EFEITO DO CÁLCIO NA CONCENTRAÇÃO DE MICRONUTRIENTES EM MUDAS DE SERINGUEIRA

Maria do Carmo Tomaz SAMPAIO⁽¹⁾, Ismael de Jesus Matos VIEGAS^(2,3), Irenice Maria dos Santos VIEIRA⁽¹⁾ & Janice Guedes de CARVALHO^(3,4)

(1) Professora FCAP, Caixa Postal 917, 60077-530-Belém, PA, (2) Pesquisador EMBRAPA/CPATU, Belém, PA, (3) Professor Visitante FCAP, (4) Professora DCS/UFLA, Caixa Postal 37, 37200-Lavras, MG

Apesar de ser normalmente cultivada em solos pobres, a seringueira tem mostrado melhor desenvolvimento e resposta em produtividade quando são corrigidas as limitações nutricionais através do uso de fertilizantes. Embora a seringueira extraia e exporte grandes quantidades de cálcio em relação aos outros nutrientes, não se encontram na literatura muitas referências relativas ao real efeito do cálcio sobre o vigor da seringueira e produção de látex. Nos principais países orientais produtores de borracha natural, como a Malásia, esse nutriente é utilizado em doses muito elevadas na adubação de seringais tendo como fonte principal a rocha fosfatada contendo 42% de CaO. O uso de formulações NPK concentradas e consequentemente com baixo teor de cálcio e/ou adubos fosfatados sem cálcio aliados ao cultivo de clones mais produtivos e portanto, mais exigentes em nutrientes, enfatizam ainda mais a necessidade de estudos específicos sobre o efeito isolado desse nutriente na nutrição mineral e desenvolvimento da seringueira.

Com o objetivo de avaliar o efeito de doses crescentes de cálcio sobre a concentração de micronutrientes em seringueira foi conduzido um experimento em casa de vegetação do Departamento de Solos da Faculdade de Ciências Agrárias do Pará (FCAP). As mudas foram obtidas a partir de sementes procedentes dos seringais do stand "Belterra", os quais são predominantemente de Hevea benthamiana ou de híbridos com essa espécie. O cultivo das plantas foi em sacos plásticos pretos com capacidade para 6kg de areia lavada. No primeiro mês as plantas (uma por saco) foram irrigadas com solução nutritiva completa segundo Hoagland e Arnon. Após esse período, a solução foi modificada quanto aos níveis de cálcio (fornecido na forma de nitrato de cálcio) correspondentes aos tratamentos (0, 50, 100 e 150 ppm de Ca). O delineamento experimental foi o inteiramente casualizado com quatro tratamentos e cinco repetições. As plantas foram coletadas com 180 dias de idade quando apresentaram distúrbios nutricionais bem definidos. Em seguida, cada planta foi dividida em raiz, caule e folhas correspondentes ao primeiro, segundo e terceiro verticilos e determinados os teores de B, Cu, Fe, Mn e Zn.

As doses de cálcio afetaram significativamente os teores dos micronutrientes estudados. A tabela 1 mostra os coeficientes de determinação para as regressões entre doses de cálcio e teor dos nutrientes nas diferentes partes da planta. O aumento das doses de cálcio promoveu, de modo geral, uma redução nos teores de Cu, Mn e Zn na planta. Em algumas partes da planta houve um aumento do teor de Fe com o aumento das doses de cálcio, a competição do Fe com Mn e/ou Zn e Cu explica esses resultados. O efeito do Ca sobre o teor de boro foi quadrático com o aumento do teor de cálcio.

Tabela 1 - Coeficientes de determinação para as regressões entre doses de cálcio e teores de micronutrientes nas diversas partes de mudas de seringueira

Parte da planta	Coeficiente de determinação (r²)							
	В	Cu	Fe	Mn	Zn			
Folha vert. inferior Folha vert. mediano	0,9780** Q 0,9980** Q	NS NS	0,9284** L 0,8238** L	0,8824**L 0,9261**L	0,9341**L 0,9910**Q			
Folha vert. terminal	0,9997* Q	0,9150* L	0,3168** Q	0,9731**L	0,9330**Q			
Caule vert. inferior	0,7018* L	NS	NS	0,9337**L	0,9732**Q			
Caule vert mediano	NS	NS	NS	0,9459**L	0,8845**Q			
Caule vert.terminal	0,8681** L	0,9030* L	NS	0,9887**L	0,7579**L			
Raiz	0,9566** L	0,9711**Q	0,9995** Q	0,7915**L	0,9999**Q			

F - Significativo a 5% de probabilidade;
F - Significativo a 1% de probabilidade;
NS - não significativo
L - Regressão linear,
Q - Regressão Quadrática

A Tabela 2 mostra os teores de B, Cu, Fe, Mn e Zn nas diferentes partes de mudas de seringueira em relação às doses de cálcio. Os maiores teores de micronutrientes foram observados nas folhas inferiores, com exceção do cobre onde a raiz mostrou maiores teores desse nutriente. Os resultados observados confirmam a baixa mobilidade na planta dos elementos estudados.

Os teores de micronutrientes nas folhas do verticilo mediano das plantas que apresentaram melhor desenvolvimento foram: 112,8ppm de B; 4,72ppm de Cu; 371,2ppm de Fe; 82,35ppm de Mn e 48,70ppm de Zn.

Tabela 2 - Teores de micronutrientes nas diversas partes de mudas de seringueira em função da dose de cálcio

Parte da planta	Dose de Ca(ppm)	Teor de micronutrientes (ppm)					
		В	Cu	Fe	Mn	Zn	
Folha verticilo	0	100,0	7,16	323,5	85,95	72,18	
inferior	50	119,0	6,21	421,5	85,00	59,67	
	100	122,6	4,88	527,7	34,90	50.04	
	150	123,4	5,99	542,0	19,85	47,35	
	Média	116,26a	6,05b	453,5a	56,42a	57,318	
Folha verticilo	0	99,3	7,61	339,2	89,25	70,20	
mediano	50	112,8	4,72	371,2	82,35	48,70	
	100	114,1	4,67	376,7	34,95	42,49	
	150	105,6	4,59	475,7	17,40	41,82	
	Média	107,95Ь	5,39b	390,7ь	55,99a	50,801	
Folha verticilo	0	90,8	6,74	258,2	61,25	41,95	
terminal	50	95,0	5,38	228,0	52,65	26,00	
	100	91,4	3,76	527,7	29,10	25,50	
	150	80,7	3,66	249,5	13,06	23,17	
	Média	89,49c	4,89bc	315,8c	39,01b	29,160	
Caule	0	6,2	3,19	69,94	38,25	38,33	
verticilo	50	14,9	2,21	61,06	28,35	14,60	
inferior	100	20,0	1,54	58,36	7,60	10,27	
	150	17,5	1,54	61,00	4,57	7,51	
	Média	14,65e	2,12d	62,58d	19,69d	17,68	
Caule	0	24,7	3,01	89,91	68,1	25,19	
verticilo	50	26,0	2,22	85,14	54,55	14,15	
mediano	100	33,7	2,13	70,89	16,70	9,65	
	150	27,6	1,23	75,31	6,87	7,66	
	Média	28,01d	2,15d	80,31d	36,56bc	14,17	
Caule	0	16,2	5,96	90,98	56,00	23,15	
verticilo	50	22,5	4,04	78,53	37,50	11,87	
terminal	100	22,2	3,70	61,45	21,55	10,99	
	150	31,7	2,84	72,67	10,30	9,36	
	Média	23,16d	4,14c	75,91d	31, 34c	13,84	
Raiz	0	8,5	22,5	473,5	45,85	49,42	
	50	11,1	14,96	380,2	50,40	29,82	
	100	17,2	7,01	348,0	34,25	19,50	
	150	25,0	8,08	389,5	16,05	18,43	
	Média	15,46e	13,14a	397,75Ь	36,64bc	29,29	

Médias seguidas pela mesma letra não diferem entre si pelo teste de Tukey a 5% de probabilidade

