

Especiação do mercúrio no mexilhão *Perna perna* da região da ressurgência de Cabo Frio – RJ.

Carlos Alberto da Silva*1(PQ) & Emmanoel Vieira Silva-Filho2(PQ)

Palavras Chave: metilmercúrio, especiação, mercúrio inorgânico, molusco, ressurgência.

Introdução

O consumo de pescado com elevado teor de metilmercúrio é considerado a maior rota de exposição ao contaminante e tem causado muita preocupação devido aos graves problemas de toxidade deste metal em seres humanos. A espécie orgânica CH₃Hg⁺ é a fração do mercúrio total que é transferida mais eficientemente até os níveis mais altos na cadeia trófica aquática. Os moluscos filtradores possuem uma grande capacidade de bioacumular metais pesados e outros poluentes podendo ser bioindicadores da contaminação costeira.

Experimental

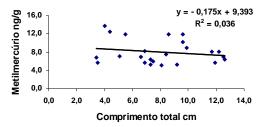
Cromatografia Gasosa acoplada ao ICP-MS foi usada para a especiação do Hg no tecido do manto dos mexilhões coletados na região infralitoral da Ilha de Cabo-Frio - RJ. A extração e derivatização das espécies mercuriais foram descritas anteriormente¹.

Resultados e Discussão

O Hg²⁺ foi à espécie majoritária em todas as amostras do mexilhão com porcentagens acima de 60% em relação ao mercúrio total (tabela I). Esta partição das espécies mercuriais está diretamente relacionado com sua fonte alimentar, o plâncton marinho da área da ressurgência que apresentou porcentagens do mercúrio inorgânico superiores a 70%².

Tabela I. Especiação de Hg (ng g⁻¹) por CG-ICPMS no mexilhão *Perna perna* de Cabo Frio – RJ.

Mercúrio*	Média ± DP	Mínimo	Máximo
Orgânico CH₃Hg ⁺	$7,99 \pm 2,63$	5,15	13,70
Inorgânico Hg ²⁺	34,61 ± 15,90	10,0	60,78


^{*} Concentração com base no peso seco

A proporção de metilmercúrio com relação ao Hg total variou de 11,6 a 37,8% com uma média de 21,2 ± 9,1%

inferior aos peixes da região²: sardinha(39,5%), xerelete(89,2%), pescada(92,8%) e bonito(95,2%).

Normalmente, observa-se um aumento dos teores da espécie orgânica nos organismos marinhos predadores. O metilmercúrio não apresentou correlação com o comprimento total da concha (figura 1). O mesmo comportamento ocorreu com o Hg inorgânico (P>0,05).

Figura I. Relação entre a concentração de metilmercúrio e o comprimento total da concha do mexilhão *Perna perna*.

As concentrações de mercúrio total variaram de 15,20 a 68,91 ng g⁻¹ com uma média de 42,60 ± 16,83 ng g⁻¹ inferior a de outras regiões costeiras^{3,4,5}.

Conclusões

Os teores de mercúrio dos mexilhões encontram-se abaixo do limite máximo permitido pela legislação brasileira de 500 ng g⁻¹ e a região costeira de Cabo Frio não apresenta contaminação por mercúrio.

Agradecimentos

Ao Laboratoire de Chimie Analytique, Bio-Inorganique et Environnement da Université de Pau et des Pays de l'Adour, França pela realização das análises de especiação de mercúrio. À CAPES pelas bolsas de doutorado e a de PDEE concedidas.

¹EMBRAPA Tabuleiros Costeiros; Av. Beira Mar, 3250 - Jardins; Aracaju - SE; 49.025-040 (cadal@cpatc.embrapa.br) ²Universidade Federal Fluminense; Departamento de Geoquímica; Outeiro São João Batista s/n, Centro, Niterói – RJ; 24.020-007 (geoemma@vm.uff.br)

¹Silva, C.A. Tese de doutorado. Universidade Federal Fluminense, Niterói, **2006.**

²Silva, C.A.; Silva-Filho, E.V. In: Anais XI Congresso Brasileiro de Geoquímica, Atibaia, **2007.**

³Joiris, C.R.; Holsbeek. L.; Otchere, F.A. Marine Pollution Bulletin, **2000**, 40(5):457-460.

⁴Kehrig, H.A., Costa, M., Moreira, I., Malm, O. Marine Pollution Bulletin, **2002**, 44:1018-1023.

⁵Pereira, O.M.; Henriques, M.B.; Zenebon, O. Rev. Inst. Adolfo Lutz, **2002**, 61(1): 19-25.