

Caracterização genética do Curauá (Ananas erectifolius) através de Marcadores RAPD

Caracterização e uso de recursos genéticos vegetais na Amazônia Oriental

Maria Rosa Costa

Eng. Agro., M.Sc. em Genética Embrapa Amazônia Oriental Belém - PA

mrco@cpatu.embrapa.br

Osmar Alves Lameira

Eng. Agro., Dr. em Biotecnologia Embrapa Amazônia Oriental Belém - PA

Viviane Castro Yoshino

importância das plantas

Bolsita PIBICCNPa/FCAP Embrapa Amazônia Belém – PA

Figura 1 - Eletroforese do RAPD em curauá gerado pelo primer OPAZ 14. A primeira e a última colunas correspondem ao marcador Ladder e as demais, aos genótipos analisados

doadoras de fibra na fabricação de utensílios é conhecida desde as épocas remotas pelas comunidades indígenas. Segundo Medina (1959), esse grupo de plantas é o segundo em importância para o homem depois das espécies alimentares. Na Amazônia, várias são as espécies produtoras de fibras e segundo Oliveira et al. (1987), somente na microrregião do salgado Paraense existem 17 espécies de plantas fibrosas, com utilização atual.

O Estado do Pará, em seu passado recente, tem tradição no cultivo de plantas produtoras de fibras, tal como a malva e a juta, tendo a Amazônia inúmeras plantas com possibilidades reais de aproveitamento na indústria

têxtil. Nesse contexto, o curauá (Ananas erectifolius), planta pré-colombiana, utilizada principalmente na fabricação de cordas, sacos e utensílios domésticos, desponta como sucedâneo para o aproveitamento de fibras.

O curauá é uma bromeliácea distribuída nos Estados do Pará (Rios Xingu, Tocantins, Trombetas, entre outros), Acre, Mato grosso, Goiás e Amazonas e é cultivada principalmente por pequenos produtores da região do Lago Grande de Curuai, no Município de Santarém. Estudos recentes têm demonstrado o grande potencial dessa planta como produtora de fibra de excelente qualidade, podendo ser utilizada na indústria automobilística, devido à sua resistência, maciez e peso reduzido. Há crescente demanda de fibras do curauá por grupos empresariais preocupados, principalmente com a utilização de produtos naturais biodegradáveis, o que torna essa espécie estratégica para o Estado e cria uma perspectiva de melhoria da qualidade de vida dos pequenos produtores (Ledo, 1967).

Segundo Ledo (1967), há ocorrência de dois tipos de curauá: um de folhas roxoavermelhadas, que se desenvolve mais, chamado de curauá roxo; e outro de folhas verde-claras, conhecido por curauá branco. Algumas das diferenças entre os dois tipos de curauá residem não só na coloração da folha, mas na resistência e na maciez das fibras, no porte da planta e na quantidade de rebentos e filhos. Outra diferença encontrada nos plantios de curauá é a ocorrência, em algumas plantas, de espinhos foliares, que aparecem quando a planta entra no processo de envelhecimento.

No Estado do Pará, o curauá ocorre principalmente nos Municípios de Santarém e Bragança, e a Embrapa Amazônia Oriental, por intermédio do seu Laborató-

Tabela1 - Identificação dos acessos analisados. Belém, PA, 2001.

\mathbf{N}^0	Localidade	Cultivar/variedade
C1	Santarém, PA¹	Tanaka Roxo
C2	Santarém, PA¹	Tanaka Branco
C3	Santarém, PA¹	Marilda Branco
C4	Santarém, PA¹	Araçari Branco
C5	Santarém, PA¹	Araçari Roxo
C6	Santarém, PA¹	Bom Futuro Branco
C7	Santarém, PA¹	Bom Futuro Roxo
C8	Santarém, PA¹	Centrinho Branco
C9	Santarém, PA¹	Centrinho Roxo
C10	Cultura de Tecidos¹	Embrapa/cpatu Roxo
C11	Ponta de Pedras, PA ¹	Solteira Branco
C12	Ponta de Pedras, PA ¹	Ponta de Pedra Branco
C13	Santarém, PA¹	Diamantina Branco
C14	Santarém, PA¹	Diamantina Roxo
C15	Bragança, PA¹	Bragança Branco
C16	Bragança, PA¹	Bragança Roxo

¹Origem-Brasil

rio de Biotecnologia de Plantas, realizou uma coleta da espécie naqueles locais para a formação de um Banco Ativo de Germoplasma para trabalhos de propagação in vitro, caracterização molecular e melhoramento genético da cultura. Os estudos de caracterização, através de marcadores moleculares em associação com avaliação da divergência genética nessa espécie, são bastante limitados ou inexistem. Esse trabalho é considerado prioritário, devido à demanda existente para se quantificar a variabilidade genética dos acessos; para verificar a similaridade entre eles a fim de sanar dúvidas quanto à origem e uso nos cruzamentos, além de para auxiliar na escolha de acessos potenciais para o enriquecimento da variabilidade genética no próprio Banco Ativo de Germoplasma. Apesar da reconhecida variabilidade fenotípica existente nesses bancos, o germoplasma de curauá tem sido pouco estudado sob o ponto de vista genético. O uso combinado de marcadores morfológicos e moleculares subsidiará os trabalhos de melhoramento, em busca de cultivares mais produtivos e com características de qualidade que atendam demandas do setor produtivo, contribuindo, ainda, para o intercâmbio de material e de informações entre instituições de pesquisa.

Assim, o objetivo deste estudo foi examinar o polimorfismo gerado por marcadores RAPD e analisar a diversidade genética entre acessos de curauá pertencentes ao Banco Ativo de Germoplasma (BAG) da Embrapa Amazônia Oriental.

Material e Métodos

Germoplasma

O material investigado foi composto de 16 acessos de curauá provenientes do Banco Ativo de Germoplasma da Embrapa Amazônia Oriental, em Belém, PA (Tabela1).

RAPD

O DNA genômico foi obtido através de folhas em estádio médio de desenvolvimento, recém-coletadas que, após desinfecção, foram maceradas com nitrogênio líquido, e cerca de 200 mg de pó foram transferidos para tubos eppendorf. Adicionou-se, em seguida, 700 µl de solução extratora. Os tubos foram vortexados e colocados em banho-maria a 60°C durante 60 minutos. O extrato foi misturado com 700 µl de clorofórmio-álcool isoamil (24:1) para formar uma emulsão. Após centrifugar por 10 minutos a 4 ºC e 12.000 rpm, a parte superior aquosa foi cuidadosamente isolada e submetida a álcool 95%, o que ocasionou a precipitação do DNA. O material foi colocado em freezer (-20 °C) por 20 minutos, sendo, em seguida, centrifugado por 10 minutos a 4 °C e 12.000 rpm, lavado com 1000 µl de etanol 70%, para remover sais e, posteriormente, foi secado a temperatura ambiente, por, aproximadamente, 12 horas. O DNA foi ressuspendido com 100 μl RNAse/ TE (10ug.ml⁻¹). A concentração de DNA foi estimada em gel de agarose 1,0% pela comparação do DNA total com três concentrações do DNA lambda. As amostras utilizadas no RAPD, após a quantificação, partiram de diluições da amostra total em água estéril, de modo a conter 5 ng/µl de DNA. As alíquotas foram armazenadas a -20 °C.

Os primers utilizados foram: OPS03, OPN15, OPN09, OPN02, OPAZ16, OPAZ14 e OPAZ03.

As reações foram desenvolvidas de acordo com o protocolo de Williams et

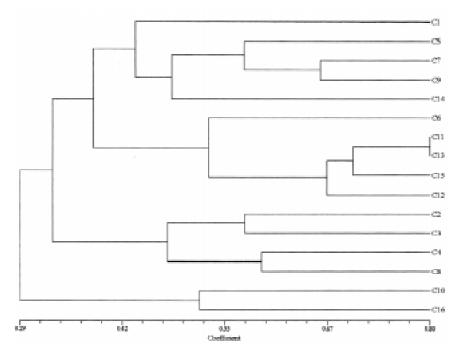
al. (1990), com pequenas modificações, num volume final de 13 μl contendo água destilada autoclavada, 20 mM Tris-HCl (pH 8,0), 50 mM KCl, 2,0 mM MgCl2, 200 μM de cada dNTP, BSA purificada (2,5 mg/ml), 1,3 uM primer arbitrário, 1U.I Taq DNA polimerase e 15 ng de DNA genômico, cobertas com duas gotas de óleo mineral.

As amplificações foram realizadas em termociclador de DNA Thermolyne Amplitron II, modelo DB.80225, sendo realizados 40 ciclos de 1' a 94 °C; 1' a 37 °C; e 2' a 72 °C, seguidos de mais 7' a 72º C para a completa extensão dos produtos amplificados. O método utilizado para a separação dos produtos amplificados foi a eletroforese horizontal, em gel de agarose 1,5%, corado com brometo de etídio 1mg/ml. Utilizaram 13 ul de cada reação, acrescidos de 2 ul de uma solução de azul de bromofenol (40 %) mais sacarose. Utilizou-se TBE (Trizma base 0.1 M; ácido bórico 1M e EDTA 0,5M) como tampão do gel e de corrida.

Após a eletroforese, os géis foram visualizados e fotografados em equipamento de foto documentação, por transiluminação em ultravioleta.

Aplicou-se um ladder de 1Kb no início e no final do gel para definir o tamanho aproximado dos fragmentos gerados nas PCRs.

Inicialmente, construíu-se uma matriz para os fragmentos polimórficos amplificados com presença (1) e ausência de banda (0). Somente foram consideradas as bandas que não davam margens a dúvidas. Bandas muito fracas, de difícil resolução, não foram incluídas. Para análise dos dados, utilizou-se o NTSYS-pc (Numerical Taxonomy and Multivariate Analysis System), versão 2.02. A similaridade entre


as amostras foi estimada pelo coeficiente de Jaccard, que gerou a matriz de similaridade. A partir dessa matriz, foi gerado o cluster, pelo método UPGMA ("Unweighted Pair-Group Method Using Arithmetic Average"), que foi expresso na forma de um dendograma (Fig.3).

Resultados e Discussão

Um total de 104 marcadores RAPD, com tamanhos variando de 300pb a 2.200

	C1.	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16
C1	1.00															
C2	0.35	1.00														
C3	0.38	0.57	1.00													
C4	0.23	0.34	0.53	1.00												
C5	0.55	0.23	0.36	0.27	1.00											
C6	0.26	0.26	0.44	0.46	0.40	1.00										
C7	0.54	0.17	0.35	0.30	0.51	0.36	1.00									
C8	0.31	0.46	0.54	0.59	0.36	0.48	0.44	1.00								
C9	0.49	0.21	0.32	0.27	0.62	0.40	0.66	0.43	1.00							
C10	0.28	0.18	0.25	0.18	0.26	0.29	0.39	0.28	0.48	1.00						
C11	0.52	0.28	0.36	0.34	0.33	0.54	0.42	0.49	0.54	0.30	1.00					
C12	0.51	0.24	0.37	0.35	0.34	0.57	0.42	0.45	0.51	0.29	0.67	1.00				
C13	0.36	0.27	0.37	0.30	0.37	0.50	0.35	0.40	0.54	0.27	0.80	0.66	1.00			
C14	0.34	0.14	0.25	0.12	0.45	0.25	0.45	0.25	0.52	0.24	0.29	0.36	0.37	1.00		
C15	0.40	0.32	0.42	0.28	0.32	0.47	0.35	0.40	0.50	0.30	0.71	0.67	0.70	0.34	1.00	
C16	0.51	0.14	0.26	0.20	0.27	0.30	0.40	0.30	0.42	0.51	0.26	0.29	0.24	0.25	0.30	1.00

Figura 2 - Matriz de distância genética estimada pelo coeficiente de Jaccard para todos os indivíduos analisados

Figura 3 - Dendograma gerado pelo método de análise cluster UPGMA para o coeficiente de Jaccard, para as 79 bandas geradas pelo RAPD

pb, foram amplificados pelos sete primers utilizados, dos quais 79 eram polimórficos, gerando 75,96 % de polimorfismo. O número de marcadores amplificados variou de 20 (OPN-02) a 12 (OPN-09). O número de fragmentos polimórficos por *primer* variou de 16 (OPN-02) a 8 (OPN-15). Observou-se entre os fragmentos amplificados a ocorrência de bandas específicas aos indivíduos. Na Fig.1, visualizam-se exemplos desses marcadores. Estimaram-se os índices de similaridade para todos os indivíduos analisados (Fig.2). A maior distância foi obtida comparando-se o C4 com o C14 (12 %). O segundo maior distanciamento genético foi entre o

acesso C2 com o C14 e o C16 (14%); C2 com o C7 (17%) e C2 com o C10 (18%). Isso indica que esses acessos são candidatos potenciais, como fonte de variabilidade, no programa de hibridização dessa espécie, visando ao melhoramento genético. Por outro lado, a maior similaridade genética foi entre o C11 e o C13 (80%).

Na Fig.3, encontra-se o dendograma, gerado pelo método UPGMA, através do programa NTSYS-pc, 2.02. Essa análise de distância genética gerou o cluster, que mostra a separação dos acessos em dois grupos principais. No primeiro grupo, que se subdividiu em dois subgrupos, com coeficiente de

similaridade, variando de 12% a 80%, incluem-se 14 materiais, oriundos de diferentes localidades. No segundo grupo, encontram-se dois materiais com similaridade genética de 51%. Os acessos C1, C6 e C14 foram distintos em relação ao restante, constituindo subgrupos isolados dentro do seu grupo. Observou-se grande divergência em alguns materiais, oriundos da mesma localidade, concluindo-se haver pouca relação entre a origem geográfica e o padrão da distribuição da variabilidade genética obtida. Observou-se que, nesse caso, os marcadores RAPD foram eficientes na separação dos acessos de acordo com a coloração, fornecendo resultados similares aos obtidos a partir de características morfo-agronômicas.

Conclusões

Os marcadores RAPD mostraram-se eficientes para detectar polimorfismo nessa espécie e podem ser utilizados como uma poderosa ferramenta na obtenção de informações úteis para o manejo do Banco de Germoplasma e para o direcionamento de programas de melhoramento genético.

Observou-se que a avaliação da divergência genética feita por marcadores RAPD foi similar à obtida pelas características morfológicas, separando os acessos pela coloração.

Referências Bibliográficas

LEDO, I. A. de M. **O cultivo do curauá no lago grande de Franca.** Belém: BASA, 1967. 23 p.

MEDINA, J. C. Plantas fibrosas da flora mundial. Instituto Agronômico de Campinas. 913 p. 1959.

NELSON, J. C. ITMI Wheat mapping workshop – laboratory manual. Cornell University, 1993.

OLIVEIRA, J.; ALMEIDA, S. S. de; VILHE-NA-POTYGUARA, R.; LOBATO, L. C. B.

Espécies vegetais produtoras de fibras utilizadas por comunidades Amazônicas. Boletim do

Museu Paraense Emílio Goeldi, **Série Botânica**, v. 7, n. 2, p. 393-428,1991.
WILLIAMS, J. G. K.; KUBELIK, A. R.;
LIVAK, K. J.; RAFALSKI, J. A.; TINGEY, S.V. DNA polymorphisms amplified by arbitrary primers are useful
as genetic markers. **Nucleic Acids Research**, v.18, p.6531-6535, 1990.