

MINISTÉRIO DA EDUCAÇÃO
FACULDADE DE CIÊNCIAS AGRÁRIAS DO PARÁ
UNIDADE DE APOIO À PESQUISA E À PÓS-GRADUAÇÃO
EMBRAPA AMAZÔNIA ORIENTAL

XII SEMINÁRIO DE INICIAÇÃO CIENTÍFICA DA FCAP SEMINÁRIO DE INICIAÇÃO CIENTÍFICA DA EMBRAPA AMAZÔNIA ORIENTAL

10 a 12 de Dezembro 2002 CAMPUS DA FCAP - BELÉM - PARÁ

A CONTRIBUIÇÃO DO PROFISSIONAL DE CIÊNCIAS AGRÁRIAS NO USO E CONSERVAÇÃO DA BIODIVERSIDADE

ANAIS

ESTUDO FENOLÓGICO E ANÁLISE FITOQUÍMICA DE ESPÉCIES DO HORTO DA EMBRAPA AMAZÔNIA ORIENTAL.

PAIVA, Juliana Silva¹; LAMEIRA, Osmar Alves²; OLIVEIRA, Elaine Cristina Pacheco de³.

INTRODUÇÃO

A utilização de plantas na arte de curar é uma forma de tratamento muito antiga, e está relacionada aos primórdios da medicina e fundamentada no acúmulo de informações através de sucessivas gerações. Ao longo dos séculos, produtos de origem vegetal constituíram as bases para tratamento de diferentes doenças (Elisabetsky, 1987).

A grande demanda pelos fitoterápicos produzidos por diversas espécies vegetais e dentre estas, pela ipeca (*Psychotria ipecacuanha*), jaborandi (*Pilocarpus micropyluus*), quina (*Quassia amara*), murapuama (*Ptychopetalum olacoides*) tem provocado um acelerado processo extrativo dessas espécies nas áreas de ocorrência natural.

Alguns fatores contribuíram para o aumento marcante na utilização de plantas medicinais nos últimos anos: a crise econômica, o alto custo dos medicamentos industrializados, o difícil acesso da população à assistência médica, bem como uma tendência generalizada dos consumidores em utilizarem produtos de origem natural. Freqüentemente, as informações sobre produtos naturais ignoram o conhecimento empírico acumulado em séculos passados e o conhecimento científico desenvolvido nas últimas décadas, sobre efeitos desejados ou não, precauções e contra-indicações dessas plantas.

Levantamentos etnobotânicos são fundamentais para o conhecimento e o estudo de plantas com atividades medicinais. Qualquer que seja o esquema de pesquisa de plantas medicinais (Carlini,1983; Elisabetsky, 1987; Perozin, 1989), o estudo botânico adquire característica fundamental, seja no apoio ao levantamento antropológico em comunidades, seja no fornecimento de informações morfológicas e ambientais, auxiliando com importantes dados sobre fenologia, tipos de estruturas secretoras, hábitos, outras características e identificação das espécies levantadas. O objetivo do presente trabalho foi avaliar e caracterizar espécies medicinais provenientes de coleções e bancos de germoplasma da Embrapa Amazônia Oriental, visando o uso e manejo correto das espécies.

MATERIAIS E MÉTODOS

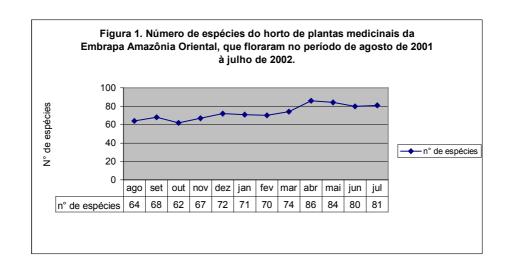
Os germoplasmas de plantas medicinais existentes no Horto de plantas medicinais da Embrapa Amazônia Oriental foram avaliados e caracterizados com base em anotações realizadas diariamente.

No processo de avaliação foram considerados os parâmetros agronômicos específicos para cada espécie, época de floração e frutificação, bem como a ocorrência de pragas e doenças.

A abordagem fitoquímica foi realizada através de screening fitoquímico com as seguintes espécies: Cipó d'alho (Adenocalymna alliaceum Miers.), Pariri da folha larga (Arrabidaeae sp.), Graviola (Annona muricata L.), Damiana (Turnera umifolia L.) e Marupazinho (Eleutherine plicata Herb.) em que foram identificados os principais grupos de compostos orgânicos como: alcalóides, antraquinonas, flavonóides, saponina espumídica, taninos, ácidos orgânicos, açúcares redutores, azulenos, carotenóides, catequinas, depsídios e depsidonas, derivados benzoquinas, derivados da cumarina, esteróides e triterpenóides, glicosídeos cardíacos, lactonas, polissacarídeos, proteínas e aminoácidos e purinas.

Os dados coletados foram analisados em programas microcomputadorizados e posteriormente armazenados para formação de banco de dados. Foram considerados, para efeito de coleta de material para análises, época de floração e frutificação, idade, estado fitossanitário, horário e aspecto nutricional dos órgãos das plantas como folha, raiz e casca, visto que, em situações adversas, as espécies podem vir a apresentar variações nos seus constituintes químicos.

³Pós Graduanda/ EMBRAPA Amazônia Oriental.


RESULTADOS E DISCUSSÃO

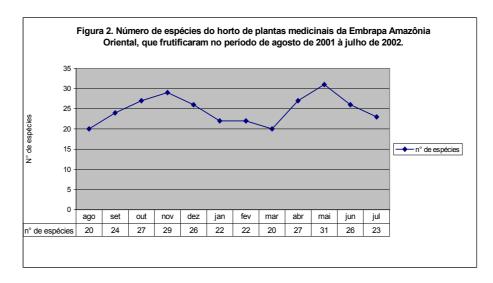

Na Tabela 01 são apresentadas as famílias existentes no Horto de plantas medicinais da Embrapa Amazônia Oriental relacionando o número de espécies pertencentes a cada uma delas. Foram identificadas cerca de 120 espécies dentro de 52 famílias, sendo que a família Labiatae apresentou o maior número de espécies identificadas de uso medicinal, seguido pelas Compositae, Euphorbiaceae e Bignoniaceae, respectivamente com 16, 14, 6 e 5 espécies..

TABELA 01. Identificação de famílias e respectivo número de espécies existentes no Horto de plantas medicinais da Embrapa Amazônia Oriental. 2002.

FAMÍLIA	Nº ESPÉCIES	FAMÍLIA	N ⁰ ESPÉCIES
Acanthaceae	01	Lauraceae	01
Amaranthaceae	02	Liliaceae	02
Anonaceae	01	Malvaceae	02
Apocynaceae	01	Malpighiaceae	02
Araceae	01 Maranthaceae		01
Araliaceae	01	Meliaceae	01
Asclepiadaceae	01	Moraceae	02
Asteraceae	03	Myrtaceae	05
Bignoniaceae	05	Nyctaginaceae	01
Bixaceae	01	Pedaliaceae	01
Cactaceae	01	Piperaceae	02
Caesalpinaceae	03	Phytolacaceae	01
Caprifoliaceae	01	Plantagiaceae	01
Chenopodiaceae	02	Poaceae	01
Commelinaceae	02	Portulacaceae	02
Compositae	14	Rubiaceae	02
Convolvulaceae	02	Rutaceae	03
Costaceae	02	Salicaceae	01
Crassulaceae	01	Simarubaceae	01
Crucifereae	02	Solanaceae	02
Cyperaceae	02	Tilicaceae	01
Euphorbiaceae	06	Turneraceae	01
Fabaceae	01	Tridaceae	02
Gramineae	02	Verbenaceae	03
Iridaceae	01	Vitaceae	02
Labiatae	16	Zingiberaceae	02

As avaliações fenológicas quanto aos períodos de floração e frutificação de cada espécie são apresentados nas Figuras 1 e 2. Foram observados que nos meses de abril a maio e junho e novembro ocorre a maior concentração de espécies em floração e frutificação, respectivamente. Foram observados ainda que, os meses de menor ocorrência da floração coincide com os meses de menor precipitação pluviométrica (agosto a outubro) e os meses de menor frutificação coincide com os meses de maior precipitação pluviométrica (janeiro a março) na área onde estão cultivadas as espécies em Belém – PA (dados não mostrados). Esses dados são interessantes pois permitirão determinar as épocas adequadas de coleta de material para obtenção de extratos vegetais visando as análises fitoquímicas e o uso correto durante o processo de manipulação das espécies. De acordo com Silva (1998), um dos passos iniciais mais importante para o conheciemnto e utilização das espécies vegetais é o estudo da sua biologia, em particular o da fenologia. O mesmo autor afirma que os dados sobre a floração e frutificação são fundamentais para embasar a coleta de frutos e sementes para fins silviculturais e permitir posteriores trabalhos visando a identificação de fatores responsáveis pelas tarnsições fenológicas. Martins et al. (1995), relatam que existem vegetais onde a máxima concentração do princípio ativo é atingido a partir de determinada idade e/ou fase de desenvolvimento.

Na Tabela 2, são mostrados o screening fitoquímico de cinco espécies. As análise fitoquímicas determinaram a presença de saponinas, taninos, proteínas, aminoácidos e açúcares redutores em todas as espécies e a presença de lactonas e catequinas na Damiana e derivados da cumarina no Marupazinho.

TABELA 02: Análise fitoquímica de cinco espécies medicinais do Horto de Plantas Medicinais da Embrapa Amazônia Oriental. 2002.

NOME VIII CAD	1	Damiana	Ciné dialha	Manunazinka	Davini da falha langa
NOME VULGAR	Graviola		Cipó d'alho	Marupazinho	
FAMÍLIA	Anonaceae	Turneraceae	Bignoniaceae	Iridaceae	Bignoniaceae
PARTE UTILIZADA	Folha	Folha	Folha	Batata	Folha
TESTES/RESULTADOS					
Ácidos Orgânicos	P	P	N	P	N
Açúcares Redutores	P	P	P	P	P
Alcalóides	P	N	P	N	N
Antraquinonas	N	N	N	N	N
Azulenos	N	M	N	N	N
Carotenóides	P	P	N	P	N
Catequinas	N	P	N	N	N
Depsídeos e Depsidonas	M	N	N	P	N
Derivados Benzoquinas	N	N	N	N	N
Derivados da Cumarina	N	N	N	P	N
Esteróides e Triterpenóides	P	P	P	N	N
Flavonóides	P	M	N	N	N
Glicosídeos Cardíacos	N	M	N	N	N
Lactonas	N	P	N	N	N
Polissacarídeos	N	N	N	N	N
Proteínas e Aminoácidos	P	P	P	P	P
Purinas	P	P	N	N	N
Saponina Espumídica	P	P	P	P	P
Taninos	P	P	P	P	P

N - Negativo; P - Positivo; M - Mascarado.

Com relação à Graviola, supõe-se que a mesma possua atividade antidiabética, calmante, analgésica e auxilia no tratamento contra o câncer (Taylor, 1998) e emagrecimento, porém esta última atividade pode ter como efeito colateral a paralização do pâncreas e uma debilidade física quando utilizado por período prolongado.

A Damiana pode possuir ação emoliente, adstringente, antidiabética, antialbuminúria, tônica geral, na má digestão, na dispepsia e em leucorréia (Vieira, 1991).

Segundo Vieira (1991), o Cipó d'alho pode vir a ter propriedades antisséptica, diurética, laxativa, antimicrobiana, expectorante, anti-inflamatória, mucolítica, anti-hemorrágica, cicatrizante, anti-oxidante, aumentando a permeabilidade vascular, e podendo também atuar como antídoto contra envenenamentos alcaloídicos e agir no sistema nervoso central (como analgésico ou estimulante, hiper ou hipotensivo).

Quanto ao Marupazinho, acredita-se que possua ação farmaco – terapêutica no combate à diarréia, amebíase e hemorróioda (Pimentel, 1994).

O Pariri da folha larga, de acordo com as análises realizadas, possivelmente poderá ter ação diurética, anti-séptica, laxativa, anti-microbiana, anti-inflamatória, mucolítica, expectorante, com capacidade de aumento da permeabilidade vascular, cicatrizante, anti-oxidante, e também poder atuar como antídoto contra envenenamentos alcaloídicos (Elisabtsky, 1987).

CONCLUSÕES

A maior concentração de espécies que florescem ocorre nos meses de abril a maio e a frutificação nos meses de maio e novembro.

A família Labiatae apresenta o maior número de espécies identificadas de uso medicinal, seguido pelas Compositae, Euphorbiaceae e Bignoniaceae no Horto da Embrapa Amazônia Oriental.

Os resultados obtidos à partir das análises fitoquímicas são qualitativos, porém pode-se afirmar que as substâncias químicas presentes nas plantas são responsáveis pela ação terapêutica atribuída a cada uma delas.

REFERÊNCIAS BIBLIOGRÁFICAS

CARLINI, E.A. Pesquisas com plantas medicinais usadas em medicina popular. **Revista da Associação de medicina Brasileira**, v.29, n.516, p.109-110, 1983.

ELISABETSKY, E. Pesquisa com plantas medicinais. Ciência e Cultura, v.39, n.8, p.697-702, 1987.

MARTINS, E.R.; CASTRO, D.M. de; CASTELLANI, D.C.; DIAS, J.E. Plantas medicinais. Viçosa: UFV. 220p. 1995.

PEROZIN, M.M. Projeto de fitoterapia do SUDS. **Plantas medicinais nos serviços de saúde**. Secretaria Estadual de Saúde. Curitiba, PR, 1989. 33p. (Apostila).

PIMENTEL, A.A.M.P. Cultivo de plnatas medicinais da Amazônia. Faculdade de Ciências Agrárias do Pará – FCAP. Serviço de Documentação e Informação. Belém, PA, 1994.

SILVA, S. da. Arnica de campos ruprestes *Lychnophora pinates* Mart. Asteraceae: aspectos da fenologia e da aquênios. In: Plantas medicinais, aromáticas e condimentares: avanços da pesquisa agronômica. MING, L.C. et al. Eds. Botucatu: UNESP. v.1, p.2-3, 1998.

TAYLOR, L. Herbal secrets of the rainforest: the healing power of over 50 medicinal plants you should know about. Rocklin: Prima Health, 1998, p.119-122.

VIEIRA, L.S. Manual da medicina popular – A fitoterapia da Amazônia. Faculdade de Ciências Agrárias do Pará –FCAP. Belém.1991.