DETERMINAÇÃO QUÍMICA DA POLPA EM GENÓTIPOS DE BACURI (Platonia insignis Mart.)

SANTANA, M.F.S.¹; CARVALHO, J.E. DE²; NASCIMENTO, W.M.O.DO³

- ¹, ³ D.Sc. Pesquisadora da Embrapa Amazônia Oriental (<u>msantana@cpatu.embrapa.br</u>); (walnice@cpatu.embrapa.br)
- ² Pesquisador mestre da Embrapa Amazônia Oriental (urano@cpatu.embrapa.br)

PALAVRAS-CHAVES: fruto tropical, composição química, sólidos solúveis.

INTRODUÇÃO

O bacurizeiro(Platonia insignis Mart.) é uma árvore frutífera e madeireira, pertencente à família Clusiaceae, distribuindo-se por toda a Região Amazônica, sendo o seu provável centro de origem o Estado do Pará. Seu fruto apresenta grande potencial para as regiões Norte e Nordeste (CARVALHO; MÜLLER, 1996) tanto sob o ponto de vista do seu aproveitamento industrial, como através do seu consumo "in natura". A exploração comercial é da polpa que representa apenas 10 a 18% do peso do fruto (TEIXEIRA, 2000; CARVALHO et al., 2002). Rogez et al. (2004) consideraram a composição química desta como de boa qualidade para ser inserido em geléias, sucos e iogurtes, principalmente por possuir sabor e aroma exótico. De maneira geral, esta possui elevados teores de sólidos solúveis totais (SST) e baixo teores de acidez total titulável (ATT), resultando em uma elevada relação SST/ATT, guando comparada com a de outros frutos no mesmo estagio de maturação (TEIXEIRA, 2000). O objetivo do presente trabalho foi determinar a composição química de 10 genótipos de bacuri do Banco Ativo de Germoplasma da Embrapa Amazônia Oriental.

MATERIAL E MÉTODOS

Os frutos dos genótipos analisados são provenientes de matrizes CPATU, do banco de Germoplasma de Bacurizeiro da Embrapa Amazônia Oriental, localizado no município de Tomé-Açu, no Estado do Pará. A polpa dos frutos foram separadas manualmente.

As determinações dos parâmetros químicos da polpa do bacuri foram efetuadas em triplicatas, de acordo com as metodologias descritas pela AOAC (1997) para o pH, a acidez total titulável (ATT), os sólidos solúveis totais (SST), a umidade, as cinzas e as proteínas. Para a extração de lipídios totais utilizou-se o método de extração a frio de Bligh e Dyer (1959).

RESULTADOS E DISCUSSÃO

No concernente as características físicoquímicas de polpa (na Tabela 1) é possível verificar diferenças significativas para os componentes avaliados. Os sólidos solúveis totais para polpa diferem dos valores encontrados por Carvalho et al. (2006) que foram de 12,1 a 15,2%. Também foi diferente para o pH (1,91) e para a acidez que foi de 0,96, determinados pelos mesmos autores.

As diferenças verificadas na composição do fruto podem ser oriundas de fatores, como: genética, ecologia, métodos de cultivo, maturação do fruto e condições de armazenagem, metodologia de determinação das análises, fertilidade do solo, época de colheita do fruto, alterações pós-colheitas resultantes das atividades fisiológicas (SOUZA et al., 2000).

CONCLUSÕES

Os resultados de caracterização química da polpa de bacuri apresentam variação em função do genótipo. No entanto, estes materiais apresentam diversas possibilidades de aproveitamento tanto *in natura* como na industria.

REFERENCIAS BIBLIOGRÁFICAS

A.O.A.C. (Association of Official Analytical Chemists). **Official Methods of Analisis**; Editted by Sidney Williams. 16 ed. Arlington, 1997. 1141p.

BLIGH, E.G.; DYER, W.J. A rapid method of total lipid extraction and purification. **Canadian Journal Biochemistry Physiology**, v.37, p. 911-917, 1959.

CARVALHO, J.E.U. de; MÜLLER, C. H. **Propagação do bacurizeiro** (*Platonia insignis* Mart.) Belém: EMBRAPA/CPATU, 1996. 13p.

CARVALHO, J.E.U. de; NASCIMENTO, W.M.O. do; MÜLLER, C.H. Características físicas e químicas de um tipo de bacuri (*Platonia insignis* Mart.) sem sementes. **Revista Brasileira de Fruticultura**, v.24; n.2; p.573-575, 2002.

ROGEZ, H.; BUXANT, R.; MIGNOLET, E.; SOUZA, J.N.S.; SILVA, E.M.; LARONDELLE, Y. Chemical composition of the pulp of three typical Amazonian fruits: araça-boi (*Eugenia stipitata*) bacuri (*Platonia insignis*) and cupuaçu (*Theobroma grandiflorum*). **European Food Reseach Tecnology**. n.218, p.380-384, 2004.

SOUZA, V.A.B. de; VASCONCELOS, L.F.L.; ARAÚJO, E.C.E.; ALVES, R.E. **Bacurizeiro**

(*Platonia insignis* Mart). Jaboticabal: Funep, 2000. 72p. (Série Frutas Nativas, 11).

TEIXEIRA, G.H.A.; DURINGAN, J.F.; ALVES, R.E. **Bacuri** (*Platonia insignis* Mart.). In: ALVES, R.E.; FILGUEIRA, H.A.C.; MOURA, C.F.H. (cood.). Caracterização de frutas nativas da América Latina. Jaboticabal: FUNEP, 2000. p. 11-14. (Série Frutas Nativas, 9).

Tabela 1. Valores médios e desvio padrão da composição química da polpa de genótipos de bacuri.

Genó- tipo	Lipídios (%)		Proteínas (%)		Umidade (%)		рН		ATT¹		Cinzas (%)		SST ² °Brix		SST/ ATT
104-2	2,132	±0,3 3	0,366	±0,0	81,27	±1,3 9	3,49	±0,0	0,643	±0,0	0,452	±0,0	16,30	±0,7	25,34
114-4	0,592	±0,1 6	1,403	±0,4 8	82,29	±0,4 0	3,18	±0,0 4	0,825	±0,1 6	0,422	±0,0 3	15,20	±0,2 8	18,42
112-5	1,677	±0,6 5	1,603	±0,0 2	82,20	±0,2 8	3,16	±0,0 3	1,039	±0,0 1	0,444	±0,0 1	16,50	±0,1 4	15,88
107-5	0,950	±0,1 2	1,487	±0,2 4	80,98	±0,2 6	3,16	±0,0 5	0,639	±0,0 3	0,259	±0,0 2	15,50	±0,1 4	24,25
103-2	1,053	±0,3 9	1,089	±0,0 8	80,96	±0,9	3,75	±0,0 4	0,325	±0,0 4	0,245	±0,0 2	17,60	±0,5 6	54,15
216-4	1,556	±0,6 4	1,160	±0,2 4	75,95	±0,5 3	3,69	±0,0 6	0,368	±0,0 1	0,436	±0,0 1	21,20	±1,4 1	57,60
103-3	1,503	±0,3 1	0,792	±0,2 5	77,06	±0,7 1	3,48	±0,0 3	0,325	±0,0 1	0,243	±0,0 1	17,40	±0,2 8	53,53
207-5	1,897	±0,5 8	1,650	±0,1 3	81,26	±0,3 9	3,32	±0,1 3	0,325	±0,0 1	0,365	±0,0 1	18,30	±0,1 4	46,30
114-5	-		1,440	±0,0 7	78,14	±0,0 8	4,55	±0,0 4	0,825	±0,1 6	0,243	±0,0 1	13,30	±1,2 7	16,12
207-3	0,950	±0,2 9	1,373	±0,1 3	77,59	±2,8 1	2,80	±0,0 1	1,211	±0,0 5	0,358	±0,0 2	15,40	±0,5 6	12,72
Média	1,368	±0, 51	1,459	±0, 51	79,77	±03 9	3,459	±2, 33	0,653	±0, 47	0,347	±0, 32	16,67	±0, 09	43,23 ±32,1

Valores representam médias (± desvio padrão); ¹ Acidez Titulável Total; ² Sólidos Solúveis Totais