horizon	Profundi	Cor	úmida	Super-	Super-	Cero-	n e	
t e	dade-cm	Matriz	Mosqueado	Estrutura	ficie de fricção	sida de		vações
Bt3	06 - 29	Variegada: 10YR 6/2,10R 3/6 e 7,5YR 5/4	i	Fr. Mp e P. Pr (BA e BS)	U	A, Mod	.1	
Bt4	90-115	Variegada: 10YR 6/2,10R 4/6 e 10YR 6/6	1	Mod, P e M, BA e BS	U	C, Mod	ī	
ВС	115-180	Variegada: 10YR 5/2,10R 4/8 e 10YR 5/6	t	Fr, P, BS	A	C, Mod	ŧ	
C1	180-250+	10YR 7/4	C, 1YR 4/8	i	ı	ı	>30	
	+ 500	10YR 7/4	(1YR 4/8	***	I	Ī	ě	
Cr	1 4 200	2,5Y 7/4 e 7,5YR 4/8	2,5YR 4/8	ī	I	I	1	
				Pedon 4				
Ap	0- 12	10YR 3/	3	Mod, M, Gr	3	ı	ı	Fendas da
ВА	12- 30	10YR 5/4	A, 7,5YR 5/6	Fr, MP e P; Pr (BS)	ı	Po, Fr	ا	base do Ap
Btl	30- 62	2,5YR 4/8	C, 7,5YR 5/4	Fr, MP e P, Pr (BS)	i	Po, Fr	ı	com menos
Bt2	62-88	2,5YR 4/8	C, 10YR 7/4	Mod, P e M BS	ı	A, Mod	ı	de 0,5 cm de largura
Continua								

Tabela 3 - Continuação.

Horizon	Horizon Profundi		Cor úmida	T + 11 + 12 + 12 + 12 + 12 + 12 + 12 + 1	Super	Cero-	Fragmen	Obsers
te	dade-cm	Matriz	Mosqueado	Esciucuia	fricção		rocha (%)	vações
Bt3	88-117	2,5YR 4/8	(Po, 10YR 8/2)	Fr, P, BS	**	C, Mod	10	
BC	117-168	2,5YR 4/8	(C, 10YR 8/2)	Fr, P, BS	i	Po, Fr	15	
IJ	168-200+	(Variegada:] e 2,5YR 4/8)	10YR 8/2, 10R 6/8	Maciça	1	i	25	

= comum; Po = pouco; () = mosqueado devido a intemperização da Mosqueado: A = abundante; C rocha.

Estrutura: F = forte; Mod = moderada; Fr = fraca; MP = muito pequena; P = pequena; M = média; G = grande; Gr = granular; BA = blocos angulares; BS = blocos subangulares; Pr = prismática; () = composta de.

= abundante; C = comum; Po = pouca. Superfície de Fricção: A Cerosidade: A = abundante; C = comum; Po = pouca; F = forte; Mod = moderada; Fr = fraca.

Os horizontes Bt3 e BC, do pedon 2, apresentam cores cinzento-brunado com cromas baixos, evidenciando uma zo na que fica parcialmente saturada com água durante a estação chuvosa. Quando se relaciona esses solos com a paisagem, observa-se que esses horizontes representam a zona de passagem da água oriunda do fluxo basal. A plintita no contato entre os horizontes BC e 2Crl (arenito), reforça a evidência do fluxo de água nessa camada do solo.

O pedon 3 apresenta nos horizontes Bt3, Bt4 e BC áreas com o predomínio de cores cinzento-brunado ou bruno-acinzentado com cromas 2, indicativas de cores de redução. Dentre as possibilidades para explicação dessas cores cinzentas uma poderia ser devido à condições pretéritas quando o nível de base (Rio Sumauma) era mais elevado, no início do entalhe do vale, e havia acúmulo de água nessa zona do solo.

Os mosqueados com cores vermelhas (matizes 10R, 1YR e 2,5YR) do pedon 3 ocupam um volume relativamente grande dos horizontes Bt2, Bt3, Bt4 e BC, lembrando uma plintita incipiente. Entretanto, não se constatou nessas manchas vermelhas partes que apresentem endurecimento irreversível ou que tenham consistência firme ou muito firme, quando úmido, características da plintita.

As cores bruno-claro acinzentado e amarelo claro acinzentado que ocorrem no horizonte C do pedon 3, assim como a cor branca dos horizontes Bt3, BC e Cl do pedon 4 são resultantes do intemperismo "in situ" da rocha rica em feldspatos e quart zo, minerais estes que não apresentam ferro na sua constituição.

A estrutura prismática que ocorre no pedon 3 parece ter sido herdada do material de origem, pois, o horizonte C e,principalmente, o BC já apresentam uma estrutura em blocos subangulares que depois evolui, nos horizontes superiores, para pris-

mática composta destes blocos. A estrutura prismática é melhor desenvolvida no horizonte B, onde ocorre maior número de fendas durante os ciclos alternados de umedecimento e secamen to dos solos.

A abundância de superfícies de fricção no pedon 3, que diminuem até desaparecerem à medida que se aproxima da superfície do solo, indica que nos primeiros estágios da gênese deste pedon ocorrem argilo-minerais expansivos em maiores quantidades do que nos outros três pedons.

A cerosidade, de acordo com as descrições de cam po (Tabela 3), indicam que a fração argila desses solos sofreu translocação de modo considerável. Entretanto quando se compara as Tabelas 3 e 4, nota-se que nem sempre a maior incidência de cerosidade corresponde ao horizonte com maior acúmu lo de argila.

Os fragmentos de rocha (Tabela 3), ainda encontrados nos solos, evidenciam um intemperismo não muito severo apesar das condições tropicais de intensa precipitação e elevadas temperaturas a que se acham submetidos os solos.

Os pedons focalizados nessa pesquisa mostram uma perceptível expansão volumétrica, principalmente no horizonte B, como demonstram as fendas nos mesmos. As fendas indicam, ainda, que durante determinado período do ano esses solos estão sujeitos a secamentos, até mesmo o pedon 1 que se encontra em regime hídrico perúdico.

Deste modo, através das propriedades morfológicas dos solos fica evidenciado ciclos alternados de umedecimento e secamento, ainda que por curtos períodos.

5.2. Características físicas

a. Composição granulométrica

Os dados da Tabela 4 mostram a predominância das frações argila e silte sobre a fração areia, mesmo nos so los desenvolvidos a partir dos conglomerados como os pedons 3 e 4.

Os solos desenvolvidos de folhelhos, pedons 1 e 2, apresentam o predomínio da fração areia fina sobre a areia grossa, como constatado pela relação areia fina/areia grossa dominantemente maior que 1,0. Nos solos desenvolvidos de conglomerado ocorre o inverso. Os solos apresentam altos teores de argila no horizonte Bt, cujos valores oscilam entre 49 e 76 %, os quais contrastam com os relativamente baixos teores do horizonte A e E. Quando se compara a percentagem da fração argila dos horizontes superficiais com os subsuperficiais, vê-se que os pedons 2, 3 e 4 apresentam mudança textural abrupta.

De acordo com o Soil Taxonomy (SOIL SURVEY STAFF, 1975) o pedon 1 satisfaz a definição de mudança textural abrup ta quando se considera a transição do horizonte BE para o Btl. Entretanto, pelo Sistema Brasileiro de Classificação esse pedon não se enquadra na definição dessa propriedade, cujo conceito necessita de algumas adaptações.

O horizonte transicional BA dos pedons 2, 3 e 4 corresponde a um horizonte B textural. A notação de horizontes adotada pelo SNLCS (EMBRAPA, 1984) desaconselha o emprego do sufixo "t" em horizontes transicionais. En tretanto, levando-se em conta que nos pedons 3 e 4 os horizontes BA apresentam o dobro de argila dos horizontes sobrejacen

Tabela 4 - Composição granulométrica (em %), relação silte/argila e relação areia fina/ areia grossa.

Horizon-	Profundi-	man e ma pro-processo estamonio monocomo de como como como como como como como com	Frações	(em mm)	And the second s	Argila	% Silte	% areia fina
tes	dade (cm)	Areia Gros- sa (2-0,20)	Areia Fi Silte na (0,05- (0,20-0,05) 0,002)	Silte (0,05- 0,002)	Argila To- tal (< 0,002)	urspersa em agua (%)	% Argila	% areia grosssa
-			Ped	Pedon 1				
Al	0- 10	1.5	19	4.0	26	17		ις,
ш	10- 18	23	18	34	25	91	***************************************	8,0
BE	18- 30	16	1.8	32	34	5.6	5.0	<u> </u>
Btl	30- 45	. o .	11	23	5.7	2.5		<u> </u>
Bt2	45-65	7	2	2.0	76	0	(A)	1.0
Bt3	65-90		2	2.7	7.0	0	7	2,0
Bt4	90-125	~	4	37	5.7	0	9.0	2.0
BC	125-145	. 2	9	37	5.5	0	. (°.	3,0
C	145-180	٦	1.0	49	4.0	0	1.2	10.0
Crl	180-210+	г	2	5.7	4.0	0	· ·	2.0

Continua

Tabela 4 - Continuação.

			3) 3) 3) 4 4	(cm mm)		Algabara Algabara	OUT TO A	o alcta illa
tes		Areia Grossa An (2 - 0,20) (0,	Areia Fina (0,20-0,05)	Silte (0,05- 0,002)	Argila Total (< 0,002)	onspersa em agua (%)	% argila	% areia gros- sa
CALL THE STEEL PROPERTY OF THE PROPERTY CONCERNMENT OF THE PROPERTY OF THE PRO	u minderia de desta de la composição de la	Andreas de la companya del la companya de la companya del la companya de la compa	A CONTRACTOR OF THE PROPERTY O	Pedon 2	annava opposite ett kannava ka	minimater (* 1915), statistisk skiller		WAY can advantage and a supplication to equipment to the supplication of the supplicat
Ap	0 - 10	ťΩ	40	30	2.7	23		10 10
BA	10- 25	2	26	2.3	49	4.3	S .	1.5.0
Btl	25- 40	, — š	19	2.3	5.7	49	† · 0	19,0
Bt2	40- 65	Н	1.7	2.1	61	5.7	(G)	13,0
Bt3	65-107	-	1.7	2.3	59	5.3	 	17,0
BC	107-128	П	13	2.5	61	5.5		13.0
2Cr1	128-137	80	43	15	39	35	7	8.
				Pedon 3				
Ap		37	18	22	23	10	1,0	0,5
BA	10- 22	1.8	11	16	5.5	4.7	0,3	9,0
Bt1	22- 43	∞	S	13	. 74	6.2	0	9.0
Bt2	9	2	9	14	7.5	6.3	<. ○	7.7
Bt3	06 - 29	16	9	14	64	5.7	5.0	6.0
Bt4	90-115	18	7	18	5.7	34	12.0	† ° 0
BC	115-180	22	∞	2.2	4 8	2	0,5	4,0

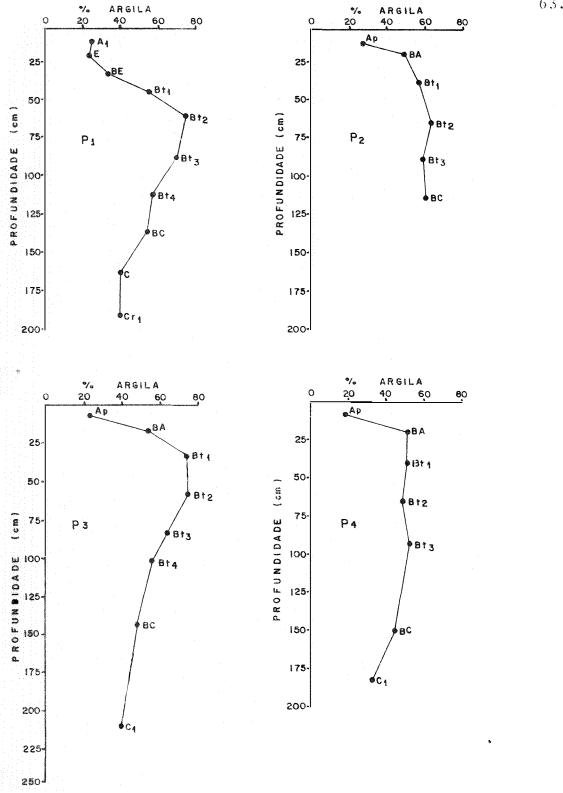
Continua

Tabela 4 - Continuação

Howiton	D. C.		Frações (em mm)	cm mm)	-	Argila	% silte	% areia fina
tes	dade (cm)	Areia Grossa (2 - 0,20)	Areia Fina Silte Argila to (0,20-0,05) (0,05-0,002) (<0,002)	Silte (0,05-0,00)	Argila total (<0,002)	urspersa em agua (%)	% argila	% areia gros- sa
C1	180-250+	2.4	10	2.7	3.9	The company of the co		
C2	- 200	2.9	12	2.2	37	∞:	9.	0,4
Cr	+ 700	46	12	24	18	/	10° p	, C
				Pedon 4				
Ap	0- 12	3.5	24	23	1.8	1.4	10	r
BA	12- 30	18	<u>C1</u>	19	C.	4.2	emedia and and and and and and and and and and	[~ []
Btl	30 - 62	17	12	20	5.7	7.7	TOP I	<i>€</i> *0
Bt2	62-88	1.7	11	23	49	9	ю· •	0 ,0
Bt3	88-117	16	7	25	52	2	9	7.0
BC	117-168	12	10	34	44	2	8.	8.0
C1	168-200+	24	11	32	33	2:	6.0	. 5.0

tes, vê-se que esta recomendação não contribui para um melhor esclarecimento genético destes horizontes.

A Figura 7 mostra a distribuição da fração argila com a profundidade. Observa-se que os solos apresentam um aumento brusco no teor de argila entre os horizontes A e B e nos pedons 1. 5 e 4 ocorre maior concentração da fração argila nos horizontes Bt, decrescendo no horizonte BC. No pedon 2 a maior concentração da fração argila ocorre no horizonte Bt e BC. O acúmulo de argila no horizonte BC deste pedon pode ser devido a sua posição, uma vez que este horizonte está assente diretamente sobre o arenito que dificulta a percolação da âgua.


b. Argila dispersa em água

Os pedons 1 e 4 (Tabela 4) apresentam distribuição semelhante de argila dispersa em água. Os valores mais elevados são observados nos horizontes superficiais e decrescem com a profundidade. Nos pedons 2 e 3 a argila dispersa em água apresenta valores mais elevado que os dois pedons anteriores e de uma maneira geral crescem com a profundidade.

Os valores de argila dispersa em água nesses solos não correlacionam com os valores de ApH, que são altos e negativos, variando de -1,0 a -2,0 (Tabela 7), mesmo nos horizontes apresentando valores nulos para a argila dispersa.

c. Relações silte/argila e areia fina/areia grossa

Nos horizontes Bt os valores da relação silte/ argila variam de 0,2 a 0,6, sendo menores que nos horizontes A e C (Tabela 4), evidenciando o acúmulo de argila nos mesmos.

7 - Variação em profundidade dos teores de argila nos quatro pedons.

A relação areia fina/areia grossa tem sido frequentemente utilizada para se detectar indícios de descontinuidades litológicas (BARSHAD, 1964). De uma maneira geral, os pedons(Tabela I) mostram um aumento gradativo desta relação com a profundidade significando homogeneidade no material de origem. Por outro lado, nos pedons le 3 ocorre diferenças nos horizontes profundos o que pode ser atribuído a variações dentro do material de origem, por ser ele de natureza sedimentar.

d. Densidade aparente e porosidade

A densidade aparente e a porosidade desses solos variam em torno de 1,14 a 1,50 e de 42 a 50 % (Apêndice) res pectivamente, valores estes compatíveis com a maioria dos solos com B textural.

Normalmente os valores da densidade aparente aumentam no horizonte B, enquanto que os valores da porosidade geralmente diminuem quando se passa do horizonte A para o B. Tal fato se deve a própria natureza mais densa do horizonte B desses solos.

e. Constantes de umidade

Observa-se que sob as tensões de 1/10, 1/3 e 15 atm (Tabela 5) a percentagem de água retida pelas amostras dos solos é sempre maior nos horizontes B e C, sugerindo que o teor de argila e o tipo de argilo-mineral presente são os principais fatores influenciando a retenção de água. Nota-se que os horizontes Bt são os que apresentam as maiores quantidades de água retida nas três tensões.

Os pedons 1 e 3 apresentam no horizonte Bt2 per centagens semelhantes de carbono, silte e argila.

Tabela 5 - Constantes de umidade e teores de carbono, silte e argila dos principais ho

Horizon	Profun-		010		Constante	s hidricas	(%)
tes	didade (cm)	Carbono	Silte	Argila	1/10 atm	1/3 atm	15 atm
			Pe	edón 1			
Al	0- 10	1,98	4.0	26	42,5	31,6	19,7
Bt2	45- 65	0,47	20	76	63,8	58,7	38,9
U	145-180	0,19	49	4.0	61,0	51,4	27,7
			P(Pedon 2			
Ap	0- 10	1,05	30	2.7	43,8	29,6	15,8
Bt2	40 - 65	0,50	21	61	61,0	51,1	35,1
2Cr1	128-137	0,29	15	39	49,1	36,9	23,6
			P ₍	Pedon 3			
Ap	9- 10	1,14	2.2	23	31,6	25,9	15,0
Bt2	43- 67	0,47	14	7.5	56,8	51,3	35,1
C1	180-250+	0,10	27	39	41,6	38,2	23,3
			PE	Pedon 4			
Ap	0- 12	1,28	23	18	34,1	25,3	14,2
Btl	30- 62	0,39	20	51	56,2	50,5	32,6
C1	168-700+	700	6 2	2 2		7 7	7 0 7

Entretanto, a retenção de água nas três tensões é sempre mais elevada no pedon 1, sugerindo diferenças na mineralogia das frações argila e silte desses dois solos.

f. Limites de consistência

A Tabela 6 apresenta os resultados dos limites de liquidez, plástico e contração, índice de plasticidade e do índice de atividade da fração argila dos principais hori-zontes.

Os limites de liquidez e de plasticidade apresentam valores sempre mais elevados nos horizontes Bt. No horizonte Bt2 do pedon l'o limite de liquidez aproxima-se de loo, significando que determinado peso de solo retém igual peso de água, sem perder as características do estado pastoso.

Os valores dos limites de contração dos horizontes A e B são semelhantes e aumentam no horizonte C, possivelmente devido a presença de um maior teor de argilo-minerais 2:1.

O índice de plasticidade apresenta valores bas tante altos nos horizontes Bt, mostrando que a faixa de umida de na qual os solos permanecem em estado pastoso é bem ampla, indicando elevada retenção de água pelas partículas do solo.O horizonte A desses solos, refletindo a influência da matéria orgânica, mostram os mais baixos valores para este índice.

O inverso do grau de contração desses solos apresentam valores ao redor de 0,02 no horizonte Bt, sendo sempre menores que os dos horizontes A e C. Tal fato evidencia a influência da matéria orgânica e argilo-mineral presente.

grau de contração e indice de atividade da fração argila dos principais horizontes. Tabela 6 - Limites de liquidez, plasticidade e contração, índice de plasticidade, inverso do

Horizontes	Profundidade		Limites (%)		Indice de	Inverso de	Indice de ati
110114011603	(CIII)	Liquidez	Plasticidade	Contração	piastici" dade	grad de com tração	ção argila
			Pedon	1			- Advantaglar agraphism construction for the project of the projec
Al	0- 10	41	2.6	87	15	0.03	9.0
Bt2	45- 65	6 7	62	18	35	0.02	6.0
S	145-180	62	41	23	21	20.0	0
			Pedon	2			
Ap	0- 10	33	23	16	10	0,04	चं , 0
Bt2	40- 65	77	43	15	34	0.02	9.0
2 C r l	128-137	49	30	- T	19	0,03	ιΛ: D:
			Pedon	3			
Ap	0- 10	30	20	15	10	0.04	6,4
Bt2	43- 67	8 0	44	20	36	0.02	0,5
C1	180-250+	0 9	NP	19	NP	0,02	j
			Pedon	4			
Ap	0-12	30	NP	16	NP	0,04	!
C1	168-200+	53	NP	2.7	NP	0,03	
STATE OF THE PARTY							the second secon

NP = não plástico.

C indice de atividade da fração argila apresenta valores entre 0.4 e 0.6. Os valores dos horizontes Bt estão entre 0.5 e 0.6, os quais segundo UEHARA e GILLMAN (1981) estão no limite entre materiais de baixa e alta expansão (solos com indice de atividade menor que 0,5 são tratados como materiais de baixa expansão).

5.3. Características químicas

As principais características químicas dos solos são mostradas nas Tabelas 7, 8, 9 e 10. Entretanto, outros resultados que complementam esses dados são apresentados no Apêndice.

a. Reação do solo (pH)

Com exceção do pedon 2, a reação desses solos é fortemente ácida com valores de pH entre 4,8 a 5,2. No pedon 2 a reação é moderamente ácida variando o pH de 5,1 a 5,8.

O pH em $\rm H_2O$ é sempre mais baixo nos horizontes superficiais evidenciando a influência dos maiores teores de matéria orgânica. O pH em KCl é bem mais baixo que o pH em $\rm H_2O$ e praticamente permanece inalterado com a profundidade do solo, apresentando valores entre 3,6 e 3,8.

As diferenças entre o pH em KCl e em $\rm H_2O(\Delta~pH)$ desses solos apresentam valores elevados e negativos, variando de -1,0 a-2,0. Os valores mais baixos ocorrem nos horizon tes superficiais. Segundo UEHARA e GILLMAN (1981) um valor de Δ pH elevado e negativo associado a altos teores de alumínio trocável é indicativo de solos ricos em minerais onde predominam cargas permanentes. Normalmente esses minerais são instáveis em solos de reação ácida e liberam grande quantidade de alumínio.

Tabela 7 - Algumas características químicas dos solos.

and the second second	Saturação Carbono Al ^{***} Orgânico		1.98										45 1,05	ં	ं		ာ်
سادست واستداده ومعادر والمعادد	Valor S		14	~ ~;	₹7	ري د :	737	77	ঝ	ŀΛ	-,		31	21	70		77
Actions of the Contraction of th	CTC (pH 7,0)		다. 8년	် (၈) (၈)	13,4	13,7	19,3	17,5	18,1	15,0	16,4		10,0		15,9		+·/T
elemental de la companya de la comp	± ±	-	ri σ	· 00.7	2,6	1,7	2,0	e, r	s; o	1,3	1,4		4,4	က် တ (5,5	0	0,0
	A1 +++		4,	n H	10,3	16,4	16.8	15,6	16,6	12,6	14,4		2,5	တ တွ်	3	C)	,
33	Valor S		1,6	, 4,	5,0	9,0	0,7	9,0	0,7	0,0	0,6		3,1	8,0	5,5	Ç	,
meq/100	· + ×	Pedon 1	0,12	90.0	0,12	0,25	0,30	0,24	0,29	0,18	0,27	Pedon 2	0,34	0,22	77.0	2,1	1110
	Mg ++		1,0	2:0	- 15		2	κ;	23	23	23		1,1	2,8	2,0	7 7	;
	Ca+		1,3	ວ ດ ວ ເບ	Ö	o	0	0	0	0	0		1,6	0,7	ω, Ο	α C:	,
2	5 0		ار ساد	- [17.	-1,4	-1,4	-1,3	-1.4	-1,2	-1,2		-1,3	2,5	-1,7	0	1
2,5)	KC1 IN		3,7	, 10	8,0	.τ. ∞	3,8	ω,	بر ش	ڊ. 8	3,8		3,8	ω . co	ω, ∞	cc.)
pH(1:2,	0 ² H		8,0	4 4 0 %	S.	5,2	5,2	5,1	ં	ે.	5,0		5,1	ν. 	S.	رن 1	•
Profun-	didade (cm)		0- 10	18- 30	30- 45	45- 65	65- 90	90-125	125-145	145-180	180-210+		0- 10	10- 25	25- 40	40- 65)
Hori-	zonte		ĀĪ	a E	Bt 1	Bt2	Bt3	Bt4	200	ر ن	Crl		Ąb	BA	Bt1	Bt2	1

Continua

Tabela 7-Continuação.

Hori-	Profun-	Hd	pH (1:2,5)	176			теq/100 g	g 0					210	
zonte	didade (cm)	н ² о	KCJ JN		Ca ‡	Mg ++	**************************************	Valor S	A1 7++	† ₁₅	CTC (pH 7,0)	Valor S	Saturação Carbono	Carbono Orgânico
	- Principal Control of the Control o		and the same of th	A THE COLUMN TWO IS NOT THE COLUMN TWO IS NO	Appropriate to the second seco	Control to the second	Pedon 3		-				-	
Ąδ	0- 10	4,9	3,9	-1,0	1,4	1,1	0,36	2,9	1,2	3,7	7,8	37	50	71.1
æ.	10- 22	ر در در	5,7	1,1	ار ان د	9,0	0,27	เก๋า	พั	ν, c	ത. പ്	on •	8	61.50°
8t1 %+2	22- 43	ν, α Ο '~	., r.	 4		J. C.	000	ນ໌ເ	3 C	,, c	a v S	J 2	- 4 CC	5 5 5
Bt.3	67- 90	5,2	3,7	i d	, r.	1.3	0,16	2,7	11,8	1,7	15,6	17	nd GO	0,55
Bt4	90-115	5,2	3,6	-1.6	6,0	1,6	0,21	2,8	13,0	8,0	16,6	17	C3 C3	0,26
ജ	115-180	5,1	3,6	2,5	5,0	1,7	0,16	2,5	15,1	0,1	18,6	13	. 86	0,14
ರ	180-250+	o, o	3,5	-1,5	0,5	1,7	0,11	2,4	14,8	۳,	18,5	13	38	0,10
C5	200	0,5	3,5	-1,5	0,5	2,1	0,08	2,8	16,4	8,0	20,0	1.4	S 20	0,10
Cr	700	5,5	3,5	-2,0	2,0	8,0	60,0	12,2	∞ ့	٥,4	21,4	23	42	89,0
							Pedon 4							
Ap	0- 12	δ, 8	3,8	-1,0	1,3	0,5	0,14	2,5	1,6	4,3	υ, α	30	39	1,28
≨ '	12- 30	44. 80.	3,6	-1,2	1,2	0,5	0,06	8,	6,7	2,4	12,1	S	Ę,	0,71
Btl	30- 62	ν, Ο .	5,7		0,0		0,0 0,0	۲, کر	တ တ	ο . ∞ .	12,0	C1 (90 (90 (0,39
5t2	88 - 79	2,5		Ü-	۰ مر		0 0 1 0		11,4	ی در	13,0	⊇;	<u>ي</u> د	27,0
ກຸນ	117-117	٠,٠ ١,٠	, w	t 1	ว์เ	1,1) () ()	, . 	4 t- 5 t- 5 c-) r	7.0	∃	Θαα νο α	12,0
ដថ	168-200+	, v,	,,,	-1.3	00	1,1	0.08	-i -i	13,3	, L.	16.4	101) (O)	0,05
:		: =							ومروده ملعيان والمراجد والمتمال والمتمالية	-g-upadnistrativistadistrativistadistrativista	· epainte a la composition de la composition della composition del	Principal de la company de	uda uniden ir versiteranitas hela etymophasiteiphasis	
ph ph	o pri = prikci	06H.M.				Λ	7 X X							
S # Ca	a++ + Ng++	+ + +	Na ⁺			Ċ	[+++	100 ×	100 × A1 +++	*			
<u>"</u>	. S + A1	; ;;;;				53	saturação com Al	H AT	-	-	ļ			
									+++ ++	ν: +				

 b. Cátions trocáveis, soma e saturação de bases

Os teores de cálcio nos solos são baixos, menores que 2,0 meq/100 g, e decrescem com a profundidade. Os teores de potássio aumentam com a profundidade e apresentam valores médios, entre 0,12 e 0,40 meq/100 g, à exceção do pedon 4 cujos valores são baixos. Os teores de magnésio no pedon 1 são baixos, pois, a soma cálcio mais magnésio atinge valores em torno de 0,3 meq/100 g ao longo de todo o pedon.

Nos pedons 2, 5 e 4 os teores de magnésio são altos, maior que 1,0 meq/100 g, e aumentam com a profundidade, sendo nos horizontes subsuperficiais maiores que os teores de cálcio. Este aumento do magnésio com a profundidade do solo, com a relação Ca⁺⁺/Mg⁺⁺ atingindo valores inferiores a 1,0, parece fato comum nos solos com B textural (CARVALHO, 1976).

Segundo BARSHAD (1960) o ion hidrogênio adsorvido na superfície dos minerais pode ser substituído por alumínio e/ou magnésio. Assim, o magnésio e o alumínio trocáveis ocorrem nesses solos em consequência da acidez elevada que promove a dissolução destes elementos em minerais que os contenham. O magnésio e o alumínio passam então a ocupar parte das posições de troca que eram bloqueadas pelo hidrogênio, além de ligarem-se as cargas negativas permanentes dos solos.

O magnésio trocável, segundo o autor anterior, pode ser substituído por outro ion hidrogênio e o processo se repetirá até que o magnésio seja eliminado. Esta talvez seja a explicação para os menores teores de magnésio nos horizontes superficiais desses pedons, onde a ação do intemperismo é mais intensa.

A soma de bases (S) nos horizontes superficiais varia entre 1,6 e 3,1 meq/100 g, os quais normalmente aumentam com a profundidade. O pedon 1 apresenta nos horizontes inferiores valores muito baixo para a soma de bases, evidenciando que o material de origem deste solo é pobre em bases.

A saturação de bases (V) é inferior a 37%, conferindo aos solos um caráter distrófico. Os valores mais elevados da saturação de bases ocorrem nos horizontes superficiais devido a adubação e/ou reciclagem de bases pela matéria orgânica, e de uma maneira geral decrescem com a profundidade.

c. Alumínio trocável e saturação com alumínio

O alumínio trocável e a saturação com alumínio aumentam com a profundidade (Tabela 7). O alumínio trocável é muito elevado nesses solos, variando de 1,2 a 16,8 meq/100 g. Os menores valores são encontrados nos horizontes superficiais, talvez devido a adubações que possam ter ocorrido no manejo dos solos para o cultivo da cana-de-açúcar. Todavia mes mo no pedon 1, que se encontra sob vegetação florestal secundária, o alumínio trocável em torno de 4,0 meq/100 g nos horizontes superficiais contrasta com valores variando de 10,3 a 16,8 meq/100 g no horizonte Bt.

Os teores de alumínio trocável nos horizontes Bt dos solos são mais elevados que 8,4 meq/100 g e invariavel mente aumentam com a profundidade.

Ainda que o método do KCl 1 N extraia uma certa quantidade de alumínio amorfo "não trocável" (AMEDEE e PEECH, 1976), sabe-se que o alumínio ativo do solo é formado pelos alumínios trocáveis, silicatos aluminosos não cristalinos e por polímeros de alumínio hidroxilados presentes nas in
tercamadas dos argilo-minerais (WADA, 1980), conferindo a esses solos um alto potencial de toxidade pela presença de ele
vados teores de alumínio.

Quando se compara os valores de alumínio troc $\underline{\hat{a}}$ vel com os de Δ pH, nota-se que os maiores teores deste elemento correspondem aos Δ pH mais negativos.

A saturação com alumínio, normalmente aumenta com a profundidade, e varia de 29 a 87% no horizonte A e 67 a 96% no horizonte Bt. O pedon 1 apresenta os valores mais elevados, próximos a 100%.

d. Carbono orgânico

Os solos apresentam teores maiores que 0,60% (1% de matéria orgânica) de carbono orgânico até a profundida de de 40 cm, que coincide geralmente com o horizonte Bt1. Os maiores valores de carbono orgânico ocorrem no pedon 1, talvez por se encontrar ainda sob vegetação florestal secundária. Por outro 1ado, os outros três pedons com valores menores foram submetidos a intensos cultivos.

Os altos teores de alumínio trocável desses so los podem contribuir para uma maior estabilização da matéria orgânica, pela formação de complexos organo-metálicos estáveis, como observado por TOKASHIRI e WADA (1975). Todavia, um fato que chama a atenção nesses solos é que os menores teores de alumínio trocável encontram-se nos horizontes com os maio res teores de carbono orgânico, indicando que a matéria orgâ-

nica tem muita influência na diminuição do teor de alumínio trocavel nesses horizontes.

e. Capacidade de troca de cátions (CTC)

Esta característica determinada pelo método da soma inclue cargas permanentes e dependentes do pH, e representa a CTC a pH 7,0. A CTC efetiva (soma de S + Al⁺⁺⁺) dá uma idéia aproximada da CTC em condições naturais (pH de cam po) dos solos.

A CTC (pH 7,0) apresenta valores mais baixos nos horizontes superficiais (7,8 a 12,0 meq/100 g solo), os quais aumentam com a profundidade para valores entre 12,0 e 20,0 meq/100 g solo (Tabelas 7 e 8). Nos horizontes superficiais as cargas negativas do complexo de troca são compensadas por hidrogênio e alumínio, enquanto que nos horizontes Bt e C essas cargas são ocupadas principalmente pelo alumínio.

A CTC (pH 7,0) da fração argila apresenta valores elevados nos horizontes superficiais, que decrescem nos horizontes Bt e voltam novamente a aumentarem nos horizontes C e Cr. Esta distribuíção evidencia a influência de dois componentes, a saber:

- matéria orgânica concentrada na superfície do solo;
- e argilo-minerais de maior atividade concentrados nos horizontes inferiores.

A CTC (pH 7,0) da fração argila nos pedons 1, 3 e 4 apresentam alguns valores inferiores a 24 meq/100 g de argila, mesmo levando-se em conta a contribuição da matéria orgânica, silte e areia. O menor valor encontrado foi de 20

Tabela 8 - Capacidade de troca de cátions (CTC) e teores de carbono e argila dos solos.

1	Account of the Control of the Contro	0,0	meq/100	α de solo	meq/100 g	g de argila
	Carbono	Argila total	CTC* (pH 7,0)	CTC ** Efetiva	CTC (pH 7,0)	CTC Efetiva
			Pedon 1			
A1	1,98	26	11,8	5,7	45,4	21,9
田	1.54	2 2 2	10,3	5,2	41,2	20,8
BE	0,65	3.4	5,6	6,5	27,3	19,1
Bt1	0,61	27	13,4	10,8	23,5	18,9
Bt2	0,47	97	18,/	17,0	24,6	22,4
Bt3	0,24	7.0	19,5	17,5	27,8	25,0
Bt4	0,20	r0 L/	17,5	16,2	30,7	28,4
BC	0,14	5.	18,1	17,3	32,9	31,4
C	0,19	40	15,0	13,1	37,5	32,7
Crl	0,12	40	16,4	15,0	41,0	37,5
			Pedon 2			
Ap	1,05	2.7	10,0	5,6	37,0	20,7
BA	0,73	49	13,5	2,6	27,5	19,8
Bt1	0,63	5.7	15,9	11.6	27,9	20,3
Bt2	0,50	6.1.	17,4	13,6	28,5	22,3
Bt3	0,32	5.9	17,2	13,8	29,1	23,4
BC	0,34	61	19,7	16.7	32,3	27,4
	0,29	39	13,0	6,6	33,3	25,4
Continua						

Tabela 8 - Continuação.

	0/0		med/100	g de solo	meq/100 g	de argila
001120116	Carbono	Argila	CTC* (pH 7,0)	CTC** Efetiva	CTC (pH 7,0)	CTC Efetiva
And a property of the contract	ender eine eine eine eine eine eine eine ei		Pedon	lon 3	non-victoria del productivo del prod	
Ap	1,14	23	7,8	4,1	33,9	17,8
BA	0,32	5.5	11,8	9,9	21,4	12,0
Btl	0,66	7.4	14,5	12,1	19,6	16,3
Bt2	0,47	7.5	16,5	14,4	22,0	19,2
Bt3	0,33	6.4	15,6	14,5	24,4	22,6
Bt4	0,25	5.7	16,6	15,8	29,1	27,7
BC	0,14	48	18.6	17,6	38,7	36,7
C1	0,10	39	18,5	17,2	47,4	44,1
C 2	0,10	37	20,0	19,2	54,0	51,9
Cr	0,08	18	21,4	21,0	118,9	116,7
			Pedon	lon 4		
Ap	1,28	18	8,4	4,1	46,7	22,8
BA	0,71	51	12,1	7,6	23,7	19,0
Btl	0,39	5.1	12,0	11,2	23,5	22,0
Bt2	0,22	49	13,6	12,7	27,7	25,9
Bt3	0,21	52	15,2	14,5	29,2	27,9
BC	0,15	4.4	16,2	14,9	36,8	28,6
C1	0,05	33	16,4	14,9	49,7	45,1
*CTC (pH 7,0)	$(0) = S + A1^{+++}$	+ H + + +	CTC**	Efetiva = S +	A1 +++	

Π + *CTC (pH 7,0) = S + A1

meq/100 g de argila que ocorre no horizonte Bt1 do pedon 3. Como os quatro pedons descritos representam o conceito central dessa classe de solos em clima tropical, torna-se ne cessário admitir CTC (pH 7,0) com valores menores que 24 meq /100 g de argila para a mesma. Deste modo, essa classe deve abranger solos com argila de atividade média e alta no horizonte bt.

A CTC efetiva do solo (Tabela 8) apresenta uma distribuição análoga a CTC (pH 7,0). A CTC efetiva da fração argila apresenta os menores valores nos horizontes—superficiais A, E, BE, BA e Btl. Estes valores aumentam com a profundidade dos solos e são maiores que 16 meq/100 g argila na maior parte do horizonte B textural.

f. Relações ${\rm SiO_2/Al_2O_3}$ (Ki), ${\rm SiO_2/R_2O_3}$ (Kr) e ${\rm Al_2O_3/Fe_2O_3}$

A distribuição da ${\rm SiO}_2$, ${\rm AlO}_3$ e ${\rm Fe}_2{\rm O}_3$, obtidos pelo ataque sulfúrico, pode ser mais facilmente analisada através de suas relações moleculares (Tabela 9).

O ataque sulfúrico foi conduzido na terra fina e fração argila de alguns horizontes. As relações moleculares Ki e Kr da terra fina em comparação com as das frações argila são muito semelhantes e mostram as mesmas tendências. To davia os valores para a relação ${\rm Al}_2{\rm O}_3/{\rm Fe}_2{\rm O}_3$ na fração argila são bem menores que os da terra fina, sugerindo que o ferro está concentrado na fração argila, fato reforçado pela análise mineralógica da fração areia que mostra o predomínio de quartzo e quase ausência de compos tos de ferro.

Os valores do Ki nesses solos variam de 2,1 a 2,9, ocorrendo os valores mais altos nos horizontes BC e

horizonte						
Horizonte	Terra f	ina seca ao	ar	Fração	argila	(<0,002 mm)
	Ki	Kr	A1203/Fe203	Ki	Kr	A1203/Fe203
	destruction of the state of the					
A1.	2,0	1,6	3,6	ਹ ਹ	7.7	2,4
Ш	2.1	1,6	3,9	2,5	1,8	2.5
BE	2,2	1,8	3,9			
Bt1	2,5	1,8	4,2			
Bt2	2,4	2,0	4,9	2,7	1.8	2.2
Bt3	2,5	2,0	4,8			
Bt 4	2,5	2,0	4,1			
BC	2,6	2,1	3,9			
C	2,4	1,1	5,4	2,4	1,7	54
Crl	2,4	2,1	ર, પ			
			Pedon 2			
Ap	2,4	1,3	2,00	2,8	1,8	1,8
BA	2,5	2,0	3,8			
Btl	2,5	2 , 0	4,0			
Bt2	2,6	2,1	4,2	5,9	1,9	1.9
Bt3	2,6	2.0	3,3			
BC	2,8	2,1	3,0			
2Cr1	2,4	1,8	2,7	3,0	1,8	1,4
Continua					,	

Tabela 9 - Continuação.

- Anna Militer et principale et (Spale de especial de la Spale de						
Horizonte	Terra	fina seca a	o ar	Fração	o argila (<0,002 mm)	
o de de la companya	Kî	Kr	A1203/Fe203	Ki	Kr A1203/Fe203	1
			Pedon 3			1
Ap	2,5	2, 2	6,6	3,0	1,8	
BA	2,2	2,0	8.1			
Bt1	2.3	2,0	6,6			
Bt2	t . 2	2, 5	10.5	2,1	1,7	
Bt3	. ა	7,0	0,6			
Bt4	2.9	2,5	7.0			
BC		2,5	8,8			
C1	2,6	2,4	5, 5	2,4	2.0	
C2	\sim i	2,4	Γ, Θ			
$C\mathbf{r}$		2.8	2,0			
			Pedon 4			
Ap	5, 5	2,6	4,4	2.3	1.9	
BA	♡.	2,1	6.7			
Btl	2,3	2,0	6,8	2,2	1,8	
Bt2	•-	2,1	8, 3			
Bt3		2,1	8,7			
BC	2,3	2,1	7.7			
C1	2,4	2, 2	9,8	2,3	2.0 5,4	
		and the state of t	e de la company de la comp			

C. Normalmente o Ki aumenta com a profundidade. No horizon te Bt os valores mais baixos para o Ki ocorrem no pedon 4 com valores em torno de 2.5. enquanto que o pedon 3 apresen ta os valores mais elevados, ao redor de 2.6. Como o índice Ki está geralmente relacionado à constituição mineralógica da fração argila é de esperar que nesses solos predomine a caulinita acompanhada de argilo-minerais 2:1.

A relação Kr é relativamente uniforme dentro de cada pedon, ocorrendo os menores valores nos horizontes superficiais.

A relação Al₂O₃/Fe₂O₃ de uma maneira geral au menta com a profundidade. Os menores valores para essa relação ocorrem nos horizontes A, E, BE; BA e Btl, indicando que o alumínio decresceu em relação ao ferro. Tal fato pode ser explicado com base nos produtes de solubilidade destes elementos. Nesses horizontes ocorem os maiores teores de matéria orgânica, podendo o pH atingir valores menores que 4,0. Sob tais condições o alumínio é potencialmente mais móvel que o ferro (LOUGHNAN, 1969).

A plintita que ocorre na base do pedon 2 (Tabela 10), apresenta relativamente altos teores de ferro (9,4 e 20,5%), indicando uma concentração de ferro devido à migra ções verticais e/ou laterais. Os altos teores de ferro contrastam com valores baixos de ${\rm SiO}_2$ e ${\rm Al}_2{\rm O}_3$ conforme mostram as relações Kr e ${\rm Al}_2{\rm O}_3/{\rm Fe}_2{\rm O}_3$ extremamente baixas.

O mosqueado de cor vermelha que aparece no <u>pe</u> don 3 mostra teores de ferro três vezes mais alto que a matriz (partes esbranquiçadas) do horizonte Cr₂ (Tabela 10), evidenciando uma concentração diferenciada de ferro nestes mosqueados.

Tabela 10 - Resultados do ataque sulfúrico e relações Ki, Kr e $\mathrm{Al}_2\mathrm{O}_3/\mathrm{Fe}_2\mathrm{O}_3$ de partes s<u>e</u> lecionadas dos pedons 2 e 3.

Horizonte	Descrição da amostra	Si0 ₂	A1203	Fe ₂ 0 ₃	Ti02	Κi	K	A1203 Fe203
Area de contacto entre os horizon - tes BC e 2Crl	Plintita en- durecida	3,6	Pedon 3,5	20,5	0,2	1,7		0,3
Area de contracto entre os horizontes BC e 2Crl	Plintita semi-consol <u>i</u> dada	2,0	2,9	9,4	0,2	5,9	•	С
$\operatorname{Cr} 2$	Mosqueado de cor vermelho (1YR 4/8,úmi do)	12,7	Pedon 6,5	5,4	i:) 0	3,3	C1	1,9
Cr2	Parte esbran quiçada (10YR 7/4)que envolve o mos queado	12,6	7,0	1,8	0,3	3, 1	2,6	6,1

5.4. Mineralogia

a. Distribuição do ferro e alumínio

Os valores de ferro extraído pelo citrato-bicarbonato-ditionito (Fe-CBD) normalmente aproximam-se dos va lores do ferro extraído pelo ataque sulfúrico, que equivale ao ferro total (VETTORI, 1969).

Em alguns horizontes, principalmente no Bt,os valores do Fe-CBD são bem menores que os do ataque sulfúrico (Tabela 11). Esta diferença se deve aos seguintes casos:

- compostos de ferro "livre" que resistem a extração pelo CBD;
- ao ferro que faz parte da estrutura dos silicatos;
- e ao ferro que se encontra nas intercamadas dos argilo-minerais 2:1,

A distribuição do ferro e alumínio do ataque sulfúrico e CBD com a profundidade são idênticos nos quatros pedons. Sendo mais baixos nos horizontes superficiais, aumentando nos horizontes Bt e decrescendo novamente nos horizontes C. Isto sugere que o ferro e o alumínio movimentam - se juntamente com a fração argila, pois, os maiores teores de argila coincidem com os maiores teores desses dois elementos. A relação Fe-CBD/argila total constante com a profundidade vem reforçar tal fato.

O ferro extraído pelo oxalato de amônio (Fe-Ox) apresenta valores menores que o Fe-CBD. Os teores do Fe-Ox são mais elevados nos horizontes superficiais e diminuem com a profundidade dos solos.

- Ferro e alumínio na fração terra fina (<2 mm) pelo ataque sulfúrico, CBD e oxalato de amônio, e relações derivadas dos mesmos. Tabela 11

HOY:	Dmfind:	Ataque	Ataque com H ₂ SO ₄	CBD	, 	Oxalato	de Amônio	l	,	Rela	ıções
zonte	dade (cm)	Fe ₂ 0 ₃	A1203	Fe ₂ O ₃	A1203	Fe ₂ • 3	A1203	Ferro Alumini "Ativo""Ativo"	Ferro Aluminio Ativo'''Ativo''	Fe ₂ O ₃ CBD Argila total	Al ₂ • ₃ CBD Argila total
					ed	on 1					
A1	-0	r.	r .	•• ∞ ′		0,	ν	•	, 2	۲,	0,
지 C ''	10- 18	., < ., <	∞ ~ , ~	7,61		1,03	0,52	0,39	0,22 0,22 0,25	0,10	6,08
Bt.1	0 - 0	r .	•	, ,	, 0	, ω,	, ,	, T	, ,	, .	, 0
Bt2	5- 6		ب	, ',	, 2	0	,	, L	, _–	, 0	, 0
Bt3	5-9	. 5		. 3		9,	9,	٦,	,	0,	,0
Bt4	0 - 12			∞	5,	,	,	٦,	, 2	٦,	0,
BC	25 - 14			0,	0,	,	,	,	, 2	Ι,	0,
U	5 - 18	•	9	4,	5	4,	5,	0,	, 2	١,	0,
Crl	80 - 21	•	0,	0,	,	4,	5,	0,	, 2	١,	0,
Cr2	20	\Box	Ω	, 7	,	4,	, 6	,	, 2	О	Q
Cr3	70	\Box		0,	, 0	, 3	,5	0,	, 2	О	
					Pedo	<u>n 2</u>					
Ap	0-1	3,3	∞	•	7			•		0,13	0,08
$B\overline{A}$	10- 25	•	•	4,69	, 3	∞	4,	0, 17	, 2	٦,	0,
نه	5- 4	•	,	,5	,7	6,	, 7	۲,	, 2	Ι,	0,
Bt2	9 -0	r	7	4,		∞	ζ,	Ι,	٦,	0,	,
\downarrow	65-10	•	7	, 2	∞,	,5	5,	0,	, 2	l,	0,
BC	7-12	r	χ ∞	,5	, 2	4,	4,	0,	0,	۲,	,
2Cr1	28-13	•	, –	∞	, 2	,5	4,	,	۲,	ĺ,	,
Continua	1a										

Tabela 11 - Continuação.

	1 1	0.1	ı																		l	
The special property of the sp	ções	Al ₂ •3CBI Argila total		0,	0	0,04	, 0	, 0	0,	0,	0,	ο,		•	0,	0,	0,03	0,	0,	0,		
	Rela	Fe ₂ 0 ₃ CBD Argila total	odelinemedjanje od dajmentoje ospirjenskog osoblazanje od menodeline	0,	0,	0,06	, 0	0,	0,	0,	,	Τ,		1,	0,	0,	90,0	0,	0,	,		
	•	Ferro Aluminio Ativo'''Ativo''		ئى ئى	.7	0,21	ί. 1 Μ		ν,	, 2	M	ζ,		, 3	5,	, 2	0,36	, 3	ۍن س	, 3	, 3	
		Ferro Alumini "Ativo""Ativo"	ing and desirable to the control of	, 3	5,	0,26		, 2	٦,	٦,	,2	Τ,		, 3	5,	7,	0,24	٦,	٦,	٦,	,2	
	de Amônio	A1203	erpijisterinasyumbus jirkuustisteksjoonseys, jood	4	ζ,	0,50	, 0	,	4,	· .	δ,	,		4,	∞,	۲,	0,62	9,	, 6	4,	,3	
	Oxalato	Fe ₂ 0 ₃		,	0	1,22	· 0	-1	4	5	, V	ζ,	4	5,	4,	0,	0,69	4,	4,	4,	, 3	
	C	A1203	Pedon	5,	5,	2,67	د. با دستار	∞.	4,	∞,	δ,	7	Pedon	, 2	5,	5		۲,	7	4,	ο,	CB
	CB	Fe ₂ 0 ₃		9,	0,	4,72	, ,	60	۲,	,	2	ن ح		7,	7	· .	∞	0,	0,	, 3	1,39	O
	com H ₂ SO ₄	A1203		6	`,	23,7	\sim	· .	∞. •	∞	, ,	•			9	0	20,1	2,	4,	,		rro Oxalat
	Ataque	Fe ₂ 0 ₃	·	•		n o			•	•	^	•		r	•	•	3,8	r	•	•		аçао Fe
	Profimdi-	dade (cm)		0 = 1	0 2	22- 43 43- 67	7 - 9	90 - 11	5-18	80 - 25	S C	0 /		- 0	2-3	9 -0	∞	88-11	7-16	68 - 20	20	ivo'' = rel
	F(0 r i -	zonte	Municipal Application and an additional and a second and		₹.	Bt1 Bt2	1	نه						Ap	K	+	Bt2	4	BC	C1	C2	* Ferro"At

** Alumínio "Ativo" = relação Alumínio Oxalato/Alumínio CBD ND = Não determinado.

O ferro "ativo" (relação Fe-Ox/Fe-CBD) apresenta valores que variam entre 0,07 e 0,39, que de uma manei ra geral diminuem com a profundidade, indicando duas possibilidades a saber:

- maior grau de intemperismo nos horizontes superficiais (FOLLET et alii, 1965);
- ou influência dos maiores teores de matéria orgânica diminuindo a velocidade de cristalização dos óxidos e hidróxidos de ferro (BLUME e SCHWERTMANN, 1969).

As relações Fe-CBD/argila total mostram uma tendência para apresentarem os maiores valores nos horizontes superficiais. Segundo LEPSCH et alii (1977) os valores máximos dessa relação ocorrendo nos horizontes superficiais sugere uma concentração relativa do ferro causada pela migração preferencial da argila desferrificada devido às condições de redução. Tal fato, pode estar ocorrendo nesses solos já que todos eles mostram mosqueados resultantes de ligeira redução, principalmente no topo do horizonte B. Redução essa que mobilizaria o ferro liberando a argila, que dispersa poderia então migrar.

Os teores de alumínio do ataque sulfúrico, CBD e oxalato de amônio mostram a mesma distribuição, isto é, as percentagens desse elemento são menores nos horizontes superficiais, aumentam no horizonte Bt e depois diminuem no horizonte C. Esta distribuição mostra uma correlação muito estreita com a variação dos teores de argila, o que é reforçado pela relação Al-CBD/argila total que apresenta valores constantes com a profundidade.

Os valores do A1-Ox, entre 0,37 e 0,86%, são bem menores que os do A1-CBD que estão entre 1,20 e 3,37%.

Em resumo, a distribuição do ferro e alumínio extraíveis pelo CBD e oxalato de amônio acompanham de maneira geral os valores da fração argila. Tais resultados sugerem que a lessivagem deve ser um processo atuante na formação do horizonte B desses solos.

b. Mineralogia da fração areia

O estudo mineralógico desta fração foi realizado empregando-se métodos óticos, com o auxílio do microscó pio polarizante e estereoscópio. Os resultados são apresentados na Tabela 12.

Na fração areia como um todo predomina e quar<u>t</u> zo, acompanhado de feldspato e biotita. Dentre os feldspatos hã maior ocorrência de microclina.

Na fração areia grossa (2-0,20 mm) dos horizontes A e Bt ocorre o predomínio do quartzo com teores entre 98 e 100%. Mesmo no horizonte C dos pedons 1, 2 e 4 o quartzo aparece nas mesmas proporções anteriores. Entretanto no horizonte C do pedon 3 a microclina, com percentagens entre 7 e 50%, aparece ao lado do quartzo.

Na fração areia fina (0,20 - 0,05 mm) dos pedons 1 e 2, predomina o quartzo (95 a 100%) nos horizontes A, Bt e C. O pedon 3 apresenta os horizontes A e Bt com 100% de quartzo, e no horizonte C o feldspato (microclina) e quartzo aparecem em proporções iguais, ocorrendo ainda a biotita com teores entre 5 e 10%.

O pedon 4 é o único solo que apresenta uma certa reserva de minerais pouco resistentes ao intemperismo na fração areia fina do horizonte Bt. Apesar do quartzo ser o mineral predominante, o feldspato e a biotita aparecem com

Tabela 12 - Análise mineralógica (%) das frações areia grossa (2-0,2 mm) e areia fina (0,20-0,05 mm) dos principais horizontes.

A CONTRACTOR OF THE PARTY OF TH	A STATE OF THE PARTY OF THE PAR	entendenten en terretario de la compositorio de la compositorio de la compositorio de la compositorio de la co	The second secon	And the second s			Minerais	٥٠	Optobbility	and the second s	nga pada pada pada sa kalami mahaga paga pada pada pada pada pada pada p	WATER THE THE PROPERTY OF THE PROPERTY AND P	de pura proprio del dispersa de la comita del la
;							B 1 0 11 T 1.7	6.11					
Horizontes	2,44	Quartzo e	Felds-	Micro		Bio- Musco Ilme	Ilme	Magne Turna	Turma	7:17630	Concreções	Concreções ferro-arei	Carvão e
			patos	clina		tita vita	nita	tita	lina		888	losas	Detritos
				Fração Areia Grossa (2-0,20 mm)	sia Gros	sa (2-0	, 20 nm)						
							Ped	Pedon 1					
A.	66						Tr		Tr	Tr		Tr	r-4
Bt2 C	66 66			Tr			Tr		*			न्त्रं ल्व	i i
							Ped	Pedon 2					
Ap	86.0										ed e		
20r1	9 O					Tr					٠,	20	1
							Ped	Pedon 3					
Ap Bt2	100		Tr		Tr						Tr		감
C1 C2	92 20 20			50	TT.							Tr	Ţ
Çr	ر. ئ			40	⊢ •1		Ped	Pedon 4					ır
Ap 1	100		r		} -		Tr		Į.			Tr	Tr
CI	6 6 80 80		- 4		117				;	٠		н	Tr
Continua													

Tabela 12 - Continuação.

							Minerais	s i s				Application of the second of t	The second secon	Primary responses to the state of the state
Horizontes	Quartzo	Quartzo e Feldspa = to	Felds- patos	Micro	Mica	Bio- tita	Bio- Musco Ilme tita vita nita		Turma lina	Zircāo	Nagne Turma Zircão Rutilo tita lina	Concreções ferrugino- sas	Concreções ferro-argi losas	Carvão e Detritos
		Fração	Fração Areia Fina (0,20-0,05 mm)	a (0,20-0,	,05 mm)	Constitution of the Consti			and the second second second	And a company of the			described to the speciment of the specim	Transport of the Control of the Cont
Al Bt2 C	98 76 76				벁		Pedon 7		다	111			F-01-04	}+r }+r [-+ [
Ap Bt2 2Cr1	86 86 86						Tr Tr Tr fr	av)	Tr Tr		Ţ	⊷ ທ	eel"	F454.54
75 75 75 75 75	99 100 4 S	% * *	Tr		5.	Tr S 10	Pedon 3 Tr		T T	Ĭ.		골골·		H H
Ap Btl Cl	98 86	*06	T.			177 100	Pedon 4			Д. Т.	**		-	77.

Tr = traços do mineral * = nos feldspatos há predomínio da microclina.

teores maiores que 10% constituindo uma fonte de reserva de nutrientes para as plantas.

A muscovita só aparece na fração areia dos pedons 1 e 2, enquanto que a biotita só $\tilde{\rm e}$ observada nos pedons 3 e 4.

A ocorrência de minerais intemperizaveis na fração areia indica, nesse caso, herança do material de origem. O feldspato e biotita estão mais relaciona dos aos pedons 3 e 4, cujo material de origem é o conglomera do, do que aos pedons 1 e 2 originados de folhelhos. Tais minerais estão presentes nessa fração devido a proteção dada pelo recobrimento dos óxidos.

c. Mineralogia da fração silte

O estudo desta fração foi realizada com o auxílio de difratogramas de raios-X. Os minerais foram identificados pelos seus picos mais intensos, tendo sido constatado nes ses solos a ocorrência de quartzo (4,26 a 4,39°A; e 3,32 a 3,42°A), feldspato (3,81 a 3,96°A; 3,26 a 3,30°A; 3,04 a 3,09°A; e 2,92 a 3,00°A), hidromica (10,51 a 10,77°A; 4,52 a 4,61°A; e/ou 5,09 a 5,18°A), haloisita (7,43 a 7,62°A; 3,55 a 3,67°A; e 2,56 a 2,61°A), vermiculita (13,38 a 12,26°A) e cristobalita (4,03 a 4,09°A). As Figuras 8 a 11 mostram os principais picos, correspondentes aos espaçamentos interplanares característicos destes minerais e a Tabela 15 apresenta a distribuição dos mesmos nos solos.

O quatzo é o mineral predominante na fração silte, estando presente em todos os horizontes em grande quan tidade.

O feldspato aparece em pouca quantidade nos

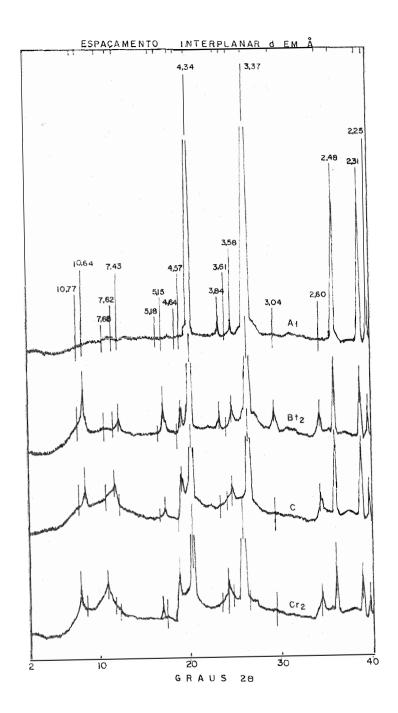


Figura 8 - Difratogramas de raios-X da fração silte (0:05-0.002 mm), sem óxidos de ferro, do pedon 1.

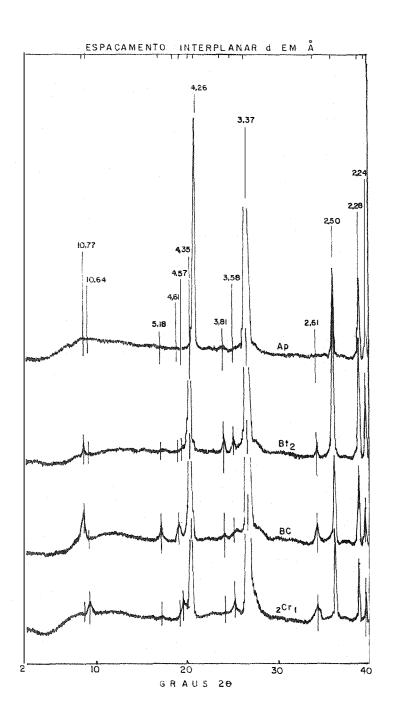


Figura 9 - Difratogramas de raios-X da fração silte (0.05-0.002 mm), sem óxidos de ferro, do pedon 2.

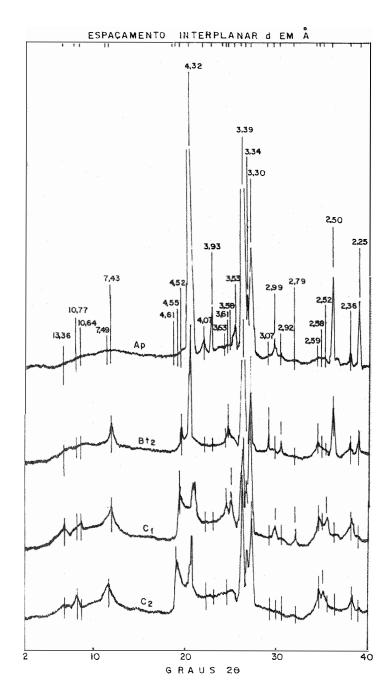


Figura 10 - Difratogramas de raios-X da fração silte (0.05-0.002 mm), sem óxidos de ferro, do pedon 3.

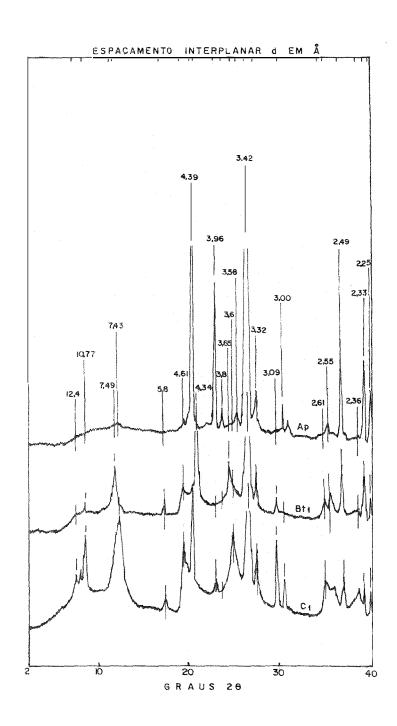


Figura 11 - Difratogramas de raios-X da fração silte (0,05-0,002 mm), sem óxidos de ferro, do pedon 4.

Tabela 13 - Mineralogia da fração silte (0,05-0,02 mm) desferrificada dos solos.

Horizontes	Minerais*
	<u>Pedon l</u>
Al e E Bt2 BC C, Cr1, Cr2 e Cr3	Q >F1 Q >HMi >F1 >Ha Q >HMi >F1 Q >Ha >HMi >F1
	Pedon 2
Ap Bt2 BC e 2Cr1	Q Q >Fl >HMi Q >HMi
	Pedon 3
Ap Bt2 BC C1 C2 Cr	Q >F1, traços de cristobalita Q >F1 >Ha F1> Q >Ha >HMi, traços de cristobalita F1> Q >Ha >HMi >V Q >F1 >HMi> Ha F1> Q >HMi, traços de cristobalita
•	Pedon 4
Ap Bt1 BC C1 C2	<pre>Q >F1 Q >Ha >F1 >Hmi Q >Ha >HMi> F1 Q >Ha >HMi> F1 Q >Ha >HMi> F1 > V Q >Ha >F1 >HMi > V</pre>

^{*} Estimativa baseando-se na intensidade dos picos e levando-se em consideração o coeficiente de absorção de massa dos minerais em relação à radiação de cobre.

Q = quartzo; Fl = feldspato; HMi = hidromica; Ha = haloisita e V = vermiculita. pedons 1, 2 e 4 e nos horizontes A e Bt do pedon 3. Nos horizontes BC e C deste último pedon o feldspato passa a ser o mineral predominante, em quantidades iguais ou superiores ao quartzo.

A haloisita não foi constatada na fração silte do pedon 2 e nem nos horizontes A dos outros pedons. Os maiores teores de haloisita ocorrem no pedon 4 e nos horizontes C e Cr dos outros três pedons, e os seus teores aumentam com a profundidade.

Uma distribuição semelhante de haloisita foi observada por ESWARAN e BIN (1978) e a explicação para o fato foi que nos horizontes mais profundos a menor quantidade de ácidos orgânicos e o pH um pouco mais elevado levaram a biotita e o feldspato a transformarem-se em haloisita. Nos horizontes superiores devido a maior ação da matéria orgânica e pH mais baixos, esses dois minerais formavam caulinita e gibbsita.

A hidromica está ausente do horizonte A, aparecendo somente nos horizontes Bt e C. Normalmente a sua percentagem aumenta com a profundidade. Parte desta hidromica talvez seja dioctaédrica (muscovita) como sugere o pico na região de 5,0ºA constatado em alguns horizontes dos pedons 1, 2 e 4 (Figura 8, 9 e 11).

A vermiculita ocorre em teores muito baixos no horizonte C dos pedons 3 e 4, resultantes possive $\underline{1}$ mente do intemperismo das hidromicas.

d. Mineralogia da fração argila

A fração argila foi estudada utilizando-se a difração de raios-X, ATD e análise químicas. A microscopia eletrônica foi empregada em amostras de alguns horizontes para se verificar a presença ou não da haloisita.

As Figura de 12 a 24 mostram os difratogramas dos principais horizontes dos solos. Os minerais da fração argila são a caulinita, ilita, interestratificados ilita-vermiculita e ilita-esmectita, esmectita-cloritizada e aparecendo em menores proporções a haloisita, gibbsīta, quart zo e feldspatos. A hematita e a goetita são os principais compostos de ferro da fração argila desses solos.

A caulinita foi identificada pelos picos nas regiões de 7,19 a 7,25°A; 5,56 a 3,59°A e 2,37 a 2,41°A que desaparecem nas amostras saturadas com K aquecidas a 550°C (figuras 12 a 24). Alguns horizontes apresentaram picos assimétricos e mal definidos nas regiões de 7,36 a 7,43°A e de 3,59 a 3,63°A (Figuras 13 e 14) o que pode ser devido à haloisita e/ou caulinita com desordem no eixo b (mal cristalizadas). Todavia a ocorrência da haloisita só foi constatada por microscopia eletrônica, no horizonte C1 do pedon 3 (Figura 25).

A ilita foi identificada pelos picos na região de 10,04 a 11,0°A; 4,94 a 5,15°A e de 3,32 a 3,38°A. Os picos na região de 10°A são difusos, assimétricos, abaulados e não sofrem expansão quando as amostras são glicoladas. A base do pico apresenta abertura em direção aos ângulos pequenos (Figura 12 e 17).

O mineral interestratificado ilita-vermiculi-

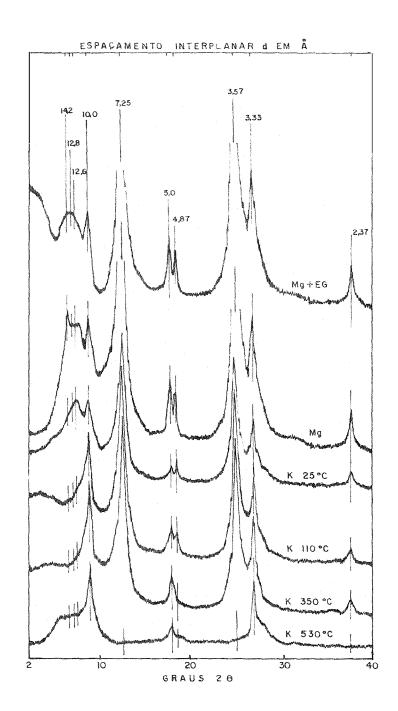


Figura 12 - Difratogramas de raios-X da fração argila (<0,002 mm), sem óxidos de ferro, do horizonte Al do pedon 1.

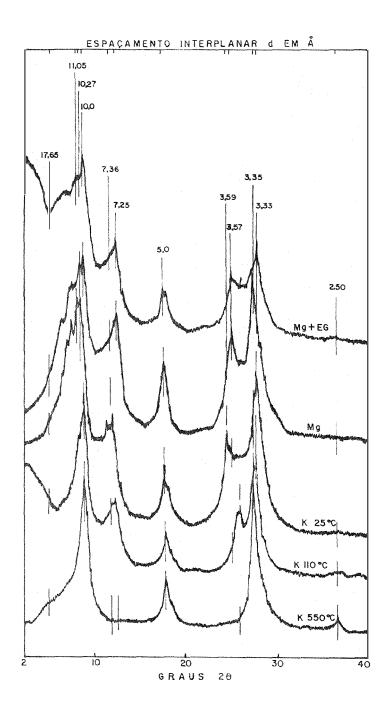


Figura 13 - Difratogramas de raios-X da fração argila (<0.002 mm), sem óxidos de ferro, do horizonte Bt2 do pedon 1.

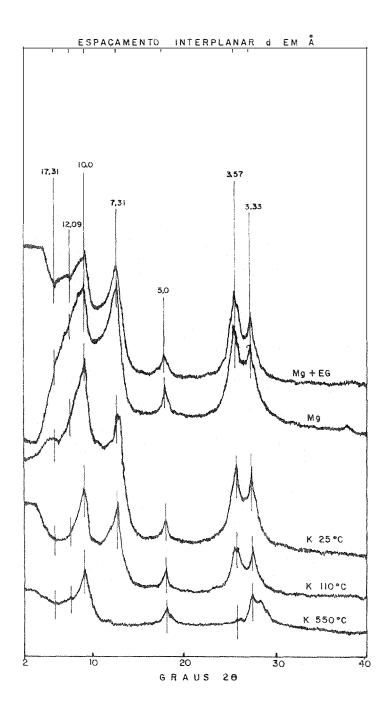


Figura 14 - Difratogramas de raios-X da fração argila (<0.002 mm), sem óxidos de ferro, do horizonte C do pedon 1.

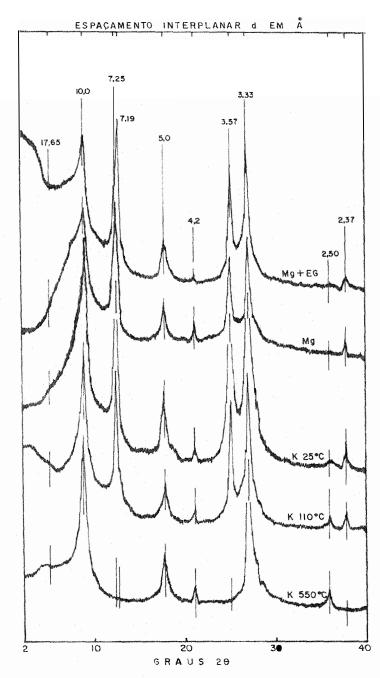


Figura 15 - Difratogramas de raios-X da fração argila (<0,002mm) sem óxidos de ferro, do horizonte Ap do pedon 2.

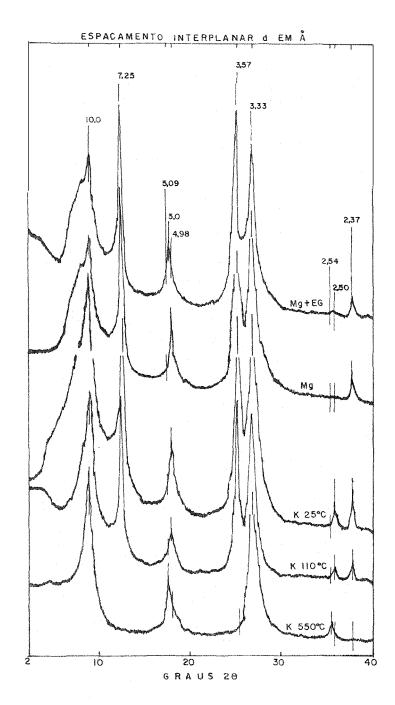


Figura 16 - Difratogramas de raios-X da fração argila (<0,002 mm), sem óxidos de ferro, do horizonte Bt2 do pedon 2.

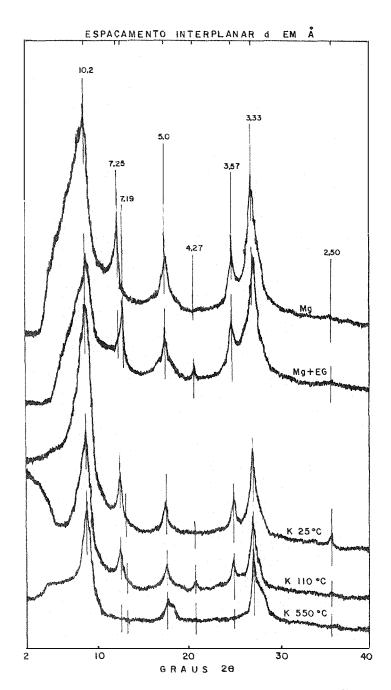


Figura 17 - Difratogramas de raios-X da fração argila (<0,002 mm), sem óxidos de ferro, do horizonte BC do pedon 2.

ta foi identificado pela ocorrência de uma profusão de picos entre 10 e 14ºA nas amostras saturadas com K, Mg e Mg-glicoladas. Tais amostras saturadas com K à 25ºC sofrem pequena contração dos picos para a região entre 10,7 e 12,61ºA. Por simples aquecimento à 110ºC, das amostras saturadas com K, os picos tornam-se bem definidos, agudos e passam a 10ºA, in dicando que não existe nada impedindo o fechamento das cama das hidratadas (Figura 12).

O interestratificado ilita-esmectita foi identificado tendo por base os picos assimétricos e abaulados na região de 10 a 11ºA das amostras saturadas com K e Mg, e que apresentam nas amostras Mg-glicoladas uma banda de difração bem definida entre 10 e 17ºA. Essas amostras, saturadas com K, por simples aquecimento à 110ºC sofrem intensificação dos picos na região de 10ºA (Figuras 13, 14, 15 e 16).

A esmectita-cloritizada foi identificada pela ocorrência de picos difusos entre 12,61 a 16,0°A quando as amostras estão saturadas com Mg, amostras essas que uma vez glicoladas mostram uma expansão nítida dos picos para a região entre 15,49 e 18,0°A. As amostras saturadas com K a 25°C sofrem uma ligeira contração dos picos, em comparação com as amostras saturadas com Mg, passando os mesmos para a região entre 11,3 a 14,2°A. Com o aquecimento a 110°C e 350°C das amostras saturadas com K, os picos difusos, sofrem um fechamento parcial para a região de 11,3 a 13,8°A, situan do-se a maioria das amostras ao redor de 12°A. Com o aquecimento a 550°C os picos passam para a região entre 9,8 a 11,0°A, continuando no entanto assimétricos e mal definidos (Figuras 18, 19, 20, 21, 22 e 23).

A gibbsita foi identificada pelos picos na região de $4,87^{\rm O}{\rm A}$ que desaparecem com o aquecimento da amostra a $350^{\rm O}{\rm C}$

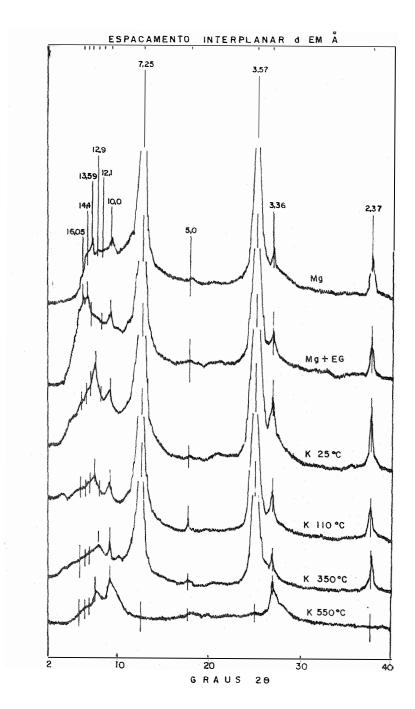


Figura 18 - Difratogramas de raios-X da fração argila (<0,002 mm), sem $6 \times i \text{dos}$ de ferro, do horizonte Ap do pedon 3.



Figura 19 - Difratogramas de raios-X da fração argila (<0,002 mm), sem óxidos de ferro, do horizonte Bt2 do pedon 3.

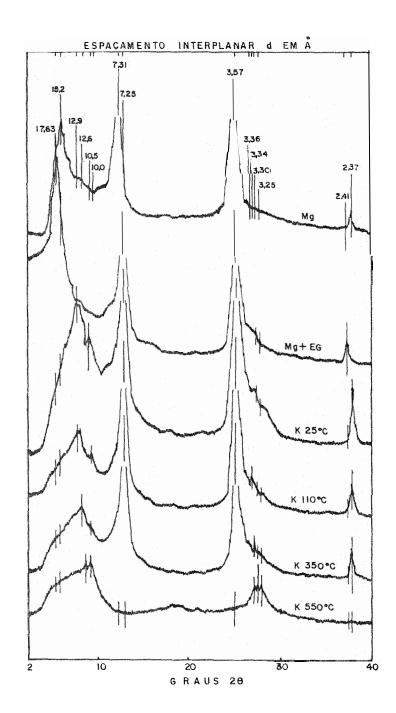


Figura 20 - Difratogramas de raios-X da fração argila (<0,002 mm), sem óxidos de ferro, de hori · zonte Cl do pedon 3.

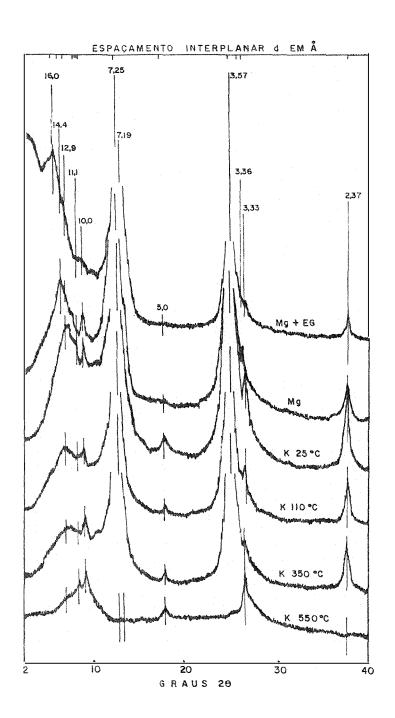


Figura 21 - Difratogramas de raios-X da fração argila (<0,002 mm), sem óxidos de ferro, do horizonte BA do pedon 4.

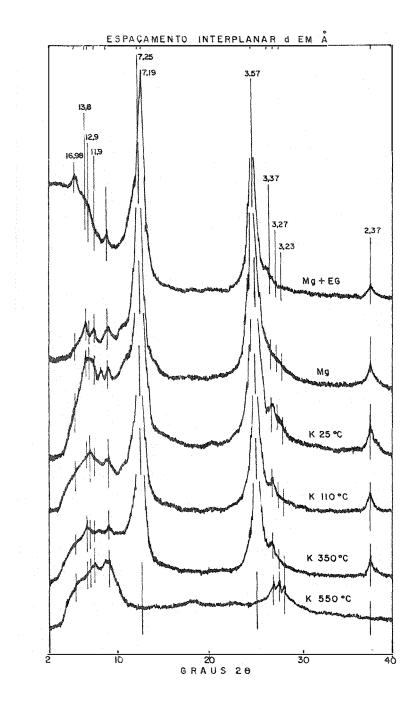


Figura 22 - Difratogramas de raios-X da fração argila (< 0,002 mm), sem óxidos de ferro, do horizonte BC do pedon 4.



Figura 23 - Difratogramas de raios-X da fração argila (<0,002 mm), sem óxidos de ferro,do herizonte C2 do pedon 1.

(Figura 12). O quartzo foi identificado pelo pico na região de 4,25 a 4,27 $^{\rm O}$ A (Figuras 15 e 17). O feldspato foi identificado pelos picos entre 3,18 a 3,28 $^{\rm O}$ A, que aparecem nas amostras aquecidas a 550 $^{\rm O}$ C (Figuras 19, 20, 22 e 23).

A goetita e hematita foram identificadas nas amostras da fração argila que sofreram concentração de ferro com NaOH 5 M. A goetita foi detectada pelos picos 4,18 a $4,23^{\circ}$ A; 2,70 a 2,71 $^{\circ}$ A e 2,43 a 2,45 $^{\circ}$ A. A hematita foi identificada pelos picos 3,68 a 3,70 $^{\circ}$ A, 2,70 $^{\circ}$ A e 2,51 a 2,53 $^{\circ}$ A (Figura 24).

A Tabela 14 mostra a composição mineralógica da fração argila dos quatro pedons.

A análise térmica diferencial utilizada na identificação (Figura 26) e determinação quantitativa da cau linita, não acusou a presença de gibbsita.

As percentagens da vermiculita e esmectita, que ocorrem na forma de interestratificados com a ilita, e da esmectita-cloritizada foram calculadas somando-se os teores de amorfos, caulinita e ilita e completando-se para 100% com os minerais anteriores.

A caulinita é o mineral predominante na fração argila desses solos com teores variando de 36 a 80%. Invariavelmente as maiores percentagens de caulinita ocorrem nos horizontes superficiais e decrescem com a profundidade.

O pedon 1 apresenta teores de caulinita em torno de 50%, sendo relativamente uniforme ao longo do pedon e mesmo na própria rocha a 7 metros de profundidade o teor desse mineral ainda é de 50%. Quando se examina os difratogramas de raios-X, vê-se que os horizontes AI, E, BE e Btl a

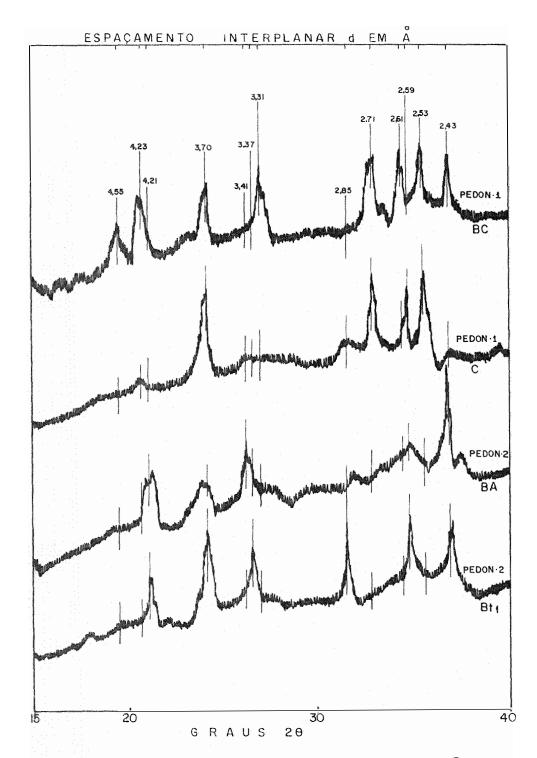


Figura 24 - Difratogramas de raios-X da fração argila (<0,002 mm), tratada com NaOH 5M para concentração dos compostos de ferro, dos horizontes BC e C do pedon 1 e horizontes BA e Btl do pedon 2.

Tabela 14 - Composição mineralógica (%) da fração argila (<0,002 mm) dos solos.

Felds-																	
Quart														$\frac{\mathrm{Tr}}{\mathrm{Tr}}$		Tr	Tr
Esmectita Gibbsi Quart Felds- cloritiza ta zo pato		۲. ۲.	→	Τr													
Esmec tita*								16						27			
Vermi- culita*	Pro-mailer e vinderma (Pro-main Pro-Medicina)	20															
Alumino-silica tos amorfos	Pedon 1	13	13	13		10	6	12			12		Pedon 2	10	7		
Ilita		13		18											20 20 20		
Caulinita		5.4	56	5.2	46	46	20	50	52	50	50	20		44	4 4 4 4 4 4	36	28
Profundidade Caulinita (cm)		0- 10	7 2	0 - 4	5 - 6	5-9	0 - 12	25 - 14	5 - 18	80 - 21	50	70		0	1 0	3-10 7-12	28-13
Horizontes		A1	BE	Bt1	Bt2	Bt3	Bt4	BC	S	Cr1	Cr2	Cr3		Ap BA	btl Bt2 p+3	BC BC	2Crl

Continua

Tabela 14 - Continuação.

Horivor	Drofinglidade	0 + in: 1 10	11:	Alumino-silica	Vermi- Esmec		Gibbsi Quart	Quart	Felds-
1101 12011055	(Cm)	Caulille	דדרמ	tos amorfos	culita" tita*	da da	ta	20	pato
				Pedon 3				And the second s	
Ap	0 - 1	80	4	14		2			
BÂ	- 2	8 0	4	12		4			
Bt1	2- 4	80	4	13		23			
Bt2	3- 6	80	4	13		3			
Bt3	7 - 9	7.4	3	14		6			Tr
Bt4	0 - 11	7.2	2	12					Tr
BC	15 - 18	7.2	23	10					Tr
C1	0 - 25	7.0	2	14		13			Tr
C2	. 50	52	4	14					Tr
Cr	700	46	7	10					Tr
				Pedon 4					
Ap	0 - 1	8 0		6		4			
BÂ	2 - 3	8 0	S	6		9			
Btl	30-62	80	4	∞		∞			••
Bt2	2 - 8	76	S	∞		11			
Bt3	8 - 11	74	2	6		14			
BC	7-16	7.0	Ŋ			12			Tr
C1	68-20	09	4	14		2.2	I	Tr	Tr
C2	50	52	4	6		3.5	I	Γr	Tr
The second secon								- Principles of the second	

 * A vermiculita e esmectita ocorrem na forma de interestratificado com a ilita. Tr = traços.

presentam os picos na região de 7,2ºA bem definidos, agudos e simétricos característicos de um material bem cristalizado. Enquanto que nos outros horizontes, e na própria rocha, os picos são mal definidos e às vezes aparecem na região de 7,3ºA, indicando uma caulinita com desordem no eixo b (BRIND LEY, 1961) ou haloisita. Todavia, levando-se em conta o exame das amostras no microscópio eletrônico (Figura 25) e os resultados da análise térmica diferencial (Figura 26) que apresentam picos em "V" simétricos e que terminam próximos a 630ºC, o que segundo BARSHAD (1965) é indicativo da presença da caulinita, que deve ser o mineral responsável por esses picos aos raios-X.

O pedon 2 é o que apresenta menor teor de cau linica, ao redor de 40%, o qual é relativamente uniforme ao longo do solo. Os pedons 3 e 4 apresentam os maiores teores de caulinita, que são bem mais elevados nos horizontes Ap, BA, Btl e Bt2 com valores em torno de 80%. Entretanto, no próprio horizonte Cl os teores de caulinita são bastante altos com valores entre 60 e 70%. A caulinita presente nos pedons 2, 3 e 4 normalmente apresentam picos bem definidos indicando um mineral bem cristalizado.

A percentagem de ilita, determinada através do teor de potássio total, de uma maneira geral aumenta com a profundidade. Os pedons 3 e 4 apresentam os menores teores de ilita, entre 3 e 5%, que se mantêm relativamente uniformes ao longo de todo o pedon. Os maiores teores de ilita ocorrem nos pedons 1 e 2, variando de 18 a 31% nos horizontes Bt e atingindo 53% no horizonte BC.

O pedon 1 mostra um acúmulo de ilita no horizonte Bt, sendo o seu teor maior que nos horizontes A e C. Tal fato segundo FANNING e KERAMIDAS (1977) é devido ao processo de lessivagem.

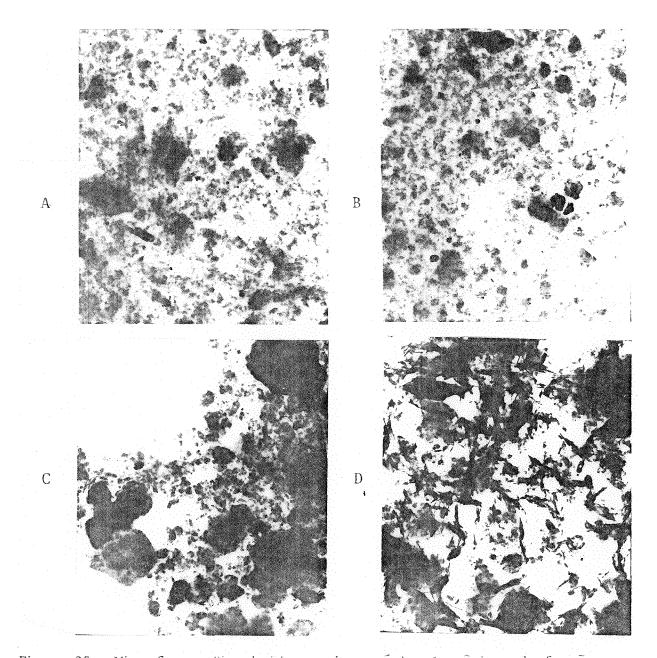


Figura 25 - Microfotografia.obtida em microscopio eletrônico, da fração ar gila (<0,002 mm) dos pedons. (A) horizonte Bt2 do pedon 1; (B) horizonte BC do pedon 2; (C) horizonte Ap do pedon 3; (D) horizonte Cl do pedon 3. Nota-se o predomínio da caulinita nas fotos A, B e C; a caulinita do horizonte Ap do pedon 3, foto C, são melhores cristalizadas do que nos pedons 1 e 2 (foto A e B); na foto D observa-se o predomínio da caulinita e esmectita, apa recendo poucos tubos de haloisita (10.000 X).

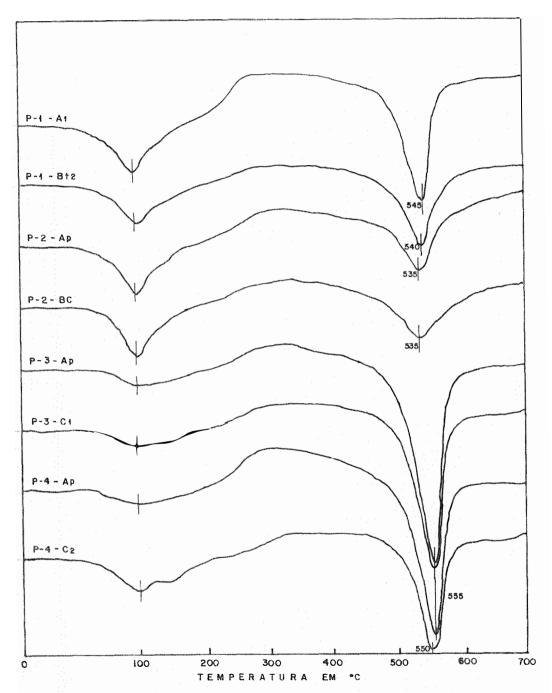


Figura 26 - Termogramas da fração argila (<0,002 mm), des ferrificada e saturada com Mg⁺⁺dos principais horizontes dos quatro pedons estudados.

Nota-se nos difratogramas do pedon 1 e 2 que os picos na região de 5,0ºA são mais intensos, enquanto que nos pedons 3 e 4 esses picos estão ausentes ou são de baixa intensidade (Figuras 12 a 23). Isto sugere, de acordo com GRIM (1968), a presença de ilita dioctaédrica (muscovita)nos pedons 1 e 2.

Os aluminosilicatos amorfos, determinados por dissolução seletiva, variam de 8 a 14%, valores esses que se mantêm relativamente uniforme com a profundidade.

A vermiculita, na forma de interestratificado ilita-vermiculita, ocorre somente nos horizontes Al, E, BE e Bt1 do pedon 1, com valores entre 15 e 23%, mostrando uma ten dência a decrescer com a profundidade.

A esmectita, sob a forma de interestratificado ilita-esmectita, ocorre nos pedons 1 e 2. No pedon 1 a esmectita foi constatada a partir do horizonte Bt2 e aumenta com a profundidade até o horizonte Cr1, com valores compreen didos entre 13 e 19%. No pedon 2 a esmectita ocorre desde o horizonte Ap até o Bt3, com valores variando de 22 a 27%.

Assim, as modificações na composição mineralógica da fração argila dos pedons 1 e 2 são muito semelhantes, diferindo apenas nos horizontes superficiais. A ilita presente nos horizontes inferiores desses dois pedons dá formação ao interestratificado ilita-esmectita no horizonte Cr1 do pedon 1 e no horizonte Bt3 do pedon 2. Este interestratificado permanece até o horizonte superficial no pedon 2, não sofrendo aparentemente nenhuma modificação mineralógica. No pedon 1 devido a influência do clima mais úmido, com a forte acidificação dos horizontes superficiais, ocorre a desestabilização e destruição da esmectita que desaparece do pedon no horizonte Bt1. Em seu lugar aparecem o interestratificado i

lita-vermiculita e a gibbsita.

Nos horizontes superficiais do pedon 1 a medida que diminue o teor de ilita aumenta o de vermiculita, indicando a transformação da ilita em vermiculita.

A esmectita - cloritizada ocorre nos pedons 3 e 4 com valores entre 2 e 37%, que invariavelmente crescem com a profundidade. Analisando-se esses dois pedons vê-se que a medida que diminue os teores de esmectita-cloritizada aumentam os teores de caulinita. Isto sugere que a acidificação dos horizontes superficiais, que desestabiliza a esmectita-cloritizada causando a sua destruição quase completa, le va a formação da caulinita.

Os feldspatos ocorrem na fração argila dos pedons 3 e 4, provavelmente protegidos contra a intemperismo pelo recobrimento dos óxidos de ferro.

A hematita e goetita são os principais compostos de ferro nesses solos (Figura 24). A hematita predomina no horizonte C e a goetita aparece ao lado da hematita já a partir do horizonte BC. A sua percentagem vai aumentando progressivamente acompanhada pela diminuição da hematita. Nos horizontes A e BA, de coloração amarelada, a goetita passa a ser o hidróxido de ferro predominante. A hematita está praticamente ausente no horizonte A desses solos.

Tal evolução na qual as cores vermelhas do so lo, devido principalmente a hematita, vão se tornando amareladas sob a ação da umidade e matéria orgânica com consequente formação da goetita, sugere a transformação pedogenética da hematita em goetita (SCHWERTMANN, 1971; BIGHAM et alii, 1978; MONIZ et alii, 1983).

Os mosqueados presente no topo do horizonte B indicam que em certa época do ano ocorrem condições anaeróbicas. Nestas condições e em presença de altos teores de matéria orgânica, pode ocorrer a dissolução da hematita. A posterior oxidação e/ou precipitação do ferro leva à formação da goetita. Estas transformações foram constatadas por SCHWERT MANN (1971).

5.5. Micromorfologia

As descrições micromorfológicas de horizontes selecionados dos quatro pedons podem ser encontradas nas Tabelas 15 a 18.

Os grãos do esqueleto dos quatro pedons são formados, principalmente, por quartzo, feldspato e mica (Figuras 27, 28, 29, 32 e 34). Os feldspatos e as micas, de uma maneira geral, aumentam nos horizontes BC, C e Cr. O esqueleto constitui 60 a 90% da matriz dos solos (S-matrix) no horizonte C e diminui no horizonte Bt para valores inferiores a 15%, com consequente aumento do plasma nesse horizonte (Figuras 27 e 28). Vê-se que o decréscimo nos grãos do esqueleto no horizonte Bt é devido a uma diminuição nas percentagens de feldspatos e micas, indicando que a intemperização destes minerais vaidar formação ao plasma.

Nota-se nesses solos que os feldspatos e as micas dos horizontes inferiores, são protegidos contra a alteração devido ao recobrimento por óxidos e hidróxidos de ferro (Figuras 30 e 32).

matita, nos horizontes C e Cr que diminuem nos ho-

TABELA 15 - Descrição micromorfológica de horizontes selecionados do pedon 1.

Horizontes	BE	Btl
Esqueleto*	Constitui 40% da matriz do solo. Forma do por quartzo (90%) feldspatosintemperizados (5%), mica intemperizada (3%), hematita (1%), ocorrência de turmalina e fitopala.	Constitui 15% da matriz do solo. Forma do por quartzo (90%), mica intemperizada (5%), feldspato intemperizado (3%), hematita (1%) e ocorrência de turmalina.
Plasma*	Constitui 30% da matriz do solo. Cor amarelo-avermelhado (5YR 6/8), estrutura plásmica insépica e vosséfica, numa distribuição relatada porfiric.	Constitui 75% da matriz do solo. Cor ver melho (2,5 YR 5/8), estrutura plásmica mossepica e vossepica, numa distribuição relatada porfiric.
Vazios*	Ocupam 30% da matriz do solo. Biova- zios formado por alvéolos e canais tran sagregados e intragregados.	Ocupam 10% da matriz do solo. Biovazios e pedovazios formado por alvéolos, ca- nais e cavidades.
Feições Pedológicas	Poucos argilans e sesquans de iluviação. Os sesquans ocorrem principalmente nas fissuras do plasma. Poucos nódulos férricos de cor amarelo-avermelhado, com limites difusos. Poucas papulas formadas por fragmentos de argilans. Poucos silans em algumas cavidades.	Comuns argilans e sesquans, de iluviação revestindo os canais, esqueletos e fissu ras (craze planes). Os sesquans são mais abundantes nas fissuras do plasma. Poucos nódulos férricos de cor vermelha e limites nítidos. Comum pápulas formadas por fragmentos de argilans. Poucos silans preenchendo algumas cavidades.

- continua -

TABELA 15 - continuação

)		CII
Esqueleto*	Constitui 60% da matriz do solo. Forma do por quartzo (75%), feldspato (7%), mica intemperizada (10%) e hematita (3%), os esqueletos encontram-se quase totalmente recobertos por concentrações de ferro.	Constitui 90% da matriz do solo. Forma do por quartzo (50%), feldspato (25%); mica intemperizada (15%) e hematita (3%).
▶lasma*	Constitui 30% da matriz do solo. Cor a marelo-avermelhado (5YR 6/8), estrutura plásmica insépica e esquelsépica, numa distribuição relatada porfiric.	Constitui menos de 1% da matriz do solo. Cor amarelo-avermelhado (5YR 5/8), com estrutura plásmica silassépica, numa distribuição relatada chitonic.
Vazios*	Ocupam 10% do matriz do solo. Pedova- zios formado por alvéolos e canais tran sagregados e interagregados.	Ocupa 10% da matriz do solo. Litovazios integranulares.
Feições Pedológicas	Poucos sesquans e argilans de iluviação revestindo os canais, cavidades e fissuras. Os sesquans ocorrem principalmente nas fissuras do plasma. Ocorrem cavidades totalmente preenchidas com plas ma iluvial. Poucas papulas formadas por fragmentos de argilans e poucos nódulos ferricos de cor vermelha e limites nítidos.	Não ocorrem feições pedológicas, sendo este horizonte formado pelo folhelho cu jos esqueletos estão totalmente recobertos por concentrações de ferro de corvermelha. O folhelho apresenta estratificação plano-paralela.

As percentagens do esqueleto e seus componentes, do plasma e vazios toram avaliadas de ma neira aproximada e expressas em % por volume.

A cor do plasma foi determinado sem nicois.

TABELA 16 - Descrição morfológica de horizontes selecionados do pedon 2.

Horizontes	${f r}$	BC Company of the Com
Esqueleto*	Constitui 15% da matriz do solo. Forma do por quartzo (95%), feldspato intemperizado (2%), mica intemperizada (1%), hematita (1%) e ocorrência de turmalina.	Constitui 10% da matriz do solo. Purma do por quartzo (90%), mica intempertzada 5%, hematita 1%, e ocorrência de turmalina.
Plasma*	Constitui 70% da matriz do solo. Cor a-marelo-avermelhado (5YR 6/8), estrutura plásmica insépica e vossépica, numa distribuição relatada porfiric. Ocorrem a reas de concentração de ferro onde plasma apresenta côr vermelha (2,5YR 5/8).	Constitui 80% da matriz do solo. Cor a marelo-avermelhado (7,5YR 6/8), estrutu ra plasmica, mossepica e vossepica, numa distribuição relatada porfiric. Localmente a estrutura plasmica é bimasse pica e latissépica.
Vazios*	Ocupam 15% da matriz do solo. Pedova- zios e biovazios formados por alvéolos, canais, vesículas e fissuras, transagre gados e interagregados.	Ocupam 10% da matriz do solo. Pedova- zios formados por alvéolos, fissuras e vesículas, transagregados e interagrega dos.
Feições Pedológicas	Comuns argilans simples de iluviação e difusão e ferri-argilans de iluviação. Ocorrên-cias de cutans compostos formados por argilans e ferri-argilans de iluviação. Poucos nodulos ferricos opacos de cor vermelha de assembleia indeferenciada e fracamente concêntricas. Poucas papullas formadas por fragmentos de micas e por fragmentos de argilans. Certas áreas do plasma apresentam uma estrutura tipo "boxwork" com fantasmas de minerais.	Comuns stress cutans, argilans simples de iluviação e sesquans de iluviação. O correm nódulos férricos opacos de corvermelha e bruno, de forma irregular e lamelar. Poucas papulas formados por fragmentos de mica intemperizada e argilans. Ocorrem concentrações de ferro normalmente associadas aos vazios, dando a impressão de movimentação em formas de "ondas".
- Continue		Emily Employs

As percentagens do esqueleto e de seus componentes, do plasma e vazios foram avaliadas de maneira aproximada e expressas em % por volume. A cor do plasma foi determinada sem nicois.

Ocorrem poucos mangans.

- continua -

ζ, TABELA 17 - Descrição micromorfológica de horizontes selecionados do pedon

Horizontes Esqueleto* C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	man and the second seco
squeleto* C		
,	onstitui o por qu a(3%), fe orrência e parte am-se in	Constitui 15% da matriz do solo. Forma do por quartzo (90%), mica, imtemperiza da (5%), feldspato (3%) e ocorrência de hematita. A mica encontra-se muito fra turada.
Plasma* Crr rr rr rr gg gg gg gg gg gg gg gg gg g	Constitui 80% da matriz do solo. Cor amarelo-avermelhado (5YR 6/8), estrutu ra plasmica insepica, numa distribui-gão relatada porfiric. Partes do plasma apresentam concentração de ferro, que recobre o plasma, dando ao conjunto uma cor vermelha.	Constitui 75% da matriz do solo. amarelo-avermelhado (7,5YR 7/8), estrutura plásmica, mossépica e vossépica, nu ma distribuição relatada porfiric. plasma apresenta bastante fissuras. Lo calmente a estrutura plásmica pode ser bimassépica e latissépica.
Vazios* 0.	<pre>)cupam 15% da matriz do solo. Pedova- ;ios e biovazios formados por fissuras, ;anais, alvéolos e cavidade, transagre gados e interagregados.</pre>	Ocupam 10% da matriz do solo. Pedova- zios formados por fissuras e cavidade, transagregados e integragados.
Feições Pedológicas se fi	oucos argilans simples de iluviação e esquans que ocorrem principalmente nas issuras do plasma. Poucos nodulos fer icos de cor vermelha e poucas papulas ormadas de fragmentação de mica alteada e de cutans.	Comuns stress cutans, argilans simples de iluviação, sesquans de iluviação e organo-argilans. Ocorrem bastante cutans compostos formados por argilans e sesquans. Poucos nódulos férricos de cor vermelho vivo, formando um fundo matricial cutánico. Essas concentrações de ferro envolvem vários minerais como quartzo, biotita, feldspatos e mica intemperizada. Ocorrem estrutura em "box woork" preservando a forma do mineral.

TABELA 17 - continuação

Horizontes	BC	C2
Esqueleto*	Constitui 40% da matriz do solo. Forma do por quartzo (40%), feldspato intemperizado** (5%), microclina (30%), mica intemperizada (12%) e ocorrência de tur malina.	Constitui 80% da matriz do solo. Forma do por quartzo (45%), mica intemperiza-da (15%), microclina (30%) e feldspatos intemperizados** (5%).
Plasma*	Constitui 40% da matriz do solo. Cor a marelo-avermelhado (7,5YR 7/6), estrutu ra plásmica insépica, numa distribuição relatada porfiric e partes chitonic. O plasma apresenta-se muito fissurado.	Constitui 10% da matriz do solo.Cor ama relo-avermelhado (7,5 YR 7/8), estrutu- ra plásmica insépica, numa distribuição relatada chitonic.
Vazios*	Ocupam 20% da matriz do solo. Pedova- zios formados por fissuras e cavidades, transagregados.	Ocupam 10% da matriz do solo. Pedova- zios e litovazios formados por canais e cavidades, transagregados.
Feições Pedológicas	Poucos argilans e sesquans de iluviação. Alguns argilans de difusão e alguns cutans compostos. Poucos nódulos férricos de cor vermelho vivo, que apresenta bastante sesquans. As concentrações de ferro envolvem vários minerais como quartzo, feldspatos e micas.	Poucos argilans e sesquans de iluviação. Alguns cutans compostos, formado de ar- gilans e sesquans. Poucos nódulos fér- rico de cor vermelho vivo, que envolve vários minerais.

^{*} As percentagens do esqueleto e seus componentes, do plasma, e dos vazios foram avaliadas de maneira aproximada e expressas em % por volume.

A cor do plasma foi determinada sem nicois.

* Nos feldspatos intemperizados, estão excluidas as microclinas. *

- continua -

TABELA 18 - Descrição micromorfológica de horizontes selecionados do pedon 4.

Horizontes	B t T	Bt_2
Esqueleto*	Constitui 15% da matriz do solo. Forma do por quartzo (90%), mica intemperizada (3%), ocorrência de hematita. As micas estão protegidas por concentração férrica.	Constitui 15% da matriz do solo. Forma do por quartzo (90%), mica intemperizada (5%), hematita (1%). Nota-se que as micas estão protegidas por concentração de ferro em suas superfícies.
Plasma*	Constitui 75% da matriz do solo. Cor a marelo-avermelhado (5YR 6/6), estrutura plásmica insépica e vossépica, numa distribuição relatada porfiric. Ocorre um plasma de cor mais clara amarelo-averme lhada (7,5 YR 7/6), sem concentração ferrica visiveis, esse plasma apresenta muitas fissuras.	Constitui 75% da matriz do solo. Cor a marelo-avermelhado (5YR 6/8), estrutura plásmica mossépica, numa distribuição relatada porfiric.
Vazios*	Ocupam 10% da matriz do solo. Pedova- zios e biovazios formados por canais, ca vidade e fissuras, transagregados e in- teragregados.	Ocupam 10% da matriz do solo. Pedova zios e biovazios formados por canais, ca vidades e fissuras, transagregados e in teragregados.
Feições Pedológicas	Comuns argilans e sesquans de iluviação (simples e compostos), normalmente os sesquans estão cobrindo os argilans nos cutans compostos. Poucos nódulos, ferricos de cor vermelho vivo e bruno. Pre sença de pápulas.	Comuns argilans e sesquans de iluviação (simples e compostos). Poucos nódulos ferricos e pápulas formadas por fragmen tos de mica e argilans.

TABELA 18 - continuação

The six control of the six of the		
Horizontes	BC The second of	CI
Esqueleto*	Constitui 65% da matriz do solo. Forma do por quartzo (50%), feldspato intemperizado (30%), mica intemperizada (12%), hematita (1%). As micas estão recobertas por concentrações férricas.	Constitui 80% da matriz do solo. Forma do por quartzo (50%), feldspato intemperizado (10%). O quartzo e a mica estão intensamente fraturados. As micas estão recobertas por concentrações férricas.
Plasma*	Constitui 20% da matriz do solo. Cor a marelo-avermelhado (5YR 6/8), estrutura plásmica insépica, numa distribuição relatada chitonic.	Constitui 10% da matriz do solo. Cor a marelo-avermelhado (5YR 7/8); ocorre ou tro plasma incolor e sem concentrações férricas. Estrutura plásmica insépica (plasma amarelo) e argilassépica (plasma ma incolor). Distribuição relatada chi tonic.
Vazios*	Ocupam 15% da matriz do solo. Pedova- zios formado por canais, cavidades, ve- sículas e fissuras, transagregados e in teragregados.	Ocupam 10% da matriz do solo. Pedova- zios e litovazios formados por canais , cavidade e fissuras, transagregados e interagregados.
Feições Pedológicas	Comum argilans e sesquans de iluviação (simples e compostos). Aparecem algumas cavidades totalmente preenchidas com argilan iluvial. Poucos nódulos férricos de cor vermelho vivo e poucas pápulas formado por fragmentos de mica alterada e de cutans.	Poucos argilans e sesquans de iluviação (simples e compostos). Poucos nódulos férricos. Nota-se que os feldspatos dão origem ao plasma incolor. Este plas ma torna-se amarelo com o recobrimento de ferro liberado pelo intemperismo das micas.

^{*} As percentagens do esqueleto e seus componentes, do plasma e do vazio foram avaliadas de maneira aproximada e expressas em % por volume. A cor do plasma foi determinada sem nicóis.

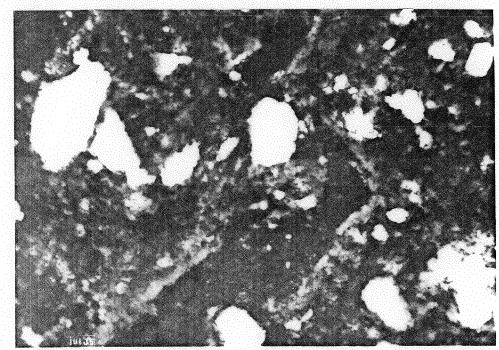


Figura 27 - Fotomicrografia de lâmina delgada do horizonte Btl do pedon l (nicois X). O esqueleto é formado por quartzo (grãos maiores)e feldspatos intemperizados (grãos menores). Estrutura plásmica mossépica e localmente bimassépica. Canal maior com as superfícies revestidas por argilans de iluviação. Nota-se sesquans preenchendo as rachaduras (craze plane) do plasma (120 X).

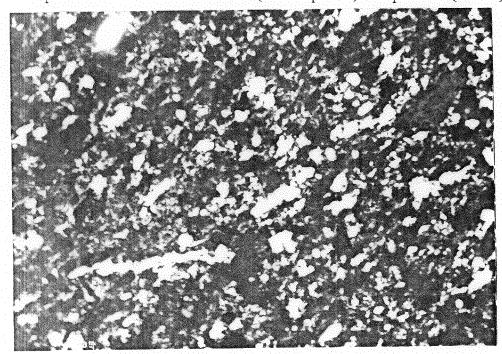


Figura 28 - Fotomicrografia de lâmina delgada do horizonte Crl do pedon 1 (nicois X). Nota-se a estratificação plano-paralela do folhe-lho. O esqueleto é formado por quartzo, feldspato intemperiza do e mica intemperizada (muscovita). As manchas pequenas e opa cas de cor vermelha são hematitas. No canto superior direito aparece uma pápula formada por fragmento de mica intemperizado (120 X).

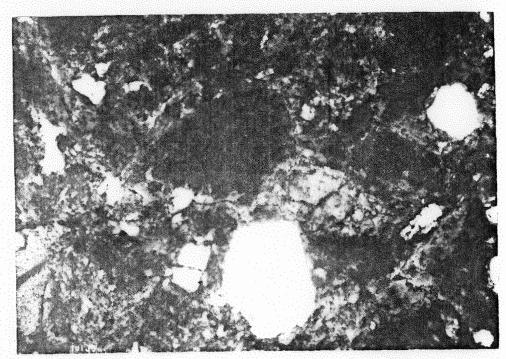


Figura 29 - Fotomicrografia de lâmina delgada do horizonte Btl do pedon 2 (nicois X). Esqueleto formado por quartzo e feldspatos intemperizados. Estrutura plasmica insépica. Canais preenchidos com fer ri-argilans de iluviação, fraturados devido a expansão e contração do solo. Nota-se muito argilans de difusão. (120 X).

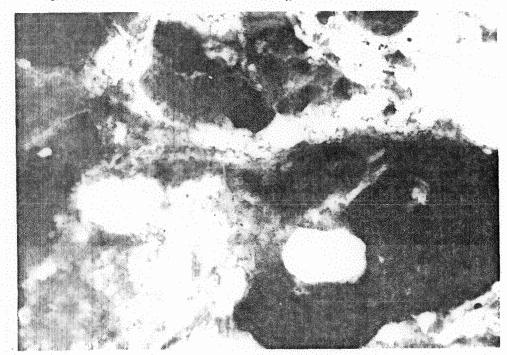


Figura 30 - Fotomicrografia de lâmina delgada do horizonte Btl do pedon 3 (nicois X). Esqueleto formado por quartzo e feldspatos intemperizado. Estrutura plásmica insépica. As concentrações de ferro envolvem vários minerais e recobrem boa parte do plasma, dando-lhe cor vermelha (120 X).

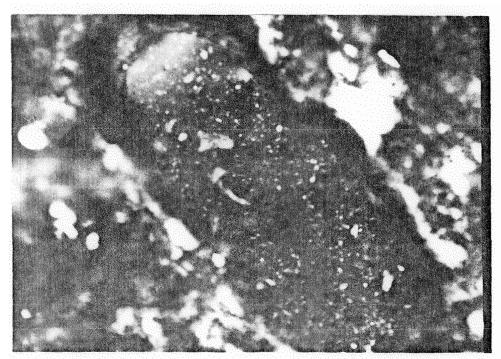


Figura 31 - Fotomicrografia de lâmina delgada, do horizonte Bt4 do pedon 3 (nicois X). Canal com cutan composto formado por argilans de iluviação, capeados por ferri-argilans e sesquans de iluviação. Nota-se fraturas nesses cutans causados pela expansão e contra ção do solo. O esqueleto é formado por quartzo e feldspato intemperizado (120 X).

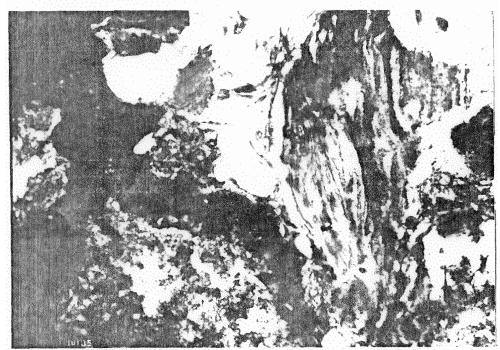


Figura 32 - Fotomicrografia de lâmina delgada do horizonte C2 do pedon 3 (nicois X). Esqueleto formado por feldspato intemperizado, quart zo e possivelmente vermiculita pseudomorfo de biotita. No canto inferior directo nota-se um grão de microclina intemperizado. O ferro liberado no intemperismo da biotita concentra-se sobre o proprio mineral e sobre outros minerais próximos (120 X).

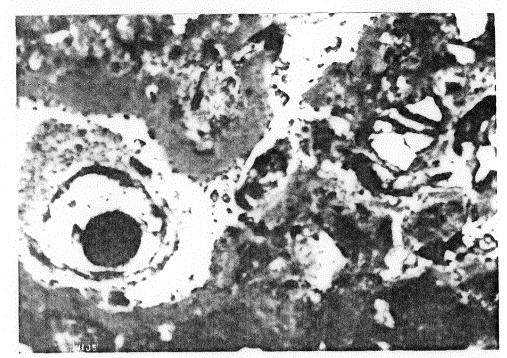


Figura 33 - Fotomicrografia de lâmina delgada do horizonte Bt2 do pedon 4 (luz paralela). Esqueleto formado por quartzo e feldspato intem perizado e turmalina que se encontra no canal do centro da foto. Estrutura plásmica mossépica. Canal com superfícies recober ta por argilans de iluviação contínuo. Nota-se alguns argilans de difusão e pápula, centro superior da foto, formada por fragmento de mica intemperizada (120 X).

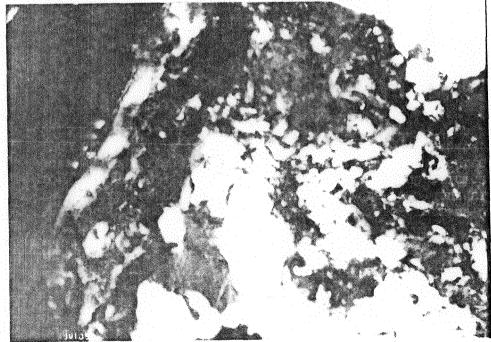


Figura 34 - Fotomicrografia de lâmina delgada do horizonte Cl do pedon 4 (nicóis X). Esqueleto formado por quartzo, feldspato intemperizado e biotita. No canto direito inferior nota-se plasma forma do pelo intemperismo da biotita. Canal com sesquans capeado por argilans de iluviação (120 X).

rizontes superficiais talvez devido à ação da matéria orgân<u>i</u> ca.

O plasma desses solos varia de 1 a 30% nos horizontes C, aumentando no horizonte Bt para valores entre 70 e 80%. A coloração do plasma no horizonte Bt desses solos é amarelo-avermelhado, com exceção do pedon 1 que apresenta no horizonte Bt cor vermelha.

A estrutura do plasma dos quatro pedons é insépica, vossépica, mossépica e,localmente, bimassépica, no horizonte B. A estrutura insépica é a que predomina no horizonte C, juntamente com a esquelsépica. Essas estruturas plásmicas estão associadas à quantidade elevada de argilominerais 2:1 presentes nesses pedons (BREWER, 1976). O pedon 1 apresenta no horizonte Cr estrutura plásmica silassépica, provavelmente devido à presença de óxidos de ferro recobrindo os esqueletos.

Observa-se que a intemperização dos feldspatos dã origem a um plasma incolor que torna-se amarelo com o recobrimento do ferro liberado pelo imtemperismo das micas (Figura 32). Este plasma apresenta estrutura argilassépica, talvez devido a predominância da caulinita no mesmo. A distribuição relatada (plasma x esqueleto) do horizonte B dos quatro pedons é porfiric, evidenciando um plasma quase contínuo com grânulos isolados dentro do mesmo.

As feições pedológicas que aparecem nesses pedons são nódulos, cutans e pápulas. Os nódulos aparecem em pequena quantidade nos horizontes B e C, sendo férrico e de cor vermelha, raramente bruno. O processo pedogenético mais significante nos quatro pedons é a translocação de argila, evidenciada pela presença de argilans, ferri-argilans e ses-

quans de iluviação nos horizontes Bt e C (Figuras 27, 28,31, 33 e 34).

Esses cutans podem ser simples, são os que predominam, e também compostos formados por argilans e sesquans, normalmente os sesquans estão capeando os argilans, sugerindo a mobilização do ferro posterior à argila. Deveses salientar que os dados químicos indicam uma translocação conjunta.

Os argilans e ferri-argilans de iluviação ocorrem principalmente nos canais e cavidades, apresentando orientação forte e contínua, aparecendo em maior quantidade nos horizontes Bt desses solos. Os sesquans ocorrem principalmente nas fissuras do plasma, denotando a mobilização do ferro após a formação do plasma. As pápulas são formadas por fragmentos de micas intemperizadas e por fragmentos de argilans. As papulas formadas por fragmentos de argilans, sugerem que argilans estão sendo destruidos nos processos de expansão e contração dos solos. Fato também verificado por DE CHEN (1979) no Podzólico-variação Piracicaba em São Paulo.

5.6. Considerações gerais a respeito da pedogênese

Os quatro pedons estudados, apesar de ocorrerem em uma extensa área geográfica, possuem certas caracte rísticas em comum o que leva a serem tratados, até certo pon
to, de maneira semelhante. Por outro lado, o estudo específico desses solos não teve como principal pretensão o estudo
da gênese dos mesmos, haja visto a coleta dos pedons em pontos isolados de diversas áreas. Sendo assim, as considera ções aqui tratadas são de ordem geral e não devem ser particularizadas a não ser em certos casos específicos, como as

transformações mineralógicas que ocorreram na formação dos solos.

Os principais pontos em comum que levam os pedons a serem tratados conjuntamente são os seguintes:

- a. posição no relevo, todos os solos estudados estão localizados nas encostas em superfícies instáveis e recentes;
- b. histórico geomorfológico, tanto os folhelhos dos pedons 1 e 2 como os conglomerados dos pedons 3 e 4 foram recobertos por sedimentos do Grupo Barreiras e posteriormente dissecados por processos erosivos ex pondo os materiais de origem dos solos;
- c. influência do fluxo lateral da água, devido a posição que os pedons ocupam no relevo é possível que parte de sua pedogênese esteja relacionada com a ação do fluxo lateral (superficial e profundo) da água. A ação deste fluxo pode ser observada principalmente na posição dos horizontes stou BA, ou nos casos de paleodrenagem deixada no pedon;
- d. ação da ferrólise, em todos os solos estudados é comum observar-se a presença de cores de redução, em certas partes dos pedons, cores estas que foram atribuidas ao processo de ferrólise;
- e. ação da lessivagem, os exames micromorfológicos das lâminas delgadas dos horizon-

tes Bt evidenciaram a ocorrência de argilans de iluviação associado ou não aos óxi dos de ferro, o que vem demonstrar em parte o processo de translocação de argila;

f. aluminização intensa, o enriquecimento em alumínio na solução do solo, característica química comum nesses solos, se deve em grande parte a herança do material de origem.

Os solos foram desenvolvidos a partir de folhelo e conglomerados depositados no Cretáceo Inferior. Durante, o Terciário essas rochas foram capeadas pelos sedimen
tos argilo-arenosos do Grupo Barreiras. Os processos erosivos que atuaram sobre os sedimentos do Grupo Barreiras expuseram novamente os folhelhos e conglomerados à ação do intem
perismo, originando as superfícies atuais que apresentam relevo ondulado e, localmente, forte ondulado ou suave ondulado.

O folhelho (horizonte Cr), material de origem dos pedons 1 e 2, é constituido por quartzo, feldspato e mica, principalmente muscovita, aparecendo ainda a haloisita na fração silte e a caulinita e ilita na fração argila.

Os grãos do esqueleto e o plasma do horizonte Cr estão praticamente recobertos por concentrações de ferro de cor vermelha, onde predomina a hematita. A estrutura plásmica é silassépica, possivelmente devido aos óxidos de ferro presentes, e a distribuição do plasma em relação aos esquele tos é chitonic. Nesta estrutura plásmica as áreas ligeiramente anisotrópicas são devidas a concentração de plasma atribuidos ao intemperismo "in situ", principalmente das micas na forma de pápulas.

Na evolução do horizonte Cr para o solum a es trutura plásmica passa a insépica, mossépica, vossépica, e esquelsépica e o plasma apresenta uma distribuição relatada porfiric. Ocorre ainda uma remobilização do ferro colorindo o novo plasma formado e originando sesquans que preenchem as rachaduras (craze plane) do plasma. Nessa evolução plásmica há um acompanhamento da própria alteração mineralógica. O plasma se organiza melhor e as áreas de concentrações plásmica são maiores e mais nítidas devido ao intemperismo dos minerais primários. A ocorrência de pápulas são mais frequentes e o esqueleto tende a diminuir no solo onde é constituido essencialmente por quartzo, ocorrendo em percentagens menores as micas e feldspatos.

O exame das lâminas delgadas ilustram perfeitamente a ação dos minerais expansivos através da microestru turação e também do tipo de estrutura plásmica insépica ou vossépica. A estrutura plásmica é mais ativa nos horizontes inferiores onde é essencialmente esquelsépica, ou em certos casos bimassépicos, estruturas estas associadas a minerais 2:1. O intemperismo do folhelho origina um plasma anisotrópico porém mais escuro devido ao próprio óxido de ferro já existente no mesmo.

Os argilans estão regra geral associados a vazios e ao esqueleto, sendo abundante nos horizontes Bt. Tais concentrações plásmicas podem ser atribuidas a mobilização do plasma de um ponto para outro no pedon, sendo um dos processos na formação do horizonte argílico. Associados aos argilans podem ser encontrados sesquans cuja presença na massa de argilans pode ser atribuida ao mesmo evento genético. Al gumas cavidades no pedon 1, que se localiza em ambiente hídrico perúdico, são preenchidos com silans indicando translo cação e posterior concentração de sílica.

A formação de estrutura nesses solos estão as cociadas, principalmente, a ação dos minerais expansivos.

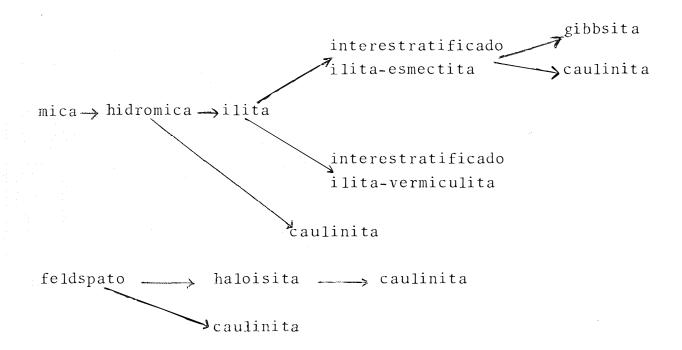
É comum observar nas lâminas delgadas dos horizontes Bt fragmentos de argilans ou pápulas, devido à destruição dos argilans originais no processo de expansão e contração dos solos. Tal fato pode trazer problemas quando se computa a percentagem de argilans iluviais na determinação do horizonte argílico nesses solos.

A persistência de minerais intemperizáveis , tais como biotita e feldspatos, nos horizontes superiores dos solos se deve ao recobrimento e proteção dada pelos óxidos de ferro, fato muito evidente nos exames micromorfológicos.

A haloisita no horizonte Cr pode ter sido for mada a partir de feldspatos, como constatado por ESWARAN e BIN (1978) em solos com regime hídrico e térmico idêntico a esses pedons. A haloisita possivelmente ocorre sob a forma de pseudomorfos de feldspato. No solum com o aumento do grau de intemperismo a haloisita transforma-se em caulinita (CERRI e ALOISI, 1976; PESSOA et alii, 1980).

A ilita, herdada do material de origem, trans forma-se nos horizontes inferiores no interestratificado ili ta-esmectita. A permanência da esmectita, em meios ácidos, pode ser explicada como resultante da percolação lenta da água nesses solos, devido à textura argilosa e presença de relativamente altos teores de argilo-minerais de estrutura 2:1.

Entretanto, nos horizontes superficiais do <u>pe</u> don 1 a esmectita <u>e</u> desestabilizada e destruida a partir do horizonte Btl. Os produtos de decomposição das esmectitas podem se precipitar e formar a caulinita ou <u>o</u>xidos e hidrox<u>i</u>


dos de diversos minerais (FANNING e KERAMIDAS, 1977).

Assim, quando o meio se encontra desprovido de esmectitas, a sílica continua sendo eliminada e parte do alumínio pode se precipitar formando a gibbsita que aparece nos horizontes superficiais do pedon 1. Ao mesmo tempo, nes ses horizontes, uma parte da ilita forma o interestratificado ilita-vermiculita.

A caulinita nos pedons 1 e 2 foi em grande parte herdada do material de origem. Entretanto, o clima quente e úmido dessas áreas e as condições ácidas dos solos são propicias à formação das caulinitas a partir dos feldspatos e minerais de estrutura 2:1. Constata-se nesses dois pedons que a diminuição no teor de feldspatos correponde a um aumento na percentagem de caulinita, indicando a alteração do feldspato em caulinita.

A hematita, em grande parte herdada do material de origem, sofre dissolução nos horizontes superficiais desses pedons, como evidenciado pelas análises de raios-X e micromorfológica. O teor desse mineral diminue a medida que se aproxima da superfície do solo. Segundo SCHWERTMANN (1971) a umidade e os compostos orgânicos atuam nessa reação pela redução e/ou complexação do ferro. A subsequente oxidação e/ou precipitação deste elemento vai formar a goetita. Nos horizontes onde isto ocorre há mudança da cor vermelha para amarelada.

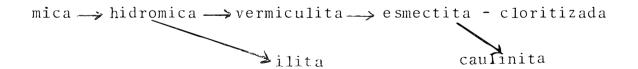
Baseando-se nos dados mineralógicos a mica e o feldspato apresentam, nos pedons 1 e 2, as seguintes sequências de alterações:

O conglomerado, material de origem dos pedons 3 e 4, apresenta uma constituição mineralógica semelhante ao folhelho. O feldspato, quartzo e mica são os principais minerais encontrados e as transformações mineralógicas que se processaram nesses dois pedons são semelhantes aos pedons anteriores.

Os feldspatos, em percentagens iguais ou superiores ao quartzo, alteram-se em haloisita e caulinita. A haloisita, presente na fração silte, sofre evolução para caulinita.

A mica, predominantemente biotita, transforma-se em vermiculita que é muito instavel nesses solos e, ao que tudo indica, é o produto intermediário na formação das esmectitas-cloritizadas, que resultam da precipitação de polímeros de alumínio nas intercamadas das esmectitas.

De acordo com JACKSON (1963) o intemperismo químico em solos ácidos onde ocorrem argilo-minerais expansivos se faz preferencialmente pela precipitação dos polímeros hidroxilados de alumínio nas intercamadas dos argilo-minerais, ao invés de formar gibbsita.


Segundo RICH (1968) as condições propícias para que tal fato ocorra são: presença de altos teores de alumínio, baixos teores de matéria orgânica (pH em torno de 5,0) e ciclos alternados de umidecimento e secamento do solo.

A acidificação dos horizontes subsuperficiais faz com que a esmectita-cloritizada se torne instável, sendo gradativamente destruída à medida que se aproxima da superfície do solo. Esse processo se intensifica a partir do horizonte Bt, evidenciando que o ataque por ácidos orgânicos tem muita influência nessa destruição.

Os produtos de decomposição da esmectita-cloritizada podem ser precipitar e formar caulinita, ou serem eliminados pelo fluxo lateral da água.

A ilita, presente no material de origem, é proveniente do intemperismo das micas.

As micas nos pedons 3 e 4, apresentam as seguintes sequências de alterações:

A ferruginação dos pedons 3 e 4 se inicia no horizonte C formando mosqueados de cor vermelha, com concentrações diferenciadas de ferro, e depois difundindo-se por todos os horizontes. O intemperismo do feldspato origina um plasma de pouca coloração, porêm a medida que a pedogênese e

volue o ferro liberado dos minerais primários, vai colorindo intensamente a matriz do solo. Este ferro é proveniente principalmente do intemperismo das micas.

A estrutura plásmica do horizonte Cr é insépica e o plasma apresenta uma distribuição relatada chitonic. No solum, os pedons 3 e 4 apresentam estruturas plásmicas e distribuição relatada idêntida aos pedons 1 e 2.

A evolução mineralógica que se processa nos solos, onde feldspatos e micas sofrem alterações que conduzem à formação de caulinita, envolve uma forte dessilificação. Esta dessilificação decresce com a profundidade do solo, como indicam as percentagens e tipos de argilo-minerais presentes.

A aluminização intensa que ocorre nesses solos é resultante da ação das águas de drenagem que remove as bases trocáveis para fora dos pedons, tornando-os dessaturados e ácidos devido a concentração de hidrogênio e alumínio. O alumínio, proveniente da alteração dos feldspatos e micas, passam a ocupar o lugar dos cations básicos nas superfícies dos argilo-minerais, podendo mesmo formar argilo-minerais cloritizados como nos pedons 3 e 4.

A alta percentagem de argila presente nos horizontes Bt é em parte herdada do material de origem, como no caso dos solos desenvolvidos de folhelho. Todavia as alterações in situ dos feldspatos e micas no horizonte C e no solum são responsáveis por uma grande percentagem da argila total.

A lessivagem é um processo atuante no acúmulo de argila no horizonte Bt, como evidenciam a formação do horizonte E e a presença de argilans de iluviação.

A ocorrência de sesquans nos horizontes Bt $i\underline{n}$ dica que a podzolização parcial atua na formação desses solos.

Os mosqueados presentes no topo do horizonte B, indicam que na época chuvosa ocorrem condições de redução nos solos. Isto sugere a atuação do processo de ferrólise na destruição dos argilo-minerais. O relevo ocupado pelos solos favorece o fluxo lateral da água nos horizontes superficiais, removendo para fora dos solos os produtos resultantes das reações na ferrólise.

Assim, a destruição dos argilo-minerais pela forte acidificação dos horizontes superficiais e no processo de ferrólise podem ter grande influência na diminuição do teor de argila do horizonte A.

Outro processo atuante na grande diferenciação de textura entre os horizontes A e B, pode ser a remoção diferencial das partículas dos solos pela erosão (MOSS, 1965 e DEMATTÊ, 1975). O relevo ocupado pelos solos e o acúmulo de água nos horizontes superficiais favorecendo o fluxo lateral da água, pode remover, preferencialmente, a fração ar gila que permanece mais tempo em suspensão.

5.7. Classificação dos solos

Os solos estudados apresentam as seguintes c \underline{a} racterísticas em comum:

- horizonte A moderado:
- mudança textural abrupta;

- horizonte B textural;
- saturação de bases baixa, menor que 30% no horizonte B textural;
- alta saturação com alumínio, superior a 65% na maior parte do horizonte B textural;
- alumínio trocável superior a 6,0 meq/100 g de solo, na maior parte do horizonte B tex-tural, e que aumenta com a profundidade;
- capacidade de troca de cations igual ou maior que 20 meq/100 g de argila (sem correção para carbono);
- capacidade de troca de cations efetiva superior a 16,8 meq/100 g de argila na maior parte do horizonte B textural;
- regime térmico isohipertérmico;
- e regime hídrico údico.

O horizonte B textural foi identificado levando-se em conta a diferença de textura entre os horizontes A e B, a cerosidade identificada no campo e argilans de iluviação identificados nas lâminas delgadas.

O pedon 1 apresenta mudança textural abrupta considerando-se a transição entre o horizonte BE e o subja-cente Bt1.

Levando-se em consideração as características anteriores e outras inerentes a cada pedon, pode-se classificar os solos como mostrados na Tabela 19.

Na classificação brasileira, em uso no SNLCS-- EMBRAPA, os solos foram enquadrados em Podzólico Vermelho--Amarelo Álico argila de atividade alta e média a alta. O pe don 3 apresenta a CTC menor que 24 meq/100 g argila (sem cor

TABELA 19 - Classificação dos solos segundo os sistemas brasileiro é americano.

Classificação americana*	Epiaquic Tropudult, clayey, mixed, isophyperthermic.	Epiaquic Tropudult, clayey, mixed, isohyperthermic.	Epiaquic Tropudult, clayey, kaoli- nitic, isohyperthermic.	"Epiaquic"** Paleudult, clayey, kaolinitic, isohyperthermic.
s Classificação brasileira	Podzólico Vermelho-Amarelo Álico ar gila de atividade alta abrúptico (?) A moderado textura média/muito argilosa, fase floresta tropical perenifólia relevo ondulado.	Podzólico Vermelho-Amarelo Álico ar gila de atividade alta abrúptico A moderado textura média/argilosa fase floresta tropical subperenifolia re levo suave ondulado.	Podzólico Vermelho-Amarelo Álico ar gila de atividade média a alta a- brúptico A moderado textura média / muito argilosa fase floresta tropi- cal subperenifólia relevo ondulado.	Podzelico Vermelho-Amarelo Álico ar gila de atividade alta abrúptico Ā moderado textura média/argilosa fase floresta tropical subperenifolia relevo forte ondulado.
Pedons	-	7	м	4

CTC NH_4 OAC pH 7,0 = 1,39 x CTC SNLCS - 0,01 (OLIVEIRA, 1975).

** O subgrupo não esta estabelecido na Soil Taxonomy (SOIL SURVEY STAFF, 1975).

reção para carbono) na maior parte do horizonte B textural. O valor mínimo encontrado para a CTC foi de 20 meq/100 g argila, o que levou este solo a ser classificado como de argila de atividade média a alta.

A aluminização intensa, expressa pelo caráter álico, nesses solos é representada por saturação de bases menor que 30% e saturação com alumínio maior que 65% no horizonte B textural, acompanhadas de um teor de alumínio trocável maior que 6,0 meq/100 g de solo, na maior parte des te horizonte.

Deveria ser estabelecida uma classe de solos, que abrangesse os solos estudados, alguns dos Podzólicos-variação Piracicaba, o Podzólico Vermelho-Amarelo Álico argila de atividade alta do sul do Brasil, o Podzólico Bruno-Acin-zentado Álico e Rubrozens, que seria definida pela presença de horizonte B textural com argila de atividade média e alta, saturação de bases baixa, alta saturação com aluminio (50%) e teores de alumínio trocável (Al-KC1N) maiores que 6,0 meq/100 g de solo, teores estes que aumentam com a profundidade do solo.

No sistema americano, Soil Taxonomy (SOIL SUR VEY STRAFF, 1975), os solos foram classificados nos grandes grupos Tropudult (pedons 1, 2 e 3) e Paleudult (pedon 4).

Os pedons 1, 2 e 3 classificados como Epiaquic Tropudult, são solos que apresentam matizes e mosqueados de cores amareladas nos horizontes superiores. Os matizes, entretanto, tornam-se vermelhos com a profundidade.

O pedon 4 enquadra-se por suas características morfo-lógicas no subgrupo Epiaquic. Todavia, tal subgr<u>u</u> po não está estabelecido para os Paleudults. A atividade da argila nos Paleudults normalmente é baixa como nos Oxisols. Entretanto, o pedon 4 apresenta CTC maior que 24 meq/100 g de argila no horizonte argílico, além de apresentar a CTC efetiva maior que 19 meq/100 g de argila. Estas características deveriam ser ressaltadas na definição de um subgrupo diferente do "Typic" neste aspecto.

6. CONCLUSÕES

As principais conclusões baseando-se nos resultados e discussões são a seguir relatados.

Os solos apresentam horizonte A moderado (epipe don ócrico) sobre horizonte B textural (argílico). Nem sempre o horizonte com maior incidência de cerosidade corresponde ao de maior concentração de argila. Isto se deve a destruição par cial dos argilans iluviais, evidenciados pelas pápulas, devido aos processos de expansão e contração. A presença de estrutura prismática composta de blocos subangulares e angulares no horizonte B estão associadas, principalmente, à atuação dos ar gilo-minerais expansivos.

O complexo de troca, nos horizontes B e C, desses solos dessaturados é marcado pela presença do alumínio trocável (A1-KC1 N) cujos teores são maiores que 6,0 meq/100 g de solo no horizonte B textural, teores estes que aumentam com a profundidade do solo. Estes elevados teores de alumínio trocável são provenientes, principalmente, da alteração de feldspatos e muscovita, e da destruição das esmectitas. A CTC da fração argila de uma maneira geral decresce do horizonte C para os horizontes superficiais, devido ao aumento na percentagem

de caulinita acompanhado da diminuição no teor de argilo-mine rais 2:1, à medida que se aproxima da superfície dos solos. A CTC efetiva da fração argila é superior a 16 meq/100 g de argila na maior parte do horizonte B textural. Em consequência de sua mineralogia os solos apresentam no horizonte B argila de atividade média e alta, fato também refletido pelo índice de atividade da fração argila que apresenta valores no limite entre materiais de baixa e alta expansão.

O quartzo é o mineral predominante nas frações areia e silte, acompanhado nos horizontes inferiores do feldspato e muscovita nos pedons 1 e 2, e do feldspato e biotita nos pedons 3 e 4. A halorsita ocorre em quantidades apreciá veis na fração silte dos norizontes inferiores dos pedons 1, 3 e 4. Os principais minerais da fração argila pedons 1 e 2 são caulinita, ilita, interestratificado ilita --esmectita e ilita-vermiculita que ocorre somente nos horizon tes superficiais do pedon 1.0s pedons 3 e 4 apresentam na fra ção argila caulinita, esmectita-cloritizada e ilita. A esmectita e a esmectita-cloritizada são muito instáveis nos horizon tes superficiais desses solos, principalmente a partir do hori zonte Btl. A caulinita, mineral estavel e predominante dos solos, foi formada a partir da alteração argila feldspatos, haloisitas e esmectita, e em parte também herdada do material de origem.A ilita herdada do material de origem dos solos, formada principalmente pela alteração da muscovita, dá origem aos interestratificados ilita-esmectita e ilita-vermiculita. A es mectita-cloritizada origina-se a partir da transformação da biotita em presença de altos teores de alumínio liberados pela intemperização dos inferiores feldspatos. A hematita dos horizontes des ses solos, sofre dissolução nos horizontes superficiais e 0 novo composto de ferro formado é goetita. A permanência de argilo-minerais 2:1 nesses solos ácidos, em clima quente е

úmido, é resultante da drenagem lenta acompanhada da cloritização das esmectitas e/ou proteção dada pelo recobrimento de óxidos de ferro.

A dessilificação é um processo intenso na formação desses solos como evidenciado pela diferença em mineralogia entre os horizontes superficiais e profundos. A distribuição dos teores de ferro e alumínio, presença de horizonte E, acúmulo de argila e ocorrência de argilans e sesquans de iluviação no horizonte B sugerem que a lessivagem e a podzolização parcial são processos atuantes na formação do horizonte B textural desses solos. A destruição dos argilo-minerais pela forte acidificação dos horizontes superficiais e no processo de ferrólise tem grande influência na diminuição do teor de argila total do horizonte A. A aluminização intensa, processo evidente na formação desses solos, reflete a influência da composição mineralógica do material de origem.

Os solos foram enquadrados na classificação bra sileira como Podzólico Vermelho-Amarelo Álico argila de ativi dade alta ou média a alta. E na classificação americana como Epiaquic Tropudult (pedons 1, 2 e 3) e "Epiaquic" Paleudult (pedon 4).

As características morfológicas do pedon 4 sugerem a necessidade de criação do subgrupo Epiaquic para os Paleudults.

LITERATURA CITADA

- AMEDEE, G. e M. PEECH, 1976. The significance of KCl-extractable Al (*II) as an index to lime requirements of soils of the humid tropics. Soil Sci., 121: 227-233.
- BARNHISEL, R.I., 1977. Chlorites and hydroxy interlayered ver miculite and smectite. In: DIXON, J.B. e WEED, S.B. (eds.) Minerals in soil environments. Soil Science Society of America, Madison, Wisconsin, pp. 331-356.
- BARSHAD, I., 1960. Significance of the presence of exchangea ble magnesium ions in acidified clays. Science 131: 988-990.
- BARSHAD, I., 1964. Chemistry of soil development. In: BEAR, F. E. (ed.). Chemistry of the Soil. Reinhold, New York, pp. 250-261.
- BARSHAD, I., 1965. Thermal analysis techniques for mineral identification and mineralogical composition. In: BLACK, C.A. (ed.) Methods of soil analysis. Agron. 9, Am. Soc. Agron. Madison, Wisc., pp. 699-742.

- BIERMANS, V. e L. BAERT, 1977. Characterization of amorphus Al, Fe and Si oxides in sesquioxidic soils. Pedologie, 27: 313-322.
- BIGARELLA, J.J., 1971. Variações climáticas no Quaternário Su perior do Brasil e sua datação radiométrica pelo método do carbono 14. I.G., USP, São Paulo, Paleoclimas nº 1, 22 p.
- BIGARELLA, J.J. e G.O. ANDRADE, 1964. Considerações sobre a estratigrafia dos sedimentos cenozóicos em Pernambuco. Boletim do Instituto de Ciências da Terra, Recife, 2:6-8.
- BIGHAM, J.M.; D.C. GOLDEN; S.W. BUOL; S.B. WEED e L.H. BOWEN, 1978a. Iron oxide mineralogy of well-drained Ultisols and Oxisols: II. Influence on Color, Surface area, and Phosphate retention. Soil Sci. Soc. Am. J., 42: 825-830.
- BIGHAM, J.M.; D.C. GOLDEN; L.H. BOWEN; S.W. BUOL e S.B. WEED, 1978b. Mössbauer and X-ray evidence for the pedogenic transformation of hematite to goetite. Soil Sci. Soc. Am. J., 42: 979-981.
- BLUME, H.P. e U. SCHWERTMANN, 1969. Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides. Soil Sci. Soc. Am. Proc., 33: 438-444.
- BORCHARD, G.A., 1977. Montmorillonite and other smectite minerals. In: DIXON, J.B. e WEED, S.B. (eds.) Mineral in soil environments. Soil Science Society of America, Wis., pp. 293-330.
- BRASIL. Ministério da Agricultura. Departamento Nacional de Meteorologia, 1972. Balanço hídrico do Brasil. Rio de Janeiro.

- BRASIL. Ministério da Agricultura. Departamento Nacional de Pesquisa Agropecuária. Divisão de Pesquisa Pedológica , 1973a. Estudo expedito de solos no Estado do Paraná para fins de classificação e correlação. Recife, 58 p. (Boletim Técnico, 37).
- BRASIL. Ministério da Agricultura. Departamento Nacional de Pesquisa Agropecuária. Divisão de Pesquisa Pedológica, 1973b. Levantamento exploratório reconhecimento de solos do Estado de Pernambuco. Recife. 359 p. (Boletim Técnico 26).
- BRASIL. Ministério da Agricultura. Departamento Nacional de Pesquisa Agropecuária. Divisão de Pesquisa Pedológica, 1973c. Levantamento de Reconhecimento dos solos do Estado do Rio Grande do Sul. Recife, 431 p. (Boletim Técnico, 30).
- BRASIL. Ministério das Minas e Energia. Secretaria Geral, 1981.

 Projeto RADAMBRASIL. Folha SD-24, Salvador. Rio de Janeiro. (Levantamento de Recursos Naturais, 24). 620 p.
- BRASIL. Ministério das Minas e Energia. Secretaria Geral, 1983. Projeto RADAMBRASIL. Folhas SC 24/25, Aracaju/Recife. Rio de Janeiro (Levantamento de Recursos Naturais, 30), 852 p.
- BREWER, R., 1968. Clay iluviation as a factor in particle-size differentiation in soil profiles. Trans. 9th. Int. Cong. Soil Sci., 4: 489-499.
- BREWER, R., 1976. Fabric and mineral analysis of soils. John Willey and Sons, New York, 470 p.

- BRINDLEY, G.W., 1961. Kaolin, serpentine and kindred minerals, pp. 51-131. In: The X-Ray identification and chrystal structures of clay minerals. G.Brown (ed.). Mineralogical Society, London. 544 p.
- BRINKMAN, R., 1970. Ferrolysis, a hydromorphic soil forming process. Geoderma, 3: 199-206.
- BRINKMAN, R.; A.G. JONGMANS; R. MIEDERMA e P. MAASKANT, 1973. Clay decomposition in seasonally wet, acid soil: micromorphological, chemical and mineralogical evidence. Geoderma, 10: 259-270.
- BROWN, G. (ed.), 1961. The X-ray identification and crystal structure of clay minerals. Mineralogical Society, London, 544 p.
- CAMARGO, O. A. e B. VAN RAIJ, 1976. Relações entre alumínio trocável, bases trocáveis e pH em solos. Congresso Brasilei ro de Ciência do Solo, 15°, Campinas, Anais Soc. Bras. Ciência do Solo, pp. 95-101.
- CAMARGO, M.N. e F.H. BEINROTH (eds.), 1978. Proceedings of first international soil classification workshop. SNLCS-EMBRAPA, Rio de Janeiro, 376 p.
- CAPUTO, H.P., 1972. Mecânica dos solos e suas aplicações. Vol. I, 2ª ed. Livro Técnico S.A. Rio de Janeiro, pp. 58-67.
- CARSTEA, D.D.; M.E. HARWARD e E.G. KNOX, 1970. Comparison of iron and aluminum hydroxy interlayers in montmorilonite and vermiculite. I. Formation. Soil Sci. Soc. Am. Proc. 34(3):517-521.

- CARVALHO, A., 1976. Solos da região de Marilia: relações entre a pedogênese e a evolução do relevo. Tese de Doutorado. Dept^o de Geografia, F.F.L.C.H., USP, São Paulo, 163 p.
- CARVALHO, A.M. de, 1975. Análise difratométrica da fração ar gila da massa do solo e do material cutânico em perfis de Podzólico Vermelho-Amarelo variação Piracicaba e Terra Ro-xa Estruturada. Dissertação de Mestrado, E.S.A. "Luiz de Queiroz", USP, Piracicaba, 52 p.
- CERRI, C.C., 1974. Contribuição ao estudo das arenas granít<u>i</u> cas. Caracterização mineralógica e química de uma topossequência da região de Itu, SP. Dissertação de Mestrado, I. G., USP, São Paulo, 130 p.
- CERRI, C.C., 1979. Alteração e pedogênese em áreas graníticas situadas sob diferentes condições bioclimáticas encontradas no Brasil. Tese de Doutorado apresentada ao I.G., USP, São Paulo, 241 p.
- CERRI, C.C. e R.R. ALOISI, 1976. Alteração do granito de Itu: Gênese e evolução dos minerais secundários. In: Congresso Brasileiro de Ciência do Solo, 15°, Campinas, julho/1975. Anais Cong. Bras. Ci. Solo, Campinas, SBCS, pp. 451-455.
- CHERNOV, V.A., 1959. Genesis of exchangeable aluminum in soils Soviet Soil Sci., 98(2): 85-93.
- COBRA, R.Q., 1970. Geologia da região de Cabo de Santo Agost<u>i</u> nho, Pernambuco. DNPM-DFPM, Bol. 142. Rio de Janeiro, 57 p.

- COLEMAN. N.T.; S.B. WEED e R.J. McCRACKEN, 1959. Cation. Exchange capacity and exchangeable cations in Piedmont soils of North Carolina. Soil Sci. Soc. Am. Proc. 23(2): 146 149.
- COMISSÃO DE SOLOS, 1960. Levantamento de Reconhecimento dos Solos do Estado de São Paulo. CNEPA.SNPA. Ministério de Agricultura. Rio de Janeiro. Brasil, 634 p. (Boletim, 12)
- DAVEY, B.G.; J.D. RUSSELL e M.J. WILSON, 1975. Iron oxide and clay minerals and their relation to colours of red and yellow podzolic soils near Sydney, Australia. Geoderma, 14: 125-138.
- DECHEN, S.C.F., 1979. Caracterização e mineralogia de solos desenvolvidos de folhelho e arenito. Tese de Doutorado, ESALQ, USP, Piracicaba, São Paulo, 253 p.
- DELVIGNE, J., 1982. Micromorfologia das alterações minerais. Instituto de Geociências, USP, São Paulo, 149 p (mimeografa do).
- DEMATTÊ, J.L.I., 1970. Gênese e classificação de solos originados do grupo geológico Estrada Nova município de Piracicaba. Tese de Livre Docência, ESALQ/USP, Piracicaba, 123 p.
- DEMATTÊ, J.L.I., 1975. Characteristics and classification of a toposequence of soils near Piracicaba, Brazil. Ph.D. Dissertation. Ohio State University, 298 p.

- DEMATTÊ, J.L.I.; A.C. MONIZ e J.E.S. PESSOTTI, 1977. Solos originados de sedimentos do grupo geológico Estrada Nova, município de Piracicaba. I Análise mineralógica quantitativa da fração argila. R.bras. Ci. Solo, 1: 43-47.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Divisão de Pesquisas e Normas Técnicas, 1972. Métodos de ensaios. 4 ed. Rio de Janeiro, pp. 25-37.
- DIXON, J.B., 1966. Quantitative analysis of kaolinite and gib bisite in soils by differential thermal and selective dissolution methods. Clays and Clay Minerals Proc. 14 th. Conf. Pergamon Press, New York, pp. 83-89.
- DUCHAUFOUR, P. e B. SOUCHIER, 1965. Note sur un probléme de classification, podsolisation chimique et differenciation du profil. Pedologie 15: 143-158.
- DURIEZ, M.A.; R.A.L. JOHAS e W. de O. BARRETO, 1982. Método simplificado para determinação dos valores Ki e Kr na terra fina. Rio de Janeiro, EMBRAPA/SNLCS. Boletim de Pesquisa nº 2, 10 p.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, Centro de Pesquisas Pedológicas, 1975. Levantamento exploratório-reconhecimento de solos do Estado de Alagoas, Recife, 532 p. (Boletim Técnico 35).
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Serviço Nacional de Levantamento e Conservação de Solos, 1979. Manual de método de análise de solo. Rio de Janeiro.

- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Serviço Nacional de Levantamento de Solos, 1977. Levantamento exploratório Reconhecimento de solos da margem direita do rio São Francisco, Estado da Bahia. Recife, 735 p. (Boletim Técnico, 52).
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Serviço Nacional de Levantamento e Conservação de Solos, 1980. Levantamento de reconhecimento dos solos do Estado do Paranã. Rio de Janeiro (no prelo).
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Serviço Nacional de Levantamento e Conservação de Solos, 1980. Estudo expedito de solos do Estado de Santa Catarina, para fins de classificação, correlação e legenda preliminar. Rio de Janeiro, 155 pág. (Boletim Técnico, 65).
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Serviço Nacional de Levantamento e Conservação de Solos, 1984. Definição e notação de horizontes e camadas do solo. Rio de Janeiro, 36 p.
- ESCOBAR, E.H.; J.L.I. DEMATTÉ e A.C. MONIZ, 1972. Genesis y classification de algunos suelos de la cuenca del arroyo Tijuco Preto, Município de Rio das Pedras, San Pablo. I.Aná lise mineralógica cuantitativa de la fraccion arcilla. Rev. Inv. Agropec., INTA, B.Ayres, Argentina, Série 3, IX: 89-108.
- ESWARAN, H. e W.C. BIN, 1978. A study of a deep weathering profile on granite in peninsular Malaysia: III. Alteration of Feldspars. Soil Sci. Sco. Am. J. 42: 154-158.

- ESWARAN, H. e C. SYS, 1979. Argillic horizon in LAC soils:for mation and significance to classification. Pedologie 29: 175-190.
- ESWARAN, H. e Y.H. YEOW, 1976. The weathering of biotite in a profile on gneiss in Malaysia. Geoderma 16: 9-20.
- FANNING, D.S. e V.Z. KERAMIDAS, 1977. Micas. In: DIXON, J.B.e WEED, S.B. (eds.) Minerals in soil environments. Soil Sci. Soc. of America, Madison, Wisc. pp. 195-258.
- FEIGENBAUM, S. e I. SHAINBERG, 1975. Dissolution of illite -a possible mechanism of potassium release. Soil Sci. Soc.Am. Proc., 39: 985-990.
- FOLLETT, E.A.C.; W.J. McHARDY; W.J. MITCHELL e B.F.L. SMITH, 1965. Chemical dissolution technique in the study of soils clays. Clay Minerals, 6: 35-43.
- FRANSMEIER, D.P.; E.P. WHITESIDE e A.E. ERICKSON, 1960. Relationship of texture classes of fine earth to readily available water. Trans. 7th. Inst. Cong. Soil Sci., Madison, Wisc., I: 354-363.
- GRIM. R.F., 1968. Clay Mineralogy. 2 ed., McGraw Hill, New York, 596 p.
- HERBILLON, A.J., 1980. Mineralogy of Oxisols and oxic materials In: THENG, B.K.G. (ed.) Soils with variable charge. Soil Sci. Society, Lower Hutt, New Zealand, pp. 109-126.

- HSU, P.H. e T.F. BATES, 1964. Fixation of hydroxy-aluminum polimers by vermiculite. Soil Sci. Soc. Am. Proc., 28: 763-769.
- ISMAIL, F.T., 1970. Biotite weathering and clay formation in arid and humid regions. California. Soil Sci. 109: 257-261.
- JACKSON, M.L., 1959. Frequency distribution of clay minerals in major great soils groups as related to the factors of soil formation. Clays and Clay Mineral, 6th. Conf. Pergamon Press, London, pp. 133-143.
- JACKSON, M.L., 1963. Aluminum bonding in soils: unifying principle in Soil Science. Soil Sci. Soc. Am. Proc. 27(1): 1-10.
- JACKSON, M.L., 1965. Clay transformation in soil genesis during the Quaternary. Soil Sci., 99: 15-22.
- JACKSON, M.L., 1973. Soil chemical analysis-advanced course. Published by the autrhor. Dept. of Soils, Univ. Wis., Madison, 895 p.
- JACKSON, M.L.; Y. HSEUNG; R.B. COREY; E.J. EVANS e R.C. VANDEN HEUVEL, 1952. Weathering sequence of clay size minerals in soils and sediments: II. Chemical weathering of layer silicates. Soil Sci. Soc. Am. Proc. 16: 3-6.
- JOINT COMMITTEE ON POWDER DIFFRACTION STANDARDS, 1974. Selected Powder Diffraction data for Minerals. First Edition, JCPDS, Pennsylvania, USA.

- JUO, A.S.R. e E.J. KAMPRATH, 1979. Copper chloride as an extractant for estimating the potentially reactive Al pool in acid soils. Soil Sci. Soc. Am. J., 43: 35-38.
- KAMPF, N. e U. SCHWERTMANN, 1982. The 5M NaOH concentration treatment for iron oxides in soils. Clays and Clay Mine rals, 30: 401-408.
- KELLER, W.D., 1964. Processes of origin and alteration of clay minerals. In: Soil Clay Mineralogy: A symposium, RICH, C.I. and KINZE, G.W. (eds.) University of North Carolina Press, Chapel Hill, pp. 3-76.
- KING, C.L., 1957. A geomorfologia do Brasil Oriental. Conselho Nacional de Geografia. Separata da Revista Brasileira de Geografia, Rio de Janeiro, 18(2): 147-265.
- KITTRICK, J.A., 1973. Mica derived vermiculites as unstable intermediates. Clays Clay Miner., 21: 479-488.
- KLAGES, M.G. e J.L. WHITE, 1957. A chlorite-like mineral in Indiana soils. Soil Sci. Soc. Am. Proc. 21 16-20.
- LEPSCH, I.F. e S.W. BUOL, 1974. Investigations in an Oxisol-Ultisol toposequence in São Paulo State, Brazil. Soil Sci. Soc. Am. Proc., Madison, 38: 491-496.
- LEPSCH, I.F.; S.W. BUOL e R.B.DANTELS, 1977. Soil-landscape relations hips in the Occidental Plateau of São Paulo State, Brazil: II. Soil morphology, genesis, and classification. Soil Sci. Soc. Am. J., 41 109-115.

- LIMA, V.C., 1974. Estudo pedológico de perfis de solos do grande grupo Rubrozen da bacia de Curitiba. Dissertação de Mestrado, E.S.A. "Luiz de Queiroz", USP, Piracicaba, São Paulo, 119 p.
- LIMA, V.C.; J.L.I. DEMATTÉ e A.C.MONIZ, 1977. Mineralogia da argila do Rubrozem (Palehumult), Bacia de Curitiba, Paraná. R. bras.Ci. Solo 1: 81-85.
- LIU, M. e G.W. THOMAS, 1961. Nature of sulphate retention by acid soils. Nature 192:384.
- LOUCHNAN, F.C., 1969. Chemical weathering of the silicate minerals, American Elsevier Publ. Co., Inc. New York, 154 p.
- McCALEB, S.B., 1959. The genesis of the Red-Yellow Podzolic Soils. Soil Sci. Soc. Amer. Proc., Madison, 23(2):164-168.
- McKEAGUE, J.A. e J.H. DAY, 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can.J. Soil Sci. Ottawa, 46: 13-22.
- McKEAGUE, J.A.; J.L. NOWLAND; J.E. BRYDON e N.M. MILES, 1971. Characterization and classification of five soils from eastern Canada having prominently B horizons. Can. J. Soil Sci., 51: 483-497.
- MELFI, A.J. e G. PEDRO, 1977a. Estudo geoquímico dos solos e formações superficiais do Brasil. Parte l. Caracterização e repartição dos principais tipos de evolução pedogeoquímica. Rev. bras. Geoc., 7: 271-286.

- MELFI, A.J. e G. PEDRO, 1977b. Estudo geoquímico dos solos e formação superficiais do Brasil. Parte 2. Considerações sobre os mecanismos geoquímicos envolvidos na alteração su perficial e sua repartição no Brasil. Rev. bras. Geoc. 8: 11-12.
- MELLO, A.A., 1971. Geologia e petrologia da região de Fazenda Nova-Pernambuco. Tese de Doutorado. I.G., USP, São Paulo, 10, 101 p.
- MENDES, A.C.T.; S.C. FALCI e J.L.I. DEMATTÊ, 1973. Seções del gadas de solos: método de impregnação. Anais da ESALQ, USP, Piracicaba, São Paulo, 30: 35-48.
- MERMUT, A. e H. PAPE, 1971. Micromorphology of two soils from Turkey, with special reference to in situ formation of clay cutans. Geoderma, 5: 271-281.
- MONIZ, A.C. e M.L. JACKSON, 1967. Quantitative mineralogical analysis of Brasilian soils developd from basic rocks and slate. Soil Sc. Report 212, Wisconsin, 74 p.
- MONIZ, A.C.; S.W. BUOL e S.B. WEED, 1983. Lateral water movement in Oxisol-Ultisol transition. Agronomic Economic Research on Soils of the Tropics. 1980-1981 Technical Report, Raleigh, Carolina, pp. 120-129.
- MOSS, R.P., 1965. Slope development and soil morphology in a part of South-West Nigeria. J. Soil Sci., 16:192-209.
- NIMER, E., 1972. Climatologia da Região Nordeste do Brasil: Introdução à climatologia dinâmica. Rev. bras. Geogr., 34 (2): 3-51.

- NORRISH, K. e R.M. TAYLOR, 1961. The isomorphous replacement of iron by aluminum in soil goethites. J. Soil Sci., Ottawa, 12: 294-306.
- NOU, E.A.V.; L.M.M. e M. DANTAS, 1983. Geomorfologia. In: BRA SIL. Ministério das Minas e Energia. Secretaria Geral. Projeto RADAMBRASIL. Folhas SC. 24/25 Aracaju/Recife. (Levanta mento de Recursos Naturais, 30), pp. 377-444.
- OERTEL, A.C., 1968. Some observation incompatible with clay illuviation. Int. Cong. Soil Sci. Trans. 9th., Adelaide, Austrália, pp. 481-487.
- OLIVEIRA, J.B., 1975. Diferenciação e distribuição de solos em diversos níveis categóricos de duas áreas aparentemente homogêneas de Oxissolo. Bragantia, 34(21): 309-348.
- PARFENOFF, A.; C. POMEROL e J. TOURENG, 1970. Les mineraux en grains : méthodes d'etude et determinations. Masson, Paris, 578 p.
- PEDRO, G.; M. JAMAGNE e J.C. BEGON, 1969. Mineral interactions and transformations in relation to pedogenesis during the Quaternary. Soil Sci., 107: 462-469.
- PESSOA, S.C.P., 1979. Estudo de uma sequência de perfis de Podzólicos e Latossolos desenvolvidos de granulitos, na zona úmida costeira do Sul do Estado da Bahia. Dissertação de Mestrado. Universidade Federal da Bahia, Salvador, BA,146 p.
- PESSOA, S.C.P.; G.R. RICHÉ e F.B.R. SILVA, 1980. Desenvolvimen to da estrutura de podzólicos e latossolos derivados de granulitos. Pesq.agropec.bras., Brasília, 15(3): 319-328.

- PRATT, P.F., 1965. Digestion with hydrofluoric and perchloric acids for total potassium and sodium. In: BLACK, C.A. (ed.) Methods of soil analysis. Madison, Wis. American Society of Agronomy. Part 1 (Agronomy 9), pp. 1019-1021.
- QUEIROZ NETO, J.P., 1969. Interpretação dos solos da Serra Santana para fins de classificação. Tese de Doutoramento, ESALQ/USP, 123 p.
 - QUEIROZ NETO, J.P., 1975. Pedogênese no Planalto Atlântico Contribuição à interpretação paleogeográfica dos solos da Mantiqueira Norte Ocidental. Tese de Livre Docência, Deptº de Geografia. F.F.L.C.H., USP, 270 p.
 - RICH, C.I., 1958. Muscovite weathering in a soil developed in the Virginia Piedmont. Clays and Clay Minerals. Natl. Acad. Sci. Natl. Res. Council, 566: 203-212.
 - RICH, C.I., 1968. Hydroxy interlayers in expansible layers silicate. Clays Clay Miner., 16: 15-30.
 - RICH, C.I. e S.S. OBENSHAIN, 1955. Chemical and mineral proper ties of a Red-Yellow Podzolic soil derived from sericite schist. Soil Sci. Soc. Am. Proc., 19: 334-339.
 - ROBINS, J.S., 1959. Moisture movement and profile characteristics in relation to field capacity. In. Comm. Irrig. Drain. 8: 509-521.
 - RODE, A.A., 1964. Podzolization and lessivage. Soviet Soil Sci., 7: 660-671.

- SAWHNEY, B.J., 1977. Interstratification in layer silicates. In: DIXON, J.B. e WEED, S.B. (ed.). Minerals in soil environments. Soil Science Society of America, Madison, Wis., pp. 405-434.
 - SCHWERTMANN, W., 1971. Transformation of hematite to goethite in soil. Nature, Londres. 232_624-625.
 - SCHWERTMANN, U. e R.M. TAYLOR, 1977. Iron oxides. In: DIXON, J.B. e WEED, S.B.(eds.) Minerals in soil environments. Soil Science Society of America Madison, Wisconsin, pp.145-180.
 - SIUTA, J., 1952. Influence of reduction processes and acidification on the solubility of mineral soil coumpounds. Soviet Soil Sci., 5: 500-508.
 - SKEMPTON, A.W., 1953. The colloidal "activity" of clays. Proc. 3rd Int. Conf. Soil Mech. and Found. Eng., 1:57-61.
 - SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO. Comissão de Método de Trabalho de Campo, 1976. Manual de método de trabalho no campo. Campinas, 36 p.
 - SOIL CONSERVATION SERVICE, 1972. Soil Survey investigations report n° 1. Soil survey laboratory methods and procedures for collecting soil samples. USDA, U.S. Govt. Print. Of., Washington, 63 p.
 - SOILEAU, J.M. e R.J. McCRAKEM, 1967. Free iron and coloration in certain well drained Coastal Plain Soils in relation to their other properties and classification. Soil Sci. Soc.Am. Proc., 31: 248-255.

- SOIL SURVEY STAFF, 1951. Soil Survey Manual. U.S. Dept.Agr. Handbook 18, U.S. Govt. Printing Office, Washington.
- SOIL SURVEY STAFF, 1971. Handbook of Soil Survey Investigations field procedures. U.S. Dept. of Agriculture, U.S. Govt. Print. Ofc., Washington, D.C.
- SOIL SURVEY STAFF, 1975. Soil Taxonomy: A Basic System of Soil Classification for Making a Interpreting Soil Survey. U.S.D.A., Soil Conservation Service. Agriculture Handbook nº 436, 754 p.
- SOUZA, J.J., 1971. Estudo pedológico de perfis de solos da região de Iracemápolis. Dissertação de Mestrado, E.S.A. "Luiz de Queiroz", USP, Piracicaba, SP, 100 p.
- SOWERS, G.F., 1965. Consistency. In: BLACK, C.A. (ed). Me-thods of soil analysis. Madison, Wisc. American Society of Agronomy. Part 1 (Agronomy 9), pp. 391-399.
- SUMMER, M.E., 1963. Effect of iron oxides on positive and negative charge on clays and soils. Clay Min. Bull., 5: 218-226.
- TAMURA, T., 1955. Weathering of mixed-layer clays in soils. Clays Clay Miner. 4: 413-422.
- TOKASHIKI, Y. e K. WADA, 1975. Weathering implications of the mineralogy of clay fractions of two Andosols. Amsterdam, Geoderma, 14: 47-62.
- T'SERSTEVESN, A.; P.G. ROUXHET e A.J. HERBILLON, 1978. Alteration of muscovite surface by water and electrolyte solutions. Clay Min., 13: 401-410.

- UEHARA, G. e G.P. GILLMAN, 1981. Mineralogy, chemistry, and physics of tropical soils with variable charge clays. Boulder, Westview Press, 170 p.
- VEIHMEYER, F.J. e A.H. HENDRICKSON, 1948. Soil density and root penetration. Soil Sci. 65: 487-483.
- VETTORI, L., 1969. Métodos de análise de solo. Equipe de Pedologia e Fertilidade do Solo. Escritório de Pesquisa e Experimentação. Ministério da Agricultura. Rio de Janeiro. (Boletim Técnico, 7), 24 p.
- VOLKOFF, B. e A.J. MELFI, 1980. Transformações mineralógicas em Rubrozens da bacia sedimentar de Curitiba (PR). R. bras. Ci. Solo, 4: 173-181.
- WADA, K., 1980. Mineralogical characteristics of Andisols. In: THENG, B.K.G. (ed.). Soils with variable charge. Soil Sci. Soc., Lower Hutl, New Zeland, pp. 87-197.
- WARSHAW, C.M. e R. ROY, 1961. Classification and scheme for the identification of layer silicates. Bull. Geol. Soc.Am. 72: 1455-1492.
- WEAVER, R.M.; M.L. JACKSON e J.K. SYERS, 1971. Magnesium and silicon activities in matrix solutions of montmorillonite-cointaining soils in relation to clay mineral stability. Soil Sci. Soc. Am. Proc., 35: 823-830.
- WEED; S.B. e L.A. NELSON, 1962. Occurrence of chlorite.like in tergrade clay minerals in Coastal Plain, Piedmont and Mountain soils of North Carolina. Soil Sci. Soc. Am. Proc. 26: 393-398.

APÊNDICE

DESCRIÇÃO GERAL

PEDON 1

Data: 23/11/1981

Classificação: PODZÓLICO VERMELHO-AMARELO ÁLICO argila de

atividade alta abrúptico (?) A moderado textura média/muito argilosa fase floresta tropi-

cal perenifólia relevo ondulado.

Localização: Estrada Nilo Peçanha - Ituberá, lado direito,

a 9,6 km após a ponte sobre o Rio Jequié em Ni-

lo Peçanha, Bahia.

Situação, Declive e Cobertura Vegetal sobre o pedon: Trinche<u>i</u>

ra em corte de estrada no topo de elevação com 10% de declividade, sob cobertura de gramí-

neas e samambaias.

Altitude: 15 metros

Formação Geológica e Litologia: Cretáceo Inferior, Super Gru

po Bahia, Grupo Brotas (?). Folhelho.

Material Originário: Proveniente da decomposição de folhelho

vermelho micáceo.

Pedregosidade: Ausente.

Rochosidade: Ausente.

Relevo Local: Ondulado

Relevo Regional:Ondulado e suave ondulado, constituído por

colinas de topos arredondados vertentes lige<u>i</u> ramente convexas de dezenas de metros e vales

bem abertos. Declividade de 5 a 20%.

Erosão:

Laminar moderada.

Drenagem:

Moderadamente drenado.

Vegetação Primária: Floresta tropical perenifólia.

Uso Atual:

Cultura de mandioca, além de dendezeiros, pia çava, pimenta-do-reino e cravo-da-India.

Clima:

Af da classificação de Köeppen.

Características Morfológicas:

0-10 cm; cinzento-escuro (10YR 3/1, úmido) e cinzento (10YR 5/1, seco); franco; moderada pequena a grande granular; ligeiramente duro, friável, muito plástico e pegajoso; transição clara e plana.

E 10-18 cm; bruno-escuro (10YR 3/3, úmido) e cinzento-brunado-claro (10YR 6/2, seco); franco; moderada pequena a grande granular; ligeiramente duro, friável, plástico e pegajoso; transição clara e ondulada (6-11 cm).

BE 18-30 cm: coloração variegada constituída por bruno(7,5 YR 4/4, úmido), vermelho-amarelado (5YR 4/5, úmido) e vermelho (2,5YR 4/5, úmido); franco-argiloso; forte grande prismática composta de moderada pequena a média blocos subangulares; cerosidade pouca e fraca; extremamente duro, firme, plástico e muito pegajoso; transição clara e ondulada (10-15 cm).

- Bt1 30-45 cm; verme1ho (2,5YR 4/6, úmido), mosqueado abundante, grande e proeminente verme1ho-amarelado (5YR 4/5, úmido) e pouco, pequena e proeminente, bruno (7,5YR 4/4, úmido); argila; forte grande prismática composta de forte pequena a média blocos subangulares; cerosidade comum e moderada; extremamente duro, firme,plástico e muito pegajoso; transição gradual e plana.
- Bt2 45-65 cm; vermelho (2,5 YR 4/8), úmido), mosqueado abundante, grande e distinto vermelho (3,5YR 4/5, úmido) e pouco, pequeno e proeminente bruno-amarelado (10YR 5/4, úmido); muito argiloso; forte média prismática composta de forte pequena e média blocos subangulares e angulares; cerosidade abundante e moderada; extremamente duro, firme, plástico e muito pegajoso; transição gradual e plana.
- Bt3 65-90 cm; vermelho (1YR 4/5, úmido), mosqueado difuso vermelho (1YR 5/6, úmido); muito argiloso; forte muito pequena e média blocos subangula res e angulares; cerosidade abundante e forte; extremamente duro, firme plástico e muito pegajoso; transição gradual e plana.
- Bt4 90-125 cm; vermelho (1YR 3,5/5, úmido), mosqueado, pouco difuso e pontuações brancas (10YR 5/2, úmido) e vermelhas (10R 4/8, úmido) proveniente de fragmentos de rocha intemperisada, com diâmetro em torno de 5 mm, e ocupando 2% da área do horizonte; argila; forte muito pequena e média blocos subangulares e angulares; cerosida de comum e forte; extremamente duro, firme , plástico e pegajoso; transição clara e plana.

BC 125-145 cm; bruno-avermelhado-escuro (1YR 3/4, úmido) e pontuações brancas e vermelhas idênticas ao horizonte anterior provenientes de fragmentos de rochas intemperizados que ocupam 1% do horizonte; presença de fragmento de rocha de cor bruno avermelhado escuro (1YR 3/3) ocupam do 10% do horizonte; argila moderada pequena blocos subangulares; cerosidade comum e moderada; duro, friável, plástico e pegajoso; transição clara e plana.

C 145-180 cm; vermelho (2,5YR 4/6, úmido)mosqueado, proveniente de fragmentos de rocha intemperizados comum médio e pequeno proeminente vermelho(10 YR 4/8, úmido) e comum pequeno, proeminente branco(10 YR 3/2, úmido); argila siltosa; fraca pequena blocos subangulares; cerosidade pou ca e fraca; duro, friável, plástico e pegajoso; transição abrupta e plana.

Crl 180-210 cm+; vermelho-acinzentado (1YR 4/4, úmido); argila siltosa; plástico e ligeiramente pegajoso.

Cr2: coleta a + 500 cm, cor vermelho-acinzentado (10 R 4/4, úmido) e mosqueados rosado (7,5
Y 7/4, úmido) resultantes da intemperização
da rocha; franco siltoso (textura de campo);plás
tico e ligeiramente pegajoso; folhelho.

Raízes: Abundantes no horizonte A e diminuindo gradativamente até o horizonte Bt2.

Observações: O horizonte E penetra através de fendas de 2 a 3 mm de largura, no horizonte BE.

Atividade biológica intensa , principalmente de minhocas, nos horizontes Al, E e BE. Os cortes de estradas dão formação a "ombros" e "saias".

Poros muitos, pequenos e médios nos horizon - tes A1 eE; poros comuns muito pequenos e pequenos e poucos médios nos horizontes BEe Bt1; e poros comuns muito pequenos e pequenos nos horizontes Bt2, Bt3, Bt4, BC e C.

Presença de fendas desde a base do horizonte E até ao horizonte Bt2, com 0,5 a 1,0 cm de largura.

ANÁLISE MINERALÓGICA

PEDON: 1

Al - CASCALHOS - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, um ou outro branco; tra ços de concreções ferruginosas.

AREIA GROSSA - 99% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, brancos, amarelados e acinzentados; 1% de carvão e detritos; traços de concreções ferro-argilosas, ilmenita, turmalina e zircão.

AREIA FINA - 98% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, brilhantes; 2% de ilmenita; traços de zircão, turmalina, concreções ferro-argilosas e argilosas claras, mica, carvão e detritos.

Bt2 - CASCALHOS - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, brancos e acinzentados; traços de material ferro-argiloso micáceo e concreções ferruginosas.

AREIA GROSSA - 99% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, amarelados; 1% de concreções ferro-argilosas, algumas com mica; traços de ilmenita, carvão e detritos.

AREIA FINA - 97% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, brilhantes; 2% de material ferro-argiloso, alguns micáceos, 1% de ilmenita; traços de turmalina, mica muscovita, zircão, carvão e detritos. C - CASCALHOS - 60% de quartzo, grãos angulosos e subangula losos, de superfície irregular; 40% de material ferro - argiloso, alguns micáceos.

AREIA GROSSA - 99% de quartzo, grãos angulosos subangulosos, de superfícies regular e irregulares incolores e brancos e poucos amarelados; 1% de material ferro-argiloso, alguns micáceos, alguns com inclusões de quartzo; traços de ilmenita, mica e detritos.

AREIA FINA - 97% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, brilhantes; 2% de material ferro-argiloso; 1% de mica muscovita; tra ços de turmalina, zircão e ilmenita.

PEDON 1

ANÁLISES FÍSICAS E QUÍMICAS

Amostra de labor. n.º: 82.0915/0924

) i Orizonte		Fraçõ	Frayties de amostra total			tarra	amulomòtric ficus (31 calunn)	s () s	afigiA Scotolic	Grantile		Siste	Den g/	Sidade Cm 3	Porosidada	
Simbolo	Prolu	ndidade cm	Calhaus > 20 mn	Cascalha 20-2 mm	Terra tina <2 mm	Areia grossa 2.020 mm	Arma 1/na 0.20 - 0.05 mm	5).05 - 0,002 0.05 - 0,002	Argila. < 0.002 mm	om Acus.	Bocolação	**	irgita ,	\paronie	Posi	(votuma)
A1 E BE Bt1 Bt2 Bt3 Bt4 BC C	11111	10 18 30 15 65 90 125 145 180 210+	0 0 0 0 0 0 0 0 0	1 3 1 tr tr tr tr tr	99 97 99 100 100 100 100 100 100	15 23 16 9 2 1 2 2 1	19 18 18 11 2 2 4 6 10 2	40 34 32 23 20 27 37 37 49 57	26 25 34 57 76 70 57 55 40	1.7 1.6 2.9 2.5 0 0 0 0	35 36 15 56 100 100 100 100 100	1, 1, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2	36 1 94 1 10 1 26 1 39 1 57 1	1,23 1,30 1,35 1,37 1,14 1,19 1,24 1,22	2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50	51 48 46 45 54 52 50 51 49
Horizonte		рН (1:2.	5)					Complexe mea/1						Valor V Os bases)	100 AI +	- <u> </u>
	Ago	M	KCL 1N	Ca * *	Mg ,	+ к	N	. •	Valor S (soma)	AJ	Н.	V/ (s	alor T oma)	3.0	S+AI	
A1 E BE Bt1 Bt2 Bt3 Bt4 BC C	4, 4, 5, 5, 5, 5, 5,	S S 1 1 2 2 1 1 2 0	3,7 3,7 3,7 3,8 3,8 3,8 3,8 3,8 3,8	1,3 0 0 0 0 0 0 0	0, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	0, 0, 0, 0, 0,	07 06 12 25 30 24 29 18	0,05 0,04 0,05 0,08 0,09 0,07 0,07 0,07	1,6 0,7 0,4 0,5 0,6 0,7 0,6 0,7 0,5	4,1 4,5 6,1 10,3 16,4 16,8 15,6 16,6 12,6	6,1 5,1 2,8 2,6 1,7 2,0 1,3 0,8 1,9	1 1 1 1 1 1	11,8 0,3 9,3 3,4 8,7 19,5 7,5 8,1 .5,0	14 7 4 3 4 3 4 3 4	7 2 8 7 9 4 9 5 9 6 9 6 9 6 9 6 9 6	
Hurizonta	C (orgán	nco)	N N	N	1 2 SO 4.	(1:1) Ai ₂ O ₃		OUE POR) 2 P	Na CH	(0.8%)	5:02 (XI)	Si O ₂ A ₂ O	Al 2	1	Equivalents Ge
Al E BE Bt1 Bt2 Bt3 Bt4 BC C	1,9 1,0 0,0 0,0 0,0 0,0 0,0 0,0	54 55 51 47 24 20 14	0,19 0,16 0,11 0,11 0,09 0,07 0,06 0,05 0,05	10 1 6 6 6 5 3 3 3 3 4	10,5 10,1 13,8 23,8 25,8 36,5 31,2 32,3 27,2 30,5	25,6 25,2 21,0 21,0	4, 3, 6, 6 8, 4 8, 1 8, 1	3 1, 1, 0, 0, 0, 0, 0,	25 25 12 82 72 68 72		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	, 21 , 26 , 43 , 46 , 53 , 61 , 36	1,64 1,65 1,77 1,83 2,02 2,04 2,03 2,08 1,99 2,10	3, 3, 4, 4, 4, 3, 5,	612,1 95 95 25 895,4 82 07 88 403,7	7
-		Pas	ta saturada				Sai	s selúveis (a	atrato 1:5)					Constantes hidricas		
Horizenta	AH CO:	C E di salrat mmhosi 25°C	o Agu	car	•	Mg	X X X X X X X X X X X X X X X X X X X	Na.	, co	- 0	si so			Imidado 15 alm	Agus dispo- nival nissi- ms	Equivalente de umidade
Al E BE Btl Bt2 Bt3 Bt4 BC C	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <											5	8,75			25,0 22,7 25,7 39,0 48,8 36,8 36,4 40,1 39,8 42,1

Relação textural:

DESCRIÇÃO GERAL

PEDON 2

Data: 25/11/81

Classificação: PODZÓLICO VERMELHO-AMARELO ÁLICO argila de a-

tividade alta abrúptico A moderado textura média/argilosa fase floresta tropical subpereni

fólia relevo suave ondulado.

Localização: Estrada Salvador - Feira de Santana (BR-324)a

proximadamente 300 metros antes do entronca - mento para São Sebastião do Passé, lado direi to, Município de São Sebastião do Passé. Ba-

hia.

Situação, Declive e Cobertura Vegetal sobre o pedon: Trinche<u>i</u>

ra em corte de estrada no terço superior de

elevação com 6% de declive sobre cobertura

de gramineas.

Altitude: 80 metros.

Formação Geológica e Litologia: Cretáceo Inferior, Super Gru-

po Bahia. Formação São Sebastião. Arenitos

e folhelhos.

Material Originário: Produto da decomposição de folhelho.

Pedregosidade: Ausente.

Rochosidade: Ausente.

Relevo Local: Suave ondulado de pendentes curtas.

Relevo Regional:Ondulado e suave ondulado formado por eleva ções de topos arredondados, vertentes curtas,
um tanto convexas, e vales de fundo chato.

Erosão: Laminar moderada e em sulcos

Drenagem: Moderada a imperfeitamente drenado.

Vegetação Primária: Floresta tropical subperenifólia.

Uso Atual: Culturas de cana-de-açúcar, mandioca e pasta-

gens.

Clima: Am(?) da classificação de Köppen.

Características Morfológicas:

Ap 0-10 cm; bruno-amarelado (10YR 5/6, úmido), mosqueado proveniente de partes do horizonte subjacente; franco; moderada muito pequena e pequena blocos subangulares; duro, muito friável, plástico e ligeiramente pegajoso; transição clara e plana.

BA 10-25 cm; bruno-avermelhado-escuro (4YR 3/4, úmido),mos queado proveniente de partes do horizonte superior; argila; moderada pequena blocos subangulares; cerosidade pouca e fraca; muito duro, friável, plástico e pegajoso; transição clara e plana.

- Bt1 25-40 cm; vermelho-escuro (2,5YR 3/6, úmido), mosqueado comum, pequeno e proeminente bruno (10YR 5/3, úmido); argila; forte pequena blocos subangulares e angulares; cerosidade comum e fraca; duro, friável, plástico e pegajoso a muito pegajoso; transição gradual e plana.
- Bt2 40-65 cm; vermelho-escuro (2,5YR 3/6, úmido), mosqueado abundante, médio e proeminente bruno (10 YR 5/3, úmido): muito argiloso; forte pequena blocos subangulares e angulares; cerosidade comum e moderada; duro, firme, plástico e pegajoso a muito pegajoso; transição gradual e plana.
- Bt3 65-107 cm; bruno-amarelado-claro (2,5Y 6,5/4, úmido),mos queado abundante, médio e proeminente vermelho (2,5YR 4/6, úmido); argila; moderada muito pequena prismática composta de forte pe quena blocos angulares; cerosidade abundante e moderada; duro, firme, plástico e pegajoso a muito pegajoso; transição clara e ondulada (36-52 cm).
- BC 107-128 cm; cinzento-brunado-claro (2,5Y 6/3, úmido) mos queado abundante, pequeno e proeminente vermelho (2,5YR 4/6, úmido); muito argiloso; moderada muito pequena prismática composta de forte pequena blocos angulares; cerosidade abundante e moderada; superfície de compressão abundante; superfície de fricção abundantes; duro, friável, plástico e pegajoso; transição abrupta e ondulada (12-23 cm).

2Crl 128-137 cm; bruno-amarelado-escuro (10YR 4/4, úmido), mos queado abundante, médio e proeminente verme-lho-escuro(2,5YR 3/6, úmido) e vermelho(2,5YR 4/8,úmido) e verm

2Cr2 137-144 cm+; cores bruno forte (7,5YR 5/8, úmido), amarelo -claro-acinzentado (5Y 7/3, úmido) e verme 1ho (3,5YR 5/8, úmido) resultantes da intempe rização da rocha; franco (textura de campo), não plástico e não pegajoso; arenito.

Raízes: Comuns fasciculares até o horizonte Btl e po \underline{u} cas no horizonte Bt2.

Observações: Presença de fendas de 0,5 a 1,0 cm de largura na superfície do solo.

Os cortes de estrada apresentam formação de "ombros" e "saias".

Intensa atividade biológica nos horizontes Ap, BA e Btl.

Poros poucos e pequenos nos horizontes Ap e 2 Cr1; e poros comuns pequenos e médios nos horizontes BA, Bt1, Bt2, Bt3 e BC.

A plintita ocorre no contato entre os horizon tes BC e 2Crl, tem forma Taminar de ± 0,5 cm de espessura, são descontínuas e apresentam partes endurecidas e outras semi-consolidadas.

Presença de fendas desde a superfície até de horizonte BC, com 0,5 a 1,0 cm de largura.

ANÁLISE MINERALÓGICA

PEDON: 2

Ap - CASCALHOS - 100% de concreções ferruginosas, ferro-argilosas e poucas concreções ferro-argilo-manganosas, hema títicas e goetíticas; traços de material argiloso claro e quartzo.

AREIA GROSSA - 98% de quartzo, grãos angulosos, subangulosos e subarredondados, de superfície regular e irregular, incolores, poucos amarelados; 1% de concreções fer ruginosas, ferro-argilosas e ferro-argilo-manganosas; 1% de detritos.

AREIA FINA - 98% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, amarelados e avermelhados; 1% de concreções ferruginosas, ferro-argilosas e poucas argilosas claras; 1% de carvão e detritos; traços de rutilo, mica muscovita e turmalina.

Bt2 - CASCALHOS - 72% de quartzo, grãos angulosos e subangulosos, de superfície regular e irregular, incolores, brancos; 28% de concreções ferro-argilosas.

AREIA GROSSA - 99% de quartzo, grãos angulosos e subangulosos, de superfície regular e irregular, incolores, amarelados e avermelhados; 1% de concreções ferro-argilosas, ferruginosas e pouca ilmenita; traços de carvão e detritos.

AREIA FINA - 99% de quartzo, grãos angulosos, subangulosos e subarredondados, de superfície regular e irregu - lar, incolores, poucos grãos amarelados e avermelhados; 1% de concreções ferro-argilosas; traços de mica muscovita, ilmenita e detritos.

2Crl - CALHAUS - 100% de material ferro-argiloso-arenoso, com poucos fragmentos de mica muscovita.

CASCALHOS - 100% de concreções ferro-argilosas e ferro-argilo-arenosas, hematíticas e goetíticas.

AREIA GROSSA - 50% de quartzo, grãos angulosos, subangulosos e subarredondados, de superfície regular e irregular, incolores, brancos, amarelados e avermelhados; 50% de concreções ferro-argilo-arenosas e ferro-argilosas, hematíticas e goetíticas, algumas com inclusões de mica muscovita; traços de mica muscovita.

AREIA FINA - 95% de quartzo, grãos angulosos e subangulosos, de superfície regular e irregular, incolores, amarelados, foscos e brilhantes; 5% de concreções ferruginosas, ferro-argilosas, hematíticas e goetíticas; tra ços de turmalina, mica muscovita, ilmenita e detritos.

REDON 2

ANÁLISES FÍSICAS E QUÍMICAS

Amostra de labor, n.º:	82.0925/	0931
------------------------	----------	------

Horizonte		Freçõ	Freções de amostra lotal			lati	granutoinétri ra fina NaOH catgon		Argita Janu sa	Grau da	% S.Hai	Dens-dade g/cm 3		Pornsidade
Simova	Profundidad cm	o Calhaus > 20 mm	Cascalho 20-2 mm	Tefra fina <2mm	, 466 9 (234 2 - 0.70 frum	Acers Inco 0.20 - 0.0 from	S-11a 05 0.03 - 0.00 mm	A/Q!A <0,002 mm	ern Agtra	floculação Ye	% Argita	Aparonte	Roal	(volumo)
- A1	0- 10	0	tr	100	3	40	30	27.	2.5	15	1,11	1,42	2,50	43
BA	- 25	0	tr	1.00	2	26	23	49	43	1.2	0,47	1,18	2,50	5.3
Btl	- 40	0	tr	100	1	19	- 23	57	49	1.4	0,40	1,33	2,50	47
Bt2	65	.0	tr	100	1	1.7	21	61	57	7	0,34	1,38	2,50	45
Bt3.	-107	0	tr	100	1	. 17	23	59	5.5	- 10	0,39	1,47	2,56	13
BC	-128	0	tr	100	1	13	25	61	55	10	0,41	1,37	2,63	18
2Cr1	- 137	tr	. 5	95	3	4.3	15	39	35	10	0,38	1.45	2.63	45
Herizonta	рн (1	2.5)					Complex mey/	u sortiva 100g				Valor V	100-41 +	levalinization mode
	Адил	KCL 1N	Ca * *	Asg , .	к		Na '	Valor S (syma)	A3 + 1 +	н	Valor T (soma)	3,0	S+AI	
Ap	5,1	3,8	1,6	1,1	0.	34	0,06	3,1	2,5	4,4	10.0	31	45	
ВΛ	5,3	3,8	0,7	1,8	0	22	0,09	2,8	6.9	3,8	13,5	21	71	
Btl	5,5	3,8	0,8	2,0	0,	22	0,17	3, 2	8,4	4,3	15,9	20	72	
Bt2	5,7	3,8	0,8	2,7	ΰ,	21	0,21	3,9	9,7	3,8	17,4	22	71	
Bt3	5,8	3,8	0,6	3,4	0,	31	0.24	4,6	9,2	3,4	17,2	27	67	
BC	5,6	3,8	0,8	4,4	0,	45	0.32	5,8	10,9	5,0	19,7	29	65	
2Crl	5,5	3.,8	0.5	2,9	0,	2.2	0,21	3,8	6,1	3, 1	13,0	29	62	
Horizonta	(org <mark>ý</mark> nico)	22.2	N —	2 50 1	1:1) At ₂ O ₁	1	D ₃ TI	0 2 P	1	(J.3%)	50 2 51 C 2 O 3 R 2 Ki) (Kr	0, 4,		
Ap	1,05	0,13	8 1	1.4	8,1	3,	3 0.	39		2	39 1,9	0 3,8	5 2,1	7
ВА	0.73	0,12	6 1	9,7	13,2		1	56			54 2.0	- 1		
Bt1	0,63	0,12	5 2	4.6	16,4	1		6.3	1.		55 2,0			
Bt2	0,50	0,10	5 2	6,6	17.6	6,		67			57 2,0			8
Bt3	0,32	0,10	3 2	6,3	17,1	8,	1 0,	68		2,	62 2,0		'	
BC	0,34	0,07	5 3	0,9	18,5	9.	6 0,	7.1.		2.	84 2,1	3 3,0	2	
2Cr1	0,29	0,07	4 1	6,8	11,8	6,	7 0.	37	ľ	2.	42 1,7	8 2,7	6 5,6	3
	. , ,	asta saturada.		1		s	idis solúvals (s	extrato I 5)	I		1	Const	antes hidrica	•
Harizon!*			Ca Ca		meq/100gde1f		. 1	нсо	CI	so s	Umidade Umidade 173 atra 15 atm		Agua dispor nivel maxi- ina	Equivalente de umiciade
Ap	1										29,6	15.8		21,7
BA	1		.			-				-	100,0			30,1
Bt1	1													54,6
Bt2	1			.		: .					51 1	35,1		56,4
Bt3	1										,,,	[]		55,6
	1	- 1	· 1	- 1		l	1	1.	1	1	1	1		1
ВС	2		- 1			l .								38,7

Relação textural:

DESCRIÇÃO GERAL

PEDON 3

Data: 26/11/81

Classificação: PODZÓLICO VERMELHO-AMARELO ÁLICO argila de a-

tividade média a alta abrúptico A moderado tex tura média/muito argilosa fase floresta tropi

cal subperenifólia relevo ondulado.

Localização: Estrada Maceió - Aracajú (BR-101), lado direi

to, entre os quilômetros 114 e 115, vale do Rio Sumaurma Grande, Município de Pilar, Ala-

goas.

Situação, Declive e Cobertura Vegetal sobre o pedon: Trinchei

ra em corte de estrada, no terço inferior de uma elevação com 18% de declive, sob cobertu-

ra de gramineas.

Altitude: 40 metros.

Formação Geológica e Litologia: Cretáceo Inferior. Formação

Muribeca, constituída de conglomerados em matriz de arcóseo, arcóseos conglomeráticos e

arcóseos, com intercalações de folhelhos.

Material Originário: Produto de alteração do conglomerado

com algum retrabalhamento na parte superficial.

Pedregosidade: Ausente.

Rochosidade: Ausente.

Relevo Local: Ondulado com topo arredondado e vertentes con-

vexa de dezenas de metros.

Relevo Regional:Ondulado e suave ondulado, topos arredondados, vertentes convexas de dezenas de metros e vale em "V" aberto.

Erosão:

Laminar moderada.

Drenagem:

Moderada a imperfeitamente drenado.

Vegetação Primária: Floresta tropical subperenifólia

Uso Atual:

Cultura de cana-de-açúcar.

Clima:

As da classificação de Köeppen.

Características Morfológicas:

Ap 0-10 cm; bruno-avermelhado-escuro (5YR 3/3, úmido) e bruno (7,5YR 5/4, seco); franco argilo-are-noso com cascalho; moderada média e grande granular; ligeiramente duro, friável, plástico e pegajoso; transição clara e plana.

BA 10-22 cm; bruno-avermelhado-escuro (2,5YR 3/4, úmido), mosqueado comum, pequeno e distinto vermelho (2,5YR 4/6, úmido); argila; fraca muito peque na e pequena prismática composta de fraca pequena blocos subangulares; cerosidade pouca, moderada e descontínua; duro, firme, plástico e pegajoso; transição clara e plana.

Bt1 22-43 cm; vermelho (2,5YR 4/5, úmido), mosqueado comum, pequeno e distinto vermelho (10R 4/6, úmido); muito argiloso; fraca muito pequena e pequena prismática composta de moderada média blocos subangulares; cerosidade abundante, moderada e descontínua; duro, firme, plástico e muito pegajoso; transição gradual e plana.

Bt2 43-67 cm; coloração variegada composta de bruno-forte (7,5YR5/6, úmido) e vermelho-escuro (2,5YR 3/6, úmido); muito argiloso; fraca muito pequena e pequena prismática composta de fraca pequena e média blocos subangulares; cerosidade abundante, moderada e descontínua; duro, friá vel a firme, plástico e muito pegajoso; transição gradual e plana.

Bt3 67-90 cm; coloração variegada composta de cinzento-bru nado-claro (10YR 6/2, úmido), vermelho-escuro (10 R 3/6, úmido) e bruno (7,5YR 5/4, úmido); muito argiloso; fraca muito pequena e pequena prismática composta de moderada pequena e média blocos angulares e subangulares; cerosida de abundante, moderada e contínua; duro, friá vel, plástico e pegajoso; transição gradual e plana.

Bt4 90-115 cm; coloração variegada composta de cinzento-brunado-claro (10 R 6/2, úmido), vermelho (10 R
4/6, úmido) e amarelo-brunado (10YR 6/6, úmido); argila; moderada pequena e média blocos
angulares e subangulares; cerosidade comum ,
moderada e descontínua, duro, friável, plásti
co e pegajoso; transição clara e ondulada (18
-36 cm).

BC 115-180 cm; coloração variegada composta de bruno-acinzen tado (10YR 5/2, úmido), vermelho (10R 4/8, úmido) e bruno-amarelado (10YR 5/6, úmido); ar gila; fraca pequena blocos subangulares; cerosidade comum moderada e descontínua; duro , friável, plástico e pegajoso.

C1180-250 cm+; bruno-claro acinzentado (10YR 7/4, úmido), mos queado vermelho (1YR 4/8, úmido); franco argi loso com cascalho; plástico e ligeiramente pe gajoso.

coleta a - 500 cm, bruno-claro-acinzentado (10 C.2YR 7/4, úmido) e mosqueado vermelho (1YR 4/8, úmido), resultantes da imtemperização da rocha; franco-argiloso com cascalho; plástico e ligeiramente pegajoso.

coleta a - 700 cm em local próximo ao pedon, amarelo-claro-acinzentado (2,5Y 7/4, úmido)e bruno forte (7,5YR 5/8, úmido), mosqueados ver melho (2,5YR 4/8, úmido); franco arenoso cascalhento; ligeiramente plástico e ligeiramente pegajoso.

Comuns com diâmetro entre 2 e 5 mm nos horizontes Ap e BA; poucas com diâmetro em de 3 mm nos horizontes Btl e Bt2; e raras comdiâ metros em torno de 1 mm nos horizontes Bt3 Bt4.

> Ocorrem superfícies de compressão e de fricção em quantidade pouca no horizonte Bt2, comuns nos horizontes Bt3 e Bt4 e abundantes no BC.

> Presença de fendas da base do horizonte Ap até o Bt4, com 0,5 a 1,0 cm de largura.

Penetração de material escuro de cor bruno-es curo (10YR 4/2, úmido) proveniente do horizon te A, através de fendas até o horizonte Bt4.

Atividade biológica devido a cupins e formi gas até o horizonte Bt4.

Cr

Raizes:

Observações:

O horizonte Cl foi coletado por tradagem, e o horizonte C2 em corte de estrada.

ANÁLISE MINERALÓGICA

PEDON 3

Ap - CASCALHOS - 100% de quartzo, grãos angulosos, de superfície regular e irregular, brancos e amarelados, brilhantes; traços de concreções ferruginosas hematíticas e concreção calcedonizada incipiente (1 grão).

AREIA GROSSA - 100% de quartzo, grãos angulosos e suba<u>n</u> gulosos, de superfície irregular, incolores; amarelados, brilhantes, traços de carvão, concreções ferruginosas h<u>e</u> matíticas, mica biotita imtemperizada e detritos.

AREIA FINA - 99% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, amarelados, brilhantes, 1% de carvão e detritos; traços de turmalina, ilmenita, mica biotita, zircão e concreções ferrugi nosas.

Bt2 - CASCALHOS - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, amarelados, brancos, brilhantes e foscos; traços de concreções ferro-argilosas, hematíticas e goetíticas.

AREIA GROSSA - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, um ou outro amarelado, brilhantes e foscos; traços de mica biotita imtemperizada, feldspato (plagioclásio e microclina), concreções ferruginosas e detritos.

AREIA FINA - 100% de quartzo, grãos angulosos, subangulosos e subarredondados, de superfície irregular, incolores, brilhantes e foscos; traços de mica biotita, con creções ferro-argilosas, ilmenita, feldspato (microclina), carvão e detritos.

C1 - CASCALHOS - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, brancos, amarelados e avermelhados, foscos; traços de feldspato (microclina).

AREIA GROSSA - 92% de quartzo, grãos angulosos, de superfície irregular, incolores, amarelados, brilhantes e foscos; 7% de feldspato (microclina); 1% de mica bictita.

AREIA FINA - 95% de quartzo e feldspato (microclina);5% de mica biotita intemperizada.

OBS: Não foi possível fazer distinção entre as percentagens de quartzo e feldspato.

C2 - CASCALHOS - 100% de quartzo, grãos angulosos, de superfície irregular, incolores, amarelados, avermelhados , foscos; traços de concreções ferruginosas, argilosas cla ras e feldspato.

AREIA GROSSA - 50% de quartzo, grãos angulosos, de superfície irregular, incolores, amarelados, brilhantes e foscos; 50% de feldspato (microclina) e em menor percentagem concreções argilosas claras; traços de mica biotita intemperizada e detritos.

AREIA FINA - 94% de quartzo, grãos angulosos, de superfície irregular, incolores, brancos e amarelados, brilhantes e feldspato (microclina); 6% de mica biotita im temperizada e um ou outro grão de ilmenita. Não foi possível fazer-se distinção entre as percentagens de quartzo e feldspato.

Cr - CALHAUS - 100% de fragmentos de rocha, contendo quartzo, feldspato (microclina) e mica.

CASCALHOS - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, brancos, incolores, fos cos; traços de feldspato (microclina), alguns grãos com inclusões de mica biotita intemperizada.

AREIA GROSSA - 59% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, brancos e foscos; 40% de feldspato (microclina); 1% de mica biotita intemperizada; traços de detritos.

AREIA FINA - 45% de quartzo, grãos angulosos, de superfície irregular, incolores, brancos e foscos; 45% de feldspato (microclina); 10% de mica biotita intemperiza da; traços de ilmenita.

PEDON 3

ANÁLISES FÍSICAS E QUÍMICAS

Amostra de labor. n.º: 82.0932/0941

Horizenta		Fraçós	Frações da amostra total			polição gr larra ão com Ha	hne .		Argila dispersa em èque	Graude Boculação	% Sate		sidade Crn 3	Porogidada	
Simbola		ndklada cm	Calhaus > 20 mn	Cascalho 20-2 rnm	Terra fina <2 mm	Areia grossa 2-0-20 mm	Areia fina 0.20 - 0.05 mnt .	Silte 0.05 - 0.00 sim	Argila <0.002	em éque	Bochutas	% Argula	Aparente	Real	(volume)
Ap BA Bt1 Bt2 Bt3 Bt4 BC C1 C2 Cr		- 10 - 22 - 43 - 67 - 90 -115 -180 -250 -700		13 2 1 tr 1 3 4 6 5 24	87 98 99 100 97 96 94 95 72	37 18 8 5 16 18 22 24 29 46	18 11 5 6 6 7 8 10 12	22 16 13 14 14 18 22 27 22 24	23 55 74 75 64 57 48 39 37 18	10 47 62 63 57 34 2 1 8	57 15 16 16 11 40 96 97 78 6	0,96 0,29 0,18 0,19 0,22 0,32 0,46 0,69 0,59 1,33	1,49 1,19 1,23 1,29 1,40 1,41 1,43	2,44 2,44 2,44 2,44 2,50 2,50 2,50	39 51 50 47 44 44
Horizente		pH(1:2	.5).					Comple	ob sortiva 1100g			****	Valor V de Dases)	100 Al + 1	- ξξ
	Apr	IA	KCL IN	C#	Mg	' k	. Na	*	Valor S. (soma)	w * * * *	н ,	Valor (some)	E	S + AI + +	
Ap BA Bt1 Bt2 Bt3 Bt4 BC C1 C2 Cr	4, 5, 5, 5, 5, 5, 5, 5,	8 0 1 2 2 1 0	3,9 3,7 3,7 3,7 3,6 3,6 3,5 3,5	1,4 1,3 1,3 1,1 1,1 0,9 0,5 0,5 0,5	1,1 1,6 1,3 1,3 1,6 1,7 2,1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 0 23 0 18 0 16 0 21 0 16 0 11 0 08 0	06 08 09 09 10 11 12	2,9 3,3 5,5 3,2 2,7 2,8 2,5 2,4 2,8 12,2	1,2 3,3 8,6 11,2 11,8 13,0 15,1 14,8 16,4 8,8	3,7 5,2 2,4 2,1 1,1 0,8 1,0 1,3 0,8 0,4	7,8 11,8 14,5 16,5 15,6 18,6 20,0 21,4	28 24 19 17 17 13 13 14	29 50 71 78 81 82 86 86 85 42	
Horizonte	C (orgán	sico)	N %	" -	12504	(1:1) Al ₂ O ₃	Fe 2 O 3	DUE POR	02 P	ı	V 5	O 2 SI O	A1 2	~	eb arrelatives
Ap BA Bt1 Bt2 Bt3 Bt4 BC C1 C2	1, 1 0, 9 0, 6 0, 6 0, 1 0, 1 0, 1	92 56 47 33 26 14	0,13 0,13 0,12 0,11 0,09 0,08 0,07 0,05 0,05 0,04	6 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9,8 2,9 2,7 3,0 1,2 31,5 8,2 8,2 7,2 7,6	6,7 17,6 23,7 23,4 22,4 18,7 18,5 18,2 17,5 8,7	1,6 3,6 5,6 5,9 3,9 4,2 3,3 3,0 5,0 2,7	0, 0, 0, 0, 0,	41 66 82 89 66 57 44 36 32 21		2, 2, 2, 2, 2, 2,	49 2.1 21 1.9 35 2.0 40 2.1 37 2.1 86 2.5 59 2.3 63 2.3 64 2.3 44 2.8	7 8,1 4 6,6 9 10,3 3 9,0 0 6,6 3 8,8 8 9,4 8 9,1	0 447 2,7 0 7 1 9 1,79	5
	1.1	Pa	shervinc etc				Sals	soliveis (extrato 1:5)				Const	antes hidricas %	
Harizonte	100 Ha	C E d extrai mmhos 25°0	o Agui	Ca Ca	• • •	Mg - 10	. K '	Na ·	HCO		so .	Umktade 1/3 atm	Umidade 15 atm		Eduivalente de umidade
Ap BA Bt1 Bt2 Bt3 Bt4 BC C1 C2			The second secon									51,3	15,0 35,1 23,3		18,1 31,2 37,1 28,8 34,4 33,5 32,7 32,1 27,5 15,1

Relação textural:

DESCRIÇÃO GERAL

PEDON 4

Data: 27/11/81

Classificação: PODZÓLICO VERMELHO-AMARELO ÁLICO argila de a-

tividade alta abrúptico A moderado textura média/argilosa fase floresta tropical subpereni

fólia relevo forte ondulado.

Localização: Estrada Recife-Ipojuca, distando 11 km da es-

trada Recife-Cabo, lado esquerdo, a 5 km de

Ipojuca. Município de Ipojuca, Pernambuco.

Situação, Declive e Cobertura Vegetal sobre o pedon: Trinche<u>i</u>

ra a 50 metros da estrada, lado esquerdo, no terço médio de uma elevação com 20% de decli-

ve e sob cobertura de gramineas.

Altitude: 80 metros.

Formação Geológica e Litologia: Cretáceo Inferior. Formação

Cabo. Conglomerados e Arcóseos.

Material Originário: Produto de alteração do conglomerado Ca-

bo.

Pedregosidade: Ausente.

Rochosidade: Ausente.

Relevo Local: Forte ondulado.

Relevo Regional:Ondulado e forte ondulado constituído por con

junto de outeiros de topos arredondados, ver-

tentes ligeiramente convexa de dezenas de me

tros e vales de fundo chato e em "V".

Erosão:

Laminar moderada.

Drenagem:

Moderadamente drenado.

Vegetação Primária: Floresta tropical subperenifólia.

Uso Atual:

Cultura da cana-de-açúcar

Clima:

Ams' da classificação de Köeppen.

Características Morfológicas:

Ap 0-12 cm; bruno-escuro (10YR 3/3, úmido) e bruno-claro--acinzentado (10YR 6/2, seco); franco argilo--arenoso com cascalhos; moderada média granular; ligeiramente duro, firme, plástico e pegajoso; transição clara e plana.

BA 12-30 cm; bruno-amarelado (10YR 5/4, úmido) e bruno-amarelado (10YR 6/4, seco), mosqueado abundante pequeno e médio difuso bruno-forte (7,5 YR 5/6, úmido); argila; fraca muito pequena e pequena prismática composta de fraca média blocos subangulares; cerosidade pouca e fraca; muito duro, firme, plástico e pegajoso; transição gradual e plana.

Bt1 30-62 cm; vermelho (2,5YR 4/8, úmido), mosqueado comum, médio e difuso, bruno (7,5YR 5/4, úmido); argila; fraca muito pequena e pequena prismática composta de moderada média blocos subangula res; cerosidade abundante e moderada; duro , friável, muito plástico e muito pegajoso; transição gradual e plana.

- Bt2 62-88 cm; vermelho (2,5YR 4/8, úmido) mosqueado comum, médio e difuso, bruno muito claro-acinzentado (10YR 7/4, úmido); fragmentos de rocha ocupam 2% deste horizonte; argila; moderada pequena e média blocos subangulares; cerosidade abundante e moderada; duro, friável, muito plástico e muito pegajoso; transição gradual e plana.
- Bt3 88-117 cm; vermelho (2,5YR 4/8, úmido), mosqueado pouco, pequeno e médio, distinto branco (10YR 8/2, úmido); fragmentos de rocha ocupam 10% deste horizonte; argila; fraca pequena blocos subangulares; cerosidade comum e fraca; duro, friável, muito plástico e muito pegajoso; transição clara e ondulada (23-34 cm).
- BC 117-168 cm; vermelho (2,5YR 4/8, úmido), mosqueado comum, pequeno e médio, distinto branco (10YR 8/2, úmido); fragmentos de rocha ocupam 15% deste horizonte; argila; fraca pequena blocos subangulares; cerosidade pouca e fraca; ligeiramente duro, friável, muito plástico e muito pegajoso; transição clara e ondulada (38-67 cm).
- Cl 168-200 cm+; coloração variegada composta de branco (10YR 8/2, úmido), vermelho-claro (10.R 6/8, úmido), vermelho (10 R 4/8, úmido) e vermelho (2,5YR 4/8, úmido); fragmentos de rocha ocupam 25% deste horizonte; franco argiloso; maciça; ligeiramente duro, firme, ligeiramente plástico e ligeiramente pegajoso.

Raizes:

Comuns nos horizontes Ap e BA; poucas nos horizontes Btl, Bt2 e Bt3; e raras nos horizontes BC e Cl.

Observações:

Poros comuns pequenos e médios nos horizontes Ap e BA; e poucos poros pequenos e muito peque nos nos outros horizontes.

Presença de fendas da base do horizonte Ap até o Bt3, com largura menor que 0,5 cm.

ANÁLISE MINERALÓGICA

PEDON 4

Ap - CASCALHOS - 100% de quartzo, grãos angulosos, de superfície irregular, amarelados; traços de concreções ferruginosas e carvão.

AREIA GROSSA - 100% de quartzo, grãos angulosos e suban gulosos, de superfície irregular, incolores, brancos e amarelados, brilhantes e foscos; traços de ilmenita,con creções ferruginosas, carvão e detritos.

AREIA FINA - 99% de quartzo, grãos angulosos e subangulosos, de superfície regular e irregular, brilhantes e foscos, incolores, brancos e amarelados; 1% de ilmenita; traços de zircão, mica biotita intemperizada, feldspato intemperizado, carvão e detritos.

Bt1 - CASCALHOS - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, brancos alguns com pontos de mica biotita intemperizada; traços de detritos.

AREIA GROSSA - 99% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores, brancos e amarelados, brilhantes e foscos; 1% de material argiloso claro e feldspato intemperizado; traços de magnetita e mica biotita intemperizada.

AREIA FINA - 86% de quartzo, grãos angulosos, de superfície irregular, incolores, brancos, amarelados, bri lhantes e foscos; 10% de mica biotita intemperizada; 4% de material argiloso claro em maior porcentagem e felds pato intemperizado. C1 - CASCALHOS - 100% de quartzo, grãos angulosos e subangulosos, de superfície irregular, brancos, foscos, um ou outro com aderência de mica; traços de concreções argilosas claras, mica muscovita e detritos.

AREIA GROSSA - 98% de quartzo, grãos angulosos e subangulosos, de superfície irregular, brancos, amarelados, um ou outro com aderência de mica biotita intemperizada; 1% de mica biotita intemperizada e mica muscovita; 1% de concreções argilosas claras e pouco feldspato intemperizado; traços de detritos.

AREIA FINA - 90% de quartzo, grãos angulosos e subangulosos, de superfície irregular, incolores e brancos, ma terial argiloso claro e feldspato intemperizado; 10% de mica biotita intemperizada.

OBS: Não foi possível fazer-se distinção entre as per - centagens de quartzo, feldspato intemperizado e concreções argilosas claras.

PEDON 4

ANALISES FÍSICAS EQUÍMICAS

	PEDON 4 ANALISES FÍSICAS EQUÍMICAS															
	Amostra da lab	or. n.º: 82	. 094	2/094	3											
	Hori	zonte	Fraçõ	es da amostr	la fot al		to con the content to	ine .		Argus (fest-orss	Graude floculoção	% Sine	Den g/	Densidade g/cm 3		
	Simboli	Simbola Profundidade Catheus		Criscatho 20 2 mm	ferra fina <2 mm	Grossa bisa 2-0,20 0,20-0,05 mm mm		Silie Argii 0.05 - 0.002 < 0.00 mm mrs		em Agus	Hocolog and	% Augita	Apsrente	Roal	(volumu)	
	Ap	0-12	Ü	8	92	35	24	23	18	14	22	1,28	1,44	2,50	4.2	
	BA	- 30	0	1	99	18	12	19	51	12	1.8	0,37	1,42	2,50	43	
	Bt1	- 62	0	2	98	1.7	1.2	20	51	17	6.7	0,39	1,38	2,50	45	
	. Bt2	- 88	0	1	99	17	1.1	23	49	. 6	8.8	0,47	1,50	2,50	10	
	Bt3	-117	0	2	98	16	7	25	52	- 2	96	0,48	1,42	2,44	42	
	BC	-168	0	1	99	1.2	1.0	34	4.4	2	95	0,77	.1.,35	2,50	46	
• • •	C1	- 200+	0	3	97	241	11	3.2	- 33	2	94	0 97	1 24	2 50	<u> </u>	
	Horizonia	рн (12	.5)					Complex meg/					200	100 AI +	E &	
		Água	KCL IN	Ca .	Mg **	K *			Valor S (soma)	w ' ' '	н	Valor F (soma)	(Lat. Valor	S+A+		
	Ар	1,8	3,8	1,8	0.5	0,	14 (0.06	2,5	1,6	4,3	8,4	30	39		
	BA	4,8	3,6	1,2	0,5	0,		· .	1.,8	7,9	2,4	12,1	15	81		
	Btl	5,0	3,7	0,5	0,3	0,		0.7	1,4	9,8	0,8	12,0	12	88		
	Bt2 Bt3	5,2	3,7	0,4	0,8	0,	- 1	· 1	1,3	11,4	0,9	13,6	10	90		
	BC	1 1	3,7 3,8	0,5	1,1	0,		0.05		12.8	0,7	15,2	11	8.8	-	
	C1		3,7	0,3	$\begin{bmatrix} 1,2\\1,1 \end{bmatrix}$	0.0	· 1	05		13,1	1,3	16,2	11	88		
		-						, 03	1 0	113,3	1,3	16,4	10	89		
	Horizonte	C (orgánico)	N %	N	1250+ (1:		1	DUEPOR	}	н ₃ Он (0.8°51	02 Si C	O 3 Fa.	— I	0 3 SECOND	
ı				s	0 2 1	2 3	F* 2 O 3	Tr.	O 2 P	205	dnO ((i) (X/		- 3 %	ű	
	Ap	1,28	0,15	9.	8,6	4,5	1,6	0,	37		3,	25 2,6	55 4,4	1 0,8	3	
	BA	0,71	0,12	6.	. (6,3	3,8	0,	46		2,	38 2,0	07 6,7	1		
	Bt1	1	0,10		1	20,4	4,7	1 '	5.3		2.	33 2,0)3 6,8	0 2,9	4	
	Bt2		0,08	1	1	20,1	3,8	1	42		2,	33 2,0	08 8,2	8		
	Bt3	1	0,06		- 1	22,2	4,0	1 '			1	34 2,1	1 1			
	BC C1	1	0,06	1 1		24,0	4,9		ı			33 2,0				
	CI	0.05	0,04	1 2	4,5 1	7,1	3,1	0,	30		2.	44 2,1	8,6	4 1,7	1	
		l• L	sta salurada				Sala	soloveis (e	natrato 1 5)				Const	Constantes hidricas		
	Horizonia	8 CE o extrait	o Agu	ca Ca	ма	,	к '	Ne ·	HC0	3 - CI	. so ,	Urnxtade 1/3 atm	Cumpton	Agua disco	Equivalente de umidade.	
	۸-	25.40	: 1	<u> </u>	1	4/10			+	,	1	1.	1.1	•	1	
	Ap BA	1								1		25,3	14,2		17,8	
	Bt1	1	1									150	[,,]		33,6	
	Bt2	<1									.	150 .5	32,6		35,1	
	Bt3	<1													33,7	
	BC	<1							.						37.5 37,2	
	C1	<1	ŀ		autornamen.				ŀ			37 9	20,7		27,3	
												137,0	20,7		1.67,3	

Relação textural: