CARACTERÍSTICAS DO COCO VERDE PARA INDUSTRIALIZAÇÃO DA ÁGUA E DA POLPA GELATINOSA

PENHA, E.M.¹

RESUMO

Foi realizada uma avaliação do potencial do coco verde, comercializado nas praias do Rio de Janeiro, para industrialização da água (endosperma líquido) e da polpa gelatinosa (endosperma semi-sólido do fruto imaturo). Foi quantificado o conteúdo de água e de polpa gelatinosa contidos no fruto. Foram determinados alguns parâmetros físico-químicos indispensáveis à sua caracterização para processamento industrial. O valor médio da massa de água foi de 344,9 g/coco. Por outro lado, a dificuldade de conhecimento da idade do fruto para a colheita do coco ainda imaturo, conduziu a um rendimento baixo em polpa gelatinosa, cerca de 26,2 g/coco.

Palavras-chave: Cocos nucifera L., características físico-químicas, água de coco

1 – INTRODUÇÃO

A água de coco tem sido, há muito tempo, considerada uma bebida saudável e de sabor agradável. Suas propriedades terapêuticas estão associadas ao equilíbrio de sua composição rica em minerais (10), tendo sido o seu uso recomendado para a rehidratação de crianças com diarréia (7).

Recentemente, a água de coco tornou-se uma bebida muito apreciada cuja industrialização vem despertando grande interesse, principalmente por parte de pequenos agricultores e associações de produtores brasileiros.

Além da água *in natura*, diversos produtos à base de água de coco têm-se mostrado promissores. (3, 9). Uma bebida não-alcoólica nutritiva cuja formulação utiliza água de coco não-maduro (7 meses), foi citada por MAGDA (8). CHERDCHAI & WARAMUT (2) citam a *nata de coco* como uma sobremesa obtida pela fermentação da água de coco por bactérias. Uma bebida alcoólica obtida da mistura da água de coco com gim, denominada *coco-gin*, foi citada por HUERTE, URRUTIA & MEZA (4).

Entretanto, a industrialização do coco verde (imaturo), para fabricação de produtos à base da água (endosperma líquido) e da polpa gelatinosa (endosperma semi-sólido), depende da determinação de alguns parâmetros que permitam calcular o rendimento do processo.

O presente trabalho teve por objetivo avaliar preliminarmente o potencial de utilização industrial do coco verde comercializado *in natura*, nas praias do estado do Rio de Janeiro, cuja procedência e variedades são de difícil identificação.

2 - MATERIAL E MÉTODOS

Material

Amostras de cocos (*Cocos nucifera L.*), comercializados nas praias do Rio de Janeiro como cocos verdes (não-maduros), foram coletadas para verificação do peso do fruto inteiro, da água e da polpa gelatinosa. Foram coletados 40 cocos e selecionados 18 deles por apresentarem melhor aparência: aspecto de coco jovem e ausência de injúrias mecânicas e partes fungadas. Destes, 9 possuíam casca amarela e o restante casca verde.

Métodos

Avaliação tecnológica do coco verde

Para avaliação tecnológica do coco verde visando a industrialização da água e da polpa gelatinosa, foram realizadas determinações mássicas e volumétricas.

Determinação da massa de água e da massa do fruto

O fruto foi lavado, enxugado e pesado em balança semi-analítica. A seguir, o coco foi perfurado com furador manual e o líquido do seu interior foi recolhido em becher previamente tarado e teve seu peso aferido. Na seqüência, o líquido foi transferido à proveta graduada e teve seu volume determinado.

Determinação da massa de polpa gelatinosa (endosperma semi-sólido)

Após a drenagem da água do coco, o fruto foi novamente pesado e foi serrado ao meio para que fosse feita a raspagem cuidadosa da polpa gelatinosa, com o auxílio de uma colher. A polpa, por sua vez, foi recolhida em vidro de relógio e teve seu peso determinado.

Determinação da razão mássica

A razão mássica (R_1) foi definida como a relação entre a massa de água e a massa do coco inteiro. A razão mássica (R_2) correspondeu a relação entre a massa de polpa gelatinosa e a massa do coco inteiro.

¹ Eng. Quím., M.Sc., Pesquisador, Área de Eng. Alim. CTAA/EMBRAPA, Av. das Américas, 29501 - Guaratiba, CEP 23020-470 Rio de Janeiro, RJ e Prof. Assistente, Depto. Tec. Proc. Bioq. IQ/UERJ, R. São Francisco Xavier, 524 - Maracanã, CEP 20559-900 Rio de Janeiro, RJ.

Caracterização da água e da polpa do coco verde

A água dos cocos com casca verde foi recolhida, homogeneizada e, somente então, foi retirada alíquota para determinação de parâmetros físico-químicos. O mesmo procedimento foi adotado para a água dos cocos com casca amarela e também para a polpa extraída dos diversos cocos.

Determinação dos parâmetros físico-químicos

Foram realizadas determinações da composição química (5) e das propriedades físico-químicas (1).

3 - RESULTADOS E DISCUSSÃO

A avaliação dos resultados da Tabela 1 permitiu observar que os cocos com casca amarela apresentaram peso médio de 2094,9 g. Este valor foi inferior ao dos cocos com casca verde (2510,6 g).

TABELA 1. Determinação do peso e volume da água do coco verde, do peso da polpa gelatinosa e do fruto inteiro.

Amostras	Peso do	Peso da	Peso (úmido)	Volume de	R1 = (Peso da	R2 = (Peso da	
	coco	água de	da polpa	água de	água/Peso do coco	polpa/Peso do coco	
	inteiro (g)	coco (g)	gelatinosa (g)	coco (ml)	inteiro) x 100	inteiro) x 100	
1A	1675,9	399,4	17,2	400	24	1,0	
2A	2052,4	470,8	33,8	470	23	1,6	
3A	1787,0	408,0	ND	410	23	NE	
4A	1701,4	205,3	ND	210	12	NE	
5A	2871,4	249,9	NM	250	5	NE	
6A	1634,4	253,3	26,6	260	15	1,6	
7A	2155,4	296,8	NM	300	14	NE	
8A	2163,9	257,6	80,1	260	12	3,7	
9A	2812,8	389,8	NM	290	14	NE	
1 V	1508,4	339,7	ND	340	23	NE	
2V	2206,7	256,2	89,1	260	12	4,0	
3V	2987,0	394,1	NM	390	13	NE	
4V	2067,3	404,7	ND	400	20	NE	
5V	3119,4	414,1	71,1	410	13	2,8	
6V	1666,6	383,6	NM	390	23	NE	
7V	3346,8	542,2	51,5	540	16	1,5	
8V	3447,5	171,7	NM	180	5	NE	
9V	2245,8	371,9	102,8	370	17	4,6	
Média A	2094,9	325,6	39,4*	316	16	2,0	
Média V	2510,6	364,2	78.6*	364	16	3,2	
Média	2302,8	344,9	59,0*	340	16	2,5	
(A+V)							

^{*}Valor médio dos cocos que possuíam polpa gelatinosa

Notações: A (coco com casca amarela), V (coco com casca verde), ND (não detectado), NM (não mensurado por estar a polpa sólida) e NE (não efetuado)

O valor médio do peso (325,6 g) e do volume da água (316 ml) dos cocos com casca amarela foi, também, inferior aos de casca verde (379,4 g e 364 ml, respectivamente). Entretanto, não houve diferença significativa entre os cocos amarelos e verdes pela análise de variância ao nível de 5% no teste de Tukey.

A massa média de água dos cocos amarelos e verdes (344,9 g/coco) encontra-se numa faixa superior a média (183 a 192 g/coco) citada por INSTITUTO DE TECNOLOGIA DE ALIMENTOS (6), para diversas variedades de coqueiros e graus de maturação dos frutos.

Embora haja diferença entre a média do peso dos cocos amarelos e verdes, a relação mássica entre a água e o coco inteiro (R_1)) foi igual a 0,16 para ambos. No entanto, o mesmo não aconteceu com a relação entre a massa de polpa gelatinosa e a massa do coco inteiro (R_2) que foi maior para os cocos com casca verde (3,2) do que com casca amarela (1,9). Estes números apontam a preferência para a industrialização coco verde, pois se por um lado o rendimento em água foi equivalente ao do coco amarelo, por outro lado o rendimento em polpa gelatinosa do coco verde foi 1,6 vezes maior.

Foi verificado que 22% dos cocos verdes processados não possuíam polpa alguma e 33% apresentaram a polpa endurecida (característica do coco maduro). Foi observado ainda, que o valor médio da massa de polpa dos cocos com casca verde (78,6 g) corresponde a quase o dobro da massa dos cocos de casca amarela (39,4 g), considerando-se apenas as amostras com polpa gelatinosa. Entretanto, devido ao grande número de repetições não contabilizadas e a

grande variação nos teores de polpa gelatinosa das amostras, não se pode descartar a possibilidade de haver distorções nos resultados.

A média global (cocos verdes e amarelos que possuíam polpa gelatinosa) foi de 59,0 g/coco. Este valor, no entanto, pode ser considerado baixo para aproveitamento industrial da polpa, visto que a massa obtida correspondeu a um total de 18 cocos (amarelos e verdes). Assim, a média passa a ser de apenas 26,2 gramas por coco.

O resultado das determinações físico-químicas da água e da polpa gelatinosa do coco pode ser encontrado na Tabela 2.

TABELA 2. Caracterização físico-química da água e da polpa gelatinosa do coco.

Amostra/parâmetro	Água de coco d	e casca	Água	de	coco	de	casca	Polpa de coco*
	amarela		verde					
Sólidos totais (g/100g)	4,28				4,66			8,80
Vitamina C (mg/100g)	ND	ND					8,27	
Vitamina B ₁ (mg/100g)	0,09	0,10				0,04		
Vitamina B ₂ (mg/100g)	0,01	0,02					0,02	
pH	5,13	5,11					6,72	
Densidade (g/mL)	1,01	1,00					0,84	
Brix (graus)	4,55			5,00	6,55			
Viscosidade aparente	1,20	1,20				262,57		
(mPa.s), $D = 200 \text{ s}^{-1}$								
Acidez (sol.N/100)	13,08				13,70			15,80
Cinzas (g/100g)	0,43	0,41					0,78	
Extrato etéreo (g/100g)	ND	ND					2,24	
Proteínas (g/100g)	0,31	0,33					1,85	
Valor calórico (cal/100g)	19,24	21,32					53,56	
Carboidratos (g/100g)	4,50	5,00					6,50	
Cálcio (mg/100g)	17,10	18,15					9,66	
Potássio (mg/100g)	156,86	199,75					360,33	
Sódio (mg/100g)	7,05	4,84					13,19	
Ferro (mg/100g)	0,04	0,06					0,68	
Fósforo (mg/100g)	7,40				6,42			36,30

^{*} Mistura das polpas de coco de casca amarela com as de casca verde.

Notação: ND (não detectado)

De acordo com WOODROOF (11), o teor de vitamina C situa-se na faixa de 2,2 a 3,7 mg/100 mL.

No entanto, não foi detectada vitamina C na água, embora esta estivesse presente em pequenos teores na polpa gelatinosa (8,27 mg/100 g). Além disso, tanto a água quanto a polpa mostraram teor equilibrado de sais minerais. O teor de potássio na água dos cocos amarelos foi de 156,86 mg/100 g, nos verdes 199,75 mg/100 g, e na polpa gelatinosa 360,33 mg/100 g.

A caracterização físico-química mostrou ainda que não existiu diferença significativa entre a água dos cocos amarelos e verdes exceto na concentração de sódio: 7,05 e 4,84 mg/100 g, respectivamente.

4 – CONCLUSÕES

Com os resultados obtidos neste trabalho, foi possível concluir que os cocos comercializados nas praias do Rio de Janeiro, embora não tenham a sua procedência e variedade definidas, apresentaram massa média de água de 344,9 g/coco. Este valor está compreendido na faixa de conteúdo de água normalmente encontrado para diversas variedades de coqueiros, de acordo com o grau de maturação do fruto.

A massa média de polpa gelatinosa foi de 39,4 gramas por coco de casca amarela e de 78,6 gramas por coco de casca verde. Porém, a média global de 18 cocos(verdes e amarelos) foi de 26,2 g/coco. Embora este valor possa ser considerado baixo para o aproveitamento industrial da polpa, num processamento em larga escala sua contribuição como poluente poderá ser relevante.

Portanto, o estabelecimento de uma linha de processamento para a polpa gelatinosa requer certa cautela, pois a falta de padronização da matéria-prima, principalmente do seu grau de maturação, pode levar ao insucesso. Entretanto, um estudo agronômico e estatístico minucioso poderá aumentar o nível de confiança neste tipo de empreendimento.

5 - REFERÊNCIAS BIBLIOGRÁFICAS

3

- (1) ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. **Official methods of analysis of the A.O.A.C.** Arlington: A.O.A.C., Inc., 1984. 1141 p.
- (2) CHERDCHAI, T.A.; WARAMUT, K. [*Nata de coco* product mixed in lychee juice.] **Food**, v.23, n.3, p.107-114, 1993.
- (3) FARR, S. 2001 a soft drinks odyssey. **Food Manufacture**, v.69, n.3, p.29-30, 1994.
- (4) HUERTE, E.V.M.; URRUTIA, A.E.; MEZA, H.A. Sensory evaluation of a coco-gin drink. In: IFT Annual Meeting 1995 Reports, p.233, 1995.
- (5) INSTITUTO ADOLFO LUTZ. **Métodos químicos e físicos para análise de alimentos**. São Paulo: Secretaria de Estado da Saúde, 3ª ed., 1985. 533 p.
- (6) INSTITUTO DE TECNOLOGIA DE ALIMENTOS. Coco: da cultura ao processamento e comercialização. São Paulo: Imprensa Oficial do Estado S/A, 1980. 285 p.
- (7) KUBERSKY, T. Apropriate technology: coconut water for the oral rehydration of childhood diarrhoeas. **New Zeland Medical Journal**, May, 28, p.390-392, 1980.
- (8) MAGDA, R.R. Coco-soft drink: health beverage from coconut water. **Food Marketing and Technology**, v.6, n.6, p.22-23, 1992.
- (9) ROSARIO, R.R.del Coconut research revisited. Philippine Agriculturist, v.75, n.3/4, p.77-90, 1992.
- (10) SOUTHERN, P.J. The flame spectrophotometric determination of potassium, sodium, calcium and magnesium in coconut water. **Papua and New Guinea Agricultural Journal**, v.11, n.3, p.69-76, 1956.
- (11) WOODROOF, J.G. Coconuts: production, processing, products. Westport: AVI Publishing Company, Inc, 2nd ed., 1979. 307p.