

Efeito da Omissão de Macronutrientes no Crescimento, Nos Sintomas de Peficiências Nutricionais e na Composição Mineral de Gravioleiras

Introdução

A gravioleira (*Annona muricata* L) apresenta-se como uma das espécies de grande importância econômica para a fruticultura regional. Existe demanda crescente das frutas, cujas qualidades organolépticas importantes possibilitam sua utilização, tanto para consumo "in natura" quanto para aproveitamento pela agroindústria. A gravioleira também possui propriedades utilizadas na medicina homeopática e na culinária caseira, sendo aproveitada sob as mais diversas formas. Neste contexto, a produção de fruteiras regionais, por ser oriunda, na sua grande maioria, do extrativismo ou do semi-extrativismo, ainda reflete o pouco conhecimento dos diferentes componentes que constituem o sistema de produção das culturas. A produção de fruteiras na Amazônia ainda é limitada pela carência de conhecimentos sobre os diversos segmentos dos sistemas de produção, sobretudo, no que concerne a estudos sobre a nutrição mineral de plantas.

Com base nessas considerações, instalou-se o trabalho com o objetivo de avaliar o crescimento, caracterizar a sintomatologia de deficiências de macronutrientes e a composição mineral de plantas de gravioleira.

Material e Métodos

O experimento foi desenvolvido sob condições de casa de vegetação da Embrapa Amazônia Oriental, Belém, PA. Utilizou-se o delineamento inteiramente casualizado, com quatro repetições e sete tratamentos: completo (N, P, K, Ca, Mg, S, e micronutrientes); omissão de N; omissão de P; omissão de K; omissão de Ca; omissão de Mg e omissão de S. Utilizaram-se sementes da cultivar Morada, considerada como a mais resistente ao ataque das brocas dos frutos (*Cerconota anonella* Sepp.) e do tronco (*Cratosomus dulis* F.). A solução nutritiva utilizada foi a de Bolle-Jones (1954), modificada. Utilizaram-se vasos de plástico com capacidade para 5,0 litros, contendo sílica lavada (tipo zero grossa). As plantas foram aclimatadas por um período de aproximadamente 75 dias, em solução nutritiva a diferentes diluições seqüenciadas. Após esse período, as plantas atingiram altura média de aproximadamente 30 cm, quando foram submetidas aos tratamentos com solução nutritiva e diluída a 1:1. As soluções nutritivas foram fornecidas por percolação nos vasos, a intervalos de 15 dias. Quando todos os sintomas de deficiência, referentes aos nutrientes estudados se apresentaram bem definidos, as plantas foram coletadas em folhas, caule e raízes. Secaram-se as amostras em estufa com circulação forçada de ar a 70 °C, até peso constante. A matéria

seca correspondente a cada uma das partes das plantas por vaso e por tratamento foi pesada e, posteriormente, moída em moinho tipo Willey e armazenada em saco de plástico. Enviaramse as amostras, assim preparadas, ao Laboratório de Análise de Solo e Planta da Embrapa Amazônia Oriental, para a determinação dos teores de macronutrientes com base na metodologia descrita por Möller et al. (1997).

Resultados e Discussão

Sintomas visuais de deficiências de macronutrientes

Nitrogênio

As plantas de graviola em solução nutritiva com omissão de nitrogênio manifestaram sintomas de deficiência do nutriente logo após o início dos tratamentos. Verificou-se, primeiramente, que as folhas mais velhas, a partir da região basal, perdiam gradualmente a coloração verde para uma tonalidade verde-pálida, distribuindo-se uniformemente no limbo, pecíolo e nervuras. A coloração amarelada está associada à menor produção de clorofila e com modificações na forma dos cloroplastos (Malavolta et al.1997).

Fósforo

Os sintomas de deficiência de fósforo foram inicialmente observados nas folhas superiores, as quais se apresentaram, em relação ao tratamento completo, mais estreitas, tamanho reduzido, bordos curvados e ápices para baixo. As folhas inferiores paralelas ao caule apresentaram coloração verde-clara. Plantas com deficiência em fósforo têm o seu crescimento retardado, devido afetar vários processos como a síntese protéica e de ácidos nucleicos (Mengel & Kirkby,1987).

Potássio

A deficiência de potássio se caracterizou, inicialmente, com um esverdeamento intenso da folhagem, com pequena redução no tamanho das folhas novas. Nas folhas mais velhas, a partir do ápice, observou-se clorose marginal, avançando em direção à parte central por entre as nervuras, inicialmente de coloração verde-amarela, para posteriormente marrom, como conseqüência da necrose. Com a severidade da deficiência, ocorreu a queda das folhas basais e estabilidade no crescimento.

Cálcio

A omissão de cálcio acarretou anormalidades visíveis nas folhas mais novas,

percebendo-se inicialmente, necrose ao longo da margem superior do ápice da folha, com o restante da folhagem apresentando verde normal. Esta necrose na folha apresentou-se "queimada" de coloração pardo-escura e enrolada sobre si mesma, com bordos recurvados para cima. A falta de cálcio é caracterizada pela redução do crescimento de tecidos meristemáticos, sendo observado, inicialmente, nas extremidades em crescimento e nas folhas mais jovens (Mengel & Kirkby, 1987).

Magnésio

Os primeiros sintomas de deficiência de magnésio foram observados inicialmente nas folhas mais velhas da parte mediana da planta, com o aparecimento de leve amarelecimento ao longo da nervura principal. A nervura principal e as margens laterais das folhas mantiveram-se verdes. À medida que aumentava a intensidade de deficiência de magnésio, a faixa amarelada tornava-se totalmente alaranjada, ocasionando a abscisão precoce das folhas de gravioleira.

Enxofre

As plantas com carência de enxofre apresentaram, nas folhas novas, coloração verde mais clara que a observada nas folhas do tratamento completo, com nervuras mais pálidas, em relação ao limbo, de tamanho menor, caule mais delgado, crescimento reduzido.

Efeito das omissões dos macronutrientes sobre a altura das plantas, diâmetro do caule, produção de matéria seca e crescimento relativo.

As omissões de todos os macronutrientes afetaram o crescimento em altura das plantas. A omissão individual de nitrogênio com 37 cm, omissão de cálcio com 51 cm e de fósforo com 58 cm foram as mais afetadas, quando comparadas com o tratamento completo, cuja altura foi de 174 cm (Tabela 1).

Tabela 1. Altura (cm) e diâmetro do caule (mm) das plantas de gravioleira, em função dos tratamentos.

Tratamentos	Altura (cm)	Diâmetro (mm)
Completo	174 a	20,85 a
Omissão de N	37 d	5,90 d
Omissão de P	58 cd	8,20 cd
Omissão de K	75 c	9,74 c
Omissão de Ca	51 cd	7,07 cd
Omissão de Mg	70 c 8,87 c	
Omissão de S	124 b	16,67 b

CV (%)	15,24	10,38

^{*} Médias seguidas pela mesma letra nas colunas não diferem entre si, em nível de 5% de probabilidade, pelo teste de Tukey.

Os tratamentos que mais afetaram o diâmetro do caule foram os com omissão de nitrogênio com 5,90 mm, cálcio com 7,07 mm e fósforo com 8,20 mm de diâmetro, em relação ao tratamento completo, que foi de 20,85 mm. Quanto à produção de matéria seca nas raízes, verificou-se que todos os tratamentos foram limitantes (Tabela 2). Com relação a matéria seca do caule, constatou-se que os tratamentos com omissão de potássio e enxofre apresentaram maior produção, em relação aos demais tratamentos, porém foram significativamente menor que o completo (Tabela 2).

Tabela 2. Produção de matéria seca (g/planta) das diferentes partes das plantas de gravioleira, em função dos tratamentos.

Partes da planta						
Tratamento	Raízes	Caule	Caule Folhas		CR	
Completo	42,75 a	58,75 a	58,75 a 21,0 a		100	
Omissão de N	3,47 c	2,39 d	1,63 d	7,49 e	6	
Omissão de P	5,41 c	5,72 d	2,86 cd	13,99 ed	11	
Omissão de K	8,54 c	12,32 c	10,61 b	31,47 c	25	
Omissão de Ca	4,09 c	3,9 d	2,68 d	10,67 ed	8	
Omissão de Mg	6,98 c	6,48 d	7,94 cb	21,40 cd	17	
Omissão de S	19,86 b	35,7 b	25,37 a	80,93 b	66	
CV (%)	38,73	13,90	22,63	12,80		

Médias seguidas pela mesma letra nas colunas não diferem entre si, em nível de 5% de probabilidade, pelo teste de Tukey.

M.S.T = Matéria Seca Total CR = Crescimento Relativo

No que diz respeito à produção de matéria seca das folhas, todos os tratamentos com omissão foram limitantes, com exceção da omissão de enxofre, que proporcionou maior produção que o tratamento completo, embora sem diferirem estatisticamente entre si (Tabela 2). As menores produções de matéria seca das folhas foram registradas nos tratamentos com omissão de nitrogênio, com 1,63 g/planta; a de cálcio, com 2,68 g/planta; e a de fósforo, com 2,86 g/planta. Verificou-se que o tratamento completo apresentou produção de matéria seca total de 127,94 g/planta, significativamente superior aos demais tratamentos. A ordem decrescente, em que a ausência de um determinado nutriente influenciou na diminuição da produção total de matéria seca das plantas de graviola foi a seguinte:

nitrogênio>cálcio>fósforo>magnésio>potássio>enxofre. O crescimento relativo (CR) obedeceu à seguinte ordem decrescente

completo>enxofre>potássio>magnésio>fósforo>cálcio>nitrogênio, deduzindo-se, dessa maneira, que o desenvolvimento da planta, durante o período experimental, foi menos afetado pela deficiência de enxofre com redução de 34% da matéria seca, e mais afetado pelo

nitrogênio, com redução de 94% da matéria seca.

Os resultados dos teores de macronutrientes correspondentes a cada tratamento são apresentados na Tabela 3. Verificou-se que os teores (g/kg) dos macronutrientes nas folhas do tratamento completo e com omissão dos nutrientes foram respectivamente: N = 14,70 - 8,32; P = 0,92 - 0,47; K = 13,35 - 2,62; Ca = 14,11 - 3,44; Mg = 3,59 - 1,09; S = 5,32 - 2,30. Os teores de macronutrientes das plantas do tratamento completo obedeceram à seguinte ordem nas raízes: N > S > K > Ca > Mg > P >, no caule: K > N > Ca > S > Mg > P, e nas folhas: N > Ca > K > S > Mg > P.

Tabela 3. Teores de macronutrientes (g/kg) nas diversas partes das plantas de gravioleira, em função dos tratamentos.

Tratamento	Nutriente	Raízes	Caule	Folhas	
Completo	N	28,35	6,02	14,70	
	Р	1,8	0,95	0,92	
	К	9,62	9,25	12,35	
	Ca	5,41	5,40	14,11	
	Mg	2,21	1,21	3,59	
	S	26,48	4,88	5,32	
Omissão N	N	8,67	5,07	8,82	
Omissão P	Р	0,65	0,37	0,47	
Omissão K	nissão K K		1,95	2,62	
Omissão Ca	Ca	1,48	1,38	3,44	
Omissão Mg	o Mg Mg		1,09	1,09	
Omissão S	S	2,12	0,86	2,30	

Com base nos teores dos macronutrientes nas folhas do tratamento completo (adequado) e dos com omissão (deficiente), pode-se obter em primeira aproximação da

variação de teores destes nutrientes na gravioleira (Tabela 4).

Tabela 4. Teores de macronutrientes (g/kg) em folhas de gravioleira-1ª aproximação

Nível	N	Р	K	Ca	Mg	S
Adequado	14,70	0,92	12,35	14,11	3,59	5,32
Deficiente	8,82	0,47	2,62	3,44	1,09	2,30

Conclusões

omissão de N, P, K, Ca, Mg e S, na solução nutritiva, resultou em alterações morfológicas, traduzidas como sintomas característicos de deficiência nutricional de cada nutriente em planta de gravioleira;

omissões de macronutrientes em gravioleira promoveram diminuição na produção de matéria seca.

Referências Bibliográficas

BOLLE-JONES, E. W. **Nutrition of (Hevea brasiliensis)** II. Effects of nutrient deficiencies on growth, chlorophyll, rubber and mineral contents of Tjirandji 1 seedlings. **Journal of the Rubber Institute of Malaya,** Kuala Lumpur, v.14, n.290, p. 209-230, 1954.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. **Avaliação do estado nutricional das plantas** : princípios e aplicações. 2. ed. Piracicaba: POTAFOS, 1997. 319 p.

MENGEL, K.; KIRKBY, E.A. **Principles of plant nutrition**. Bern, International Potash Institute, 1987. 687p

MOLLER, M. M.; VIÉGAS, I. de J. M.; MATOS, A. de O.; PARRY, M. M. **Análise de tecido vegetal:** manual de laboratório. Belém: Embrapa-CPATU, 1997. 32p. (Embrapa-CPATU. Documentos, 92).



quisa desenvolvida em parceria com a Jica e extraída da dissertação de mestrado do primeiro autor para obtenção do grau de Mestre na FCAP em 2001.

Agrôn., D.Sc., Pesquisador da Embrapa Amazônia Oriental e Professor Visitante da FCAP, Caixa Postal 48, CEP 66017-970, Belém, PA, e-mail: ismael@cpatu.embrapa.br

Agrôn., M.Sc., da Fundação de Parques e Áreas Verdes de Belém, Funverde.

Agrôn., M.Sc., Faculdade de Ciências Agrárias do Pará, Caixa Postal 1917, CEP 66077-530, Belém, PA.