PUS U U VS bowﬁ b‘sw&, SC,QQ,‘\;D -~ 36\,,4:\,0»:\!3
lehholaa

Bridging the Gap in the Presence of Infeasible
Paths: Potential Uses Testing Criteria *

- José C. Maldonado
University of Séo Paulo (USP)
C. P. 668, 13560 Sao Carlos, SP, Brazil

e-mail:jcmaldon@icmsc.usp.ansp.br

R e T

Marcos L. Chaim
Mario Jino
State University of Campinas (UNICAMP)
C.P. 6101, 13081 Campinas, SP, Brazil

Abstract A

Data Flow based Structural Testing Criteria have been introduced: aiming at
“bridging the gap” between branch testing and path testing, and at making stronger
the structural testing criteria, but none in the literature “bridges the gap” in the pres-
ence of infeasible paths. Potential Uses Criteria Family (PU), based on the potential
use concept, is introduced. Potential Uses Criteria are analysed in the presence of in-
feasible (unexecutable) paths; these criteria establish a hierarchy including all-edges
and all-paths criteria in addition to satisfying the minimum coverage requirements
from the data flow point of view. Potential Uses criteria were inspired the Data Flow
Criteria Family (DF); each PU criterion includes its correspondent DF criterion and
no other data flow based criterion includes PU criteria. Complexity analysis of other
data flow criteria is revisited and disagreement with published results is highlighted;
all data-flow based criteria have complexity greater than or equal to 2°.

Keywords: structural testing criteria, complexity analysis, hierarchy of testing
criteria, infeasible paths, data-flow based criteria.

1 Introduction

The major objective of software testing is to reveal the presence of program faults or
defects; in other words, to refute the claim that a program is correct. Ideally, a program
should be exercised for all possible input values; however, it is known that in practice
exhaustive testing is impossible due to time and cost restrictions. Criteria have been

*This work was partly supported by CNPq, CAPES and SID Informatica S.A..

SYSNO_. 83 4943

DATA /—
ICMC - SBAB 323

& .5
.

E]

devised to provide a systematic way to select an input domain subset — a test case set T |

— that is relatively small and, even so, effective in refutting the claim that the program is
correct, within minimal time and costs.

One class of these criteria, named structural testing criteria, uses implementation infor-

mation to characterize the required elements. The three most known and well-established
criteria are statement testing, branch testing and path testing [Taylor[1992]]; basically,
these criteria use control flow information of programs being tested to establish required
elements and are referred to as control-flow based criteria.

Motivated by the fact that, even for small programs, control-flow based criteria are more
appropriate for revealing the presence of domain-errors than computation-errors (i.e., do
not contribute to reveal the presence of simple computation errors/defects) and that, in
general, path coverage is impractical (there may be an infinite number of paths), criteria
using data flow information have been introduced [Herman[1976], Laski[1983], Ntafos[1984],
Rapps[1985), Ural[1988]]. This class of data-flow based criteria is more appropriate for
revealing computation errors and requires basically that program paths, from points where
variables are defined to points where those definitions are used, to be exercised by the test
case set.

In selecting or establishing a structural testing criterion three basic conditions must be
fulfilled: '

e i) branch coverage must be ensured;

e ii) from the data-flow information point of view, one use of every computation result
must be required (and ensured) by the criterion [Clarke[1985]]; and

e iii) for any program P, the test case set required by the criterion must be finite.

Condition iii) takes into account costs and practical considerations. The first condition
is the minimal requirement of most testing strategies and ensures that every statement is
exercised. The second condition is implied by the weakest data flow based testing criterion,

“all-defs” [Rapps[1985]].

Although data-flow based criteria, such as Data Flow Criteria Family [Rapps[1985]]
and Ntafos’ criteria [Ntafos[1984]], were introduced aiming at “bridging the gap” between
branch testing and path testing, and at making stronger the structural testing criteria,
none available in the literature “bridges the gap” in the presence of infeasible paths — a
path is infeasible if there is no assignment of values to the input variables which causes

" the path to be executed [Maldonado[1991]]; for example, Frank1{1987],[1988] pointed out

that DFCF does not “bridge the gap” in the presence of infeasible paths. Notice that in
practice the ocurrence of infeasible paths in programs is quite common.

The Potential Uses Criteria Family (PUCF) although strongly based on the Data Flow
Criteria Family is fundamentally different; these criteria use the concept of potential use .
Potential Uses (PU)Criteria satisfy the three conditions discussed above; more specifically,
“bridge the gap” between branch testing and path testing even in the presence of infeasible
paths. They require essentially the execution of definition clear paths from every node i
containing variable definitions, even if there are no uses of these variables through these
paths; if a use might occur in a path — a potential use — we require this path to be

324

I
|

e

e Py 4

examined during testing activities. Moreover, requiring the execution of definition clear
paths w.r.t. a variable z, independently of use occurrences of z, enables us to verify if the
value of z is not being modified through these paths, possibly due to collateral effects, for
example. Also, they may make easier the detection of faults caused by missing data flow
dependences [Podgurski[1990]] originated by a missing variable use, for example, as illus-
trated in Fig. 1. Additionally, the automation of PU Criteria requires less static analysis
than other data flow criteria do, since it is not necessary to identify uses of variables.

Comparison studies of these criteria based on inclusion relation and complezity anal-
ysis have been conducted [Clarke[1985], Rapps[1985], Weyuker{1984], Ntafos[1988]]. The
inclusion relation and the complexity of a criteria must be considered in defining or in
selecting a criterion. The inclusion relation establishes a hierarchy (partial order) for these
criteria and provides information on testing effectiveness and adequacy to classes of errors.
Test selection criterion ¢, tncludes test selection criterion c; if, for any given control flow
graph G, any set of complete paths of G satisfying ¢, also satisfies c;. Test selection cri-
terion ¢ strictly includes criterion ¢y, denoted by ¢; = c¢;, provided ¢; includes ¢; and
for some graph G there is a set of complete paths of G satisfying c; but not ¢,. If neither
€1 => ¢ nor ¢; => c;, we say that these criteria are incomparable. One of the strongest
data-flow based testing [Taylor{1992]], all-du-paths [Rapps[1985]] is included by some of the
PU Criteria Family ; no data-flow based testing criteria include Potential Uses Criteria
[Maldonado[1991]]. '

Complezity of a testing criterion is defined as the upper bound on the number of test
cases needed to satisfy the criterion. All data-flow based criteria, including PU Criteria,
have complexity greater than or equal to 2° [Maldonado[1991}]], even the one at the bottom
of the hierarchy — the all-defs criterion. As a common contributor to the cost of testing
activities — generation of a test case, execution of test cases and results evaluation — is
the number of test cases needed to satisfy each criterion, the relevance of benchmarking
such criteria is obvious; the same benchmark! established by Weyuker[1990)] has been used
with a testing tool named POKE-TOOL [Maldonado[1989a], Chaim({1991]]. POKE-TOOL
(a POtential use Criteria for program testing TOOL) consists in a multi-language testing
tool that supports the use of PU Criteria; in the present configuration, it is operational for
programming language C and is being instantiated for COBOL, FORTRAN and PASCAL

Results of this benchmark are very promising: the number of test cases required to
satisfy any of the Potential Use Criteria is linear in ¢, where ¢ is the number of decision
commands in P; the maximum number of test cases (the empirical worst case) required
by the most demanding PU criteria was 4 * {. These results are an indication that sat-
isfaction of these criteria can be adopted as a practical goal of testing; they also provide
data for comparison studies in terms of the “average” number of test cases needed [Mal-
donado[1991]]. A more complete discussion of this benchmark will appear in a forthcoming
paper.

In Section 2, basic terminology and concepts are introduced. Potential Uses (PU)
and Feasible Potential Uses (FPU) Criteria Families are introduced in Section 3. The
inclusion analysis is presented in Section 4. Complexity analysis of PU and FPU criteria
is presented in Section 5; complexity analysis of other data-flow testing criteria is also
discused. Conclusions are presented in Section 6.

129 programs from Kernighan[1981), translated into C

LXY

&

T

4

- 2 Potential Uses Criteria — Terminology

A program P is decomposed into a set of disjoint blocks where each block has the property
that, whenever the first statement is executed, the other statements are executed in the
given order. The representation of a program P as a control flow graph, G = (N, E, s),
consists in establishing a correspondence between nodes and blocks, and indicating possible
flow of control between blocks through edges; N is the set of nodes, E the set of edges,
and s the inicial node. We consider every program graph as a directed, connected graph
having a unique inicial node s € N and a unique exit node e € N.

A path is a finite sequence of nodes (ny,ns,...,nt), k > 2, such that there is an edge
from n; to ny4q for i =1,2,...,k ~ 1. A path is a simple path if all nodes, except possibly
the first and the last, are distinct. If all nodes are distinct it is a loop-free path. A complete
path is a path where the first node is the inicial node and the last node is the exit node.

A variable occurrence in a program can be a variable definition, a variable use (c-use
or p-use) or an undefinition. A c-use affects directly the computation being performed or
allows one to see the result of an earlier definition. A p-use affects directly the flow of
control through the program. ~

A path (i,n4,...,nn,j), m = 0, containing no definitions in nodes n,,...,n,, of a
variable z occurring in a program is called a definition clear path with respect to (w.r.t.)
z from node ¢ to node j and from node ¢ to edge.(nn,).

In establishing the Data Flow Criteria Family, Rapps[1985] introduced the concept of
def-use graph. A def-use graph is obtained from the flow graph by associating to each node
¢ the sets c-use(z) = { variables z such that there is no definition of z, preceding the c—use
of z , within the block ¢ } and def (i) = { variables z such that « is defined in block ¢
and there is a definition-clear path from node ¢ to some node containing a ¢ — use or to
some edge containing a p — use of z}, and associating to each edge (¢,) the set p-use
(¢,7) = { variables which have p-uses on edge (3,7)}. Also defined are the sets of nodes dcu
(z,%) = { nodes j such that z € c-use (j) and there is a definition-clear path with respect
to z from ¢ to j} and dpu (z,7) = { edges (j,k) such that = € p-use (j,k) and there is
a definition-clear path w.r.t. z from i to (j,k)}. A path (ny,ny,...,n;j,n) is a du-path
w.r.t. a variable z if n, has a global definition of x and: (1) either n; has a c-use of z and
(ny,7n,...,nj,n) is a definition-clear simple path w.r.t. z; or (2) (rj,n:) has a p-use of
z and (ny,ny, ..., nj,nx) is a definition-clear path w.r.t. = and ny,ng,...,n; is a loop-free
path. s : ; S - :
A definition-c-use-association is a triple (4, j, z) where z € def(i) and j € deu(x,i). A
definition-p-use-association is a triple (3, (j, k), z) where z € def(¢) and (j, k) € dpu(z,i).
An association is a definition c-use association, a definition-p-use association or a du-path.

In the definition of Potential Uses Criteria minor but interesting modifications in these
concepts were introduced as follows: defg(i) is the set of variables for which node ¢ con-
tains a definition; pdcu(z,i) ={nodes j | there is a definition clear path w.r.t z from i to
7}; pdpu(z,i) ={edges (j, k) | there is a definition-clear path w.r.t z from i to (j, k)}; def
graph is a graph obtained by associating to each node i of the control flow graph the set
defg(:); potential-du-path w.r.t. a variable z is a definition-clear path (n1,ns,...,n;,nk)
w.r.t. z from node n; to node n; and to the edge (n;,ni) , where path (ny,ng,...,n;)
is a loop-free path and n, has a definition of z; potential-definition-c-use association is a

326

triple [i,7,2] where = € defg(i) and § € pdeu(z,i); potential-definition-p-use association
is a triple [¢, (4, k), z) where z € defg(i) and (j, k) € pdpu(z,t); and potential-association
is defined as a potential-definition-c-use association, a potential-definition-p-use associ-
ation or a potential-du-path. Observe that every association is a potential-association.
The notation [i,(j, k), {v1,...,vs}] is also introduced to represent the set of associations
[5, (3, k)yva)y .+ o5 5, (4, k), va); it indicates that at least one def-clear path w.r.t. vy,...,v,
from node ¢ to the arc (j, k) exists. o ;

A path my = (4,...,1;) is said to be included in a set II of paths if I contains a path
T3 = (ny,...,nm) such that i, = n;,i2 = nj41,...,8 = 1441, for some j, 1 < j <
m — k + 1. We say =, is included in 73 or that 7, is a sub-path of 3.

A complete path 7 covers a potential-definition-c-use association [i, §, z] [respectively,
a potential-definition-p-use association [z, (7, k), z]] if it includes a definition clear path
w.r.t. z from i to j [respectively, from i to (j,k)]. = covers a potential-du-path =, if m,
is included in 7. A set II of paths covers a potential-association if some element of the
set does. Note that, if a path set IT covers an association or a potential-association from
node ¢ to node j [respectively, to edge (j, k)], thenthere exists a definition clear path w.r.t.
variable z € defg(?) from node ¢ to node j [respectively, to edge (j,k)] which is included
in II. '

A complete path is ezecutable or feasible if there exists some assignment of values to the
input variables which cause the path to be executed. A path is ezecutable if it is a subpath
of an executable complete path. A potential-association is ezecutable if there is some
executable complete path which covers it; otherwise, it is unexecutable. Two other sets
are defined: fpdeu(z,i) = {j € pdcu(z,t) | the potential-association (i, j, z] is ezecutable }
and fpdpu(z,i)={(7, k) € pdpu(z,i) | the potential-association [i,(j,k),z] is ezecutable }.

Aiming at keeping, even in the presence of infeasible paths, an hierarchy of criteria that
bridges the gap between all-edges and all-paths, new criteria are defined using the cycle-
extended concept [Frankl[1988]]. Let 7 = (ny, ns,...,n;) be a du-path (potential-du-path)
w.r.t. z; its cycle-eztension (r,z) is defined as the set of definition clear paths w.r.t. z
of the form (A, A2, .., Ax) where each); is a path of length greater than or equal to one,
beginning and ending with n;. Observe that for any du-path [potential-du-path] 7= w.r.t.
z, € cycle-extension (7, z).

3 Potential Uses and Feasible Potential Uses Crite-
ria Family

Potential Uses (PU) Criteria, initially introduced by Maldonado[1988], examine every pos-
sible definition clear paths starting at a definition node (program state change), in order to
refute the claim that the program is correct. Some of PU Criteria bridge the gap between
(all — edges) and (all — paths) criteria, even in the presence of infeasible paths, establishing
a hierarchy of criteria, in addition to satisfying the minimum coverage requirements from
the data flow point of view. The other data flow based criteria in the literature do not
bridge the gap; none of them includes PU Criteria.

Consider Fig. 1, a modified example from Rapps[1985); the definition of variable z at
node 1 would imply, for example, one potential-association between node 1 and arc(6, 7)

327

(as there might be a potential-use of z at arc(6,7)), denoted by [i,(6,7),{z}], as well
as.a potential-association between node 1 and node 8 (which has an explicit use of z),
denoted by [1,8, {z}]. The potential-associations [8,(6,8), {E}] and (8,8, {e}] would also
be required despite the occurence of a typo error (a missing data-flow dependence); keep
in mind that the aim of software testing is to reveal the presence of defects. Considering
the potential-association [1,(6,7), {a:}], the weakest of the Potential Use Criteria Family
— all-potential-uses — would require at least one path (loop free or not) from node 1 to
edge (6,7) with no definition of variable z to be exercised; the intermediate criterion —
all-potential-uses/du — would require at least one loop free path from node 1 to edge (6, 7);
the strongest criterion — all-potential-du-paths — would require every loop free path from
node 1 to edge (6, 7).

Potential Uses Criteria

Definition 1 All-potential-uses criterion - Requires all associations [i,j,z] | j € pdcu(z,1) oy
and all associations [i,(j,k),z] | (j,k) € pdpu(z,i) for each node i € G and for each
z € defqg(i).

Definition 2 All-potential-uses/du criterion - Requires, for each i € G | defg(i) # 0,
a potential-du-path from i to j w.r.t. z for all associations [i,j,z] | j € pdcu(z,i) and a
potential-du-path from i to (j, k) w.r.t. = for all associations [i,(j, k), z] | (4, k) € pdpu(z,1).

Definition 3 All-potential-du-paths criterion - Requires, for each i € G | defg(i) # 0, all
potential-du-paths from ¢ to j w.r.t. all variable = € defg(i) for each j € pdcu(z,i) and all
potential-du-paths from i to (j, k) w.r.t. all variable z € defg(z) for each (j,k) € pdpu(z,?)
for alli| defg(i) # 0.

Potential Uses Criteria can be seen as an extension to all-uses and all-du-paths criteria
[Rapps[1985]] which require def-clear paths or du-paths w.r.t. variable = to be executed
only if there is a use of variable x through these paths; i.e., in these criteria, associations

" are characterized using dcu(z,:) and dpu(z,i) while pdcu(:c i) and pdpu(z,i) are used in

Potential Uses Criteria. Observe that the computational defect introduced in node 8 can
be detected only through the execution of path (8 9,5, 6 8), whxch is reqmred by Potentlal '
Uses.Criteria. -~ L IE

Not all paths in a program are feasxble and the xdentlﬁcatlon of feas:ble a.nd mfeamble
paths is an undecidable problem [Ural{1988]}; for example, only three programs from the
benchmark we have used have no unexecutdble path. Thus, PU.criteria may require
paths and associations that are unexecutable; variations of these criteria have been defined
[Maldonado[1989b]], considering infeasible paths, since they do not satisfy the applicability
property [Weyuker[1986]]: for every program P there exists some test case set which is C-
adequate for P. Given a program P and its associated control flow graph (program graph),
a set T is said to be C-adequate for P (satisfies criterion C for P) if and only if each of the
sequences required by Cis a sub-path of any path of the set II, corresponding to the paths
executed by the test cases.

Potential Uses Criteria are modified by selecting the required potential-associations
from fpdcu(z,i) and fpdpu(z,i) instead of pdcu(z,i) and pdpu(z,i); in other words, the

38

3 unexecutable associations are eliminated from the required components set, ensuring the
3 applicability property. According to Frank][1988], transition from a data-flow based crite-
: rion to the corresponding feasible data-flow criterion means a trade of the undecidability
of the existence question “Is there any test set T which is C-adequate for P ?” for the
undecidability of the recognition problem “Is a given test set T C*-adequate for P 7”
Frankl[1987),[1988] pointed out that, unfortunately, although the FDF criteria satisfy the
applicability property, the inclusion relation among FDF criteria has changed significantly
compared to DF criteria. In the next section, inclusion analysis of Potential Uses Criteria,
,_ taking into account the presence of infeasible paths, is presented.

i Attempting to fulfil the three properties discussed in Section 1, even in the presence
of infeasible paths, cycle-extended criteria — cycle-extended-potential-du-paths (cyex-
: potential-du-paths) and cycle-extended-all-potential-uses/du (cyex-all-potential-uses/du)
— are defined using the cycle-extension concept {Frankl[1988]]. These criteria require that
one element of the cycle-extension (7,) of a potential-du-path 7 be selected. Observe
that all-potential-uses and cyex-potential-uses/du criteria are equivalent.

The basic PU criteria and the cycle-extended PU criteria constitute the Potential Uses
(PU) Criteria Family; the correspondent feasible criteria C* constitute the Feasible PU
Criteria Family (FPU). Following, some of these criteria are defined; the other criteria are -
defined in a similar way. '

Definition 4 (All — potential — uses/du)* criterion - Requires, for each node i € G |
defg(i) # 0, an ezecutable potential-du-path from i to j w.r.t. z for all associations
[2,7,2] | 7 € fpdcu(z,t) and an ezecutable potential-du-path from i to (j,k) w.r.t. = for all
assoctations [i,(j,k),z] | (4, k) € fpdpu(z,i).

Definition 5 Cyez-potential-du-paths: Il satisfies the cyez-potential-du-paths criterion for
P if and only if for each variable z and for each potential-du-path = w.r.t. z, Il covers
some path m, € cycle-eztension (,z).

4 Partial Order Analysis of Potential Uses Criteria
in the Presence of Unexecutable Paths

Analysis of structural testing criteria have been conducted based on the inclusion relation
discussed earlier [Clarke[1985], Rapps[1985), Ntafos[1988]]; Frank1{1987],[1988] studied the
DF Family in the presence of unexecutable paths. Frankl pointed out that, unfortunately,
" the inclusion relation has been changed significantly; for example, none of the criteria
bridges the gap between (all — edges) and (all — paths). For programs satisfying the No-
Anomalies (NA) property — every path from the start node to a use of a variable £ must
contain a definition —, the FDF criteria would bridge the gap. However, according to
Frankl, requiring such a property is overly restrictive since many perfectly good programs
fail to satisfy the NA property.
For programs satisfying property LDEN (At Least one Definition in the Entry Node
Property) — P has at least one variable being defined in the entry node — PU criteria
bridge the gap between all- edges and all-paths, even in the presence of infeasible paths;

329

furthermore, some of them exercise every computation result. Notice that property LDEN
is ‘easily fulﬁlled by the majority of real and practical programs. The partial order for
(Feasible) Potential Uses and (Feasible) Data Flow criteria families is presented in Fig. 4

(Fig. 5).

Theorem 1 The Potential Uses and Data Flow Criteria Families are partially ordered by
strict inclusion as shown in Fig. 4. Families FDF and FPU are partially ordered by strict
inclusion as shown in Fig. 5. Furthermore, a criterion C; includes a criterion C; if and
only if it is explicitly shown to do so in Figs. { and 5 or if it follows from the transitivity
of the relation.

Proof: Let T be a test case set for a program P (G being the corresponding control flow
graph), and let II be the set of paths executed by T'. We present only the most relevant
aspects of this proof; for the remainder see Maldonado[1989b],{1991].

o(all — potential — uses/du)* = (all — edges)*

Suppose T is (all — potential — uses/du)* — adequate for P. Let edge (i,j) be any
executable edge in P. Since edge (i,j) is executable, there is at least one executable
complete path = = (I,ny,n,,...,1,4,..., F) from entry node I to exit node F such that
edge (¢, 7) is included in P. To complete the proof, it must be shown that there is at least
one executable potential-du-path from some node ny to edge (z,) w.r.t. some variable v
defined in ny. One of these executable potential-du-path will be included in IT because T
is (all — potential — uses/du)* — adequate; so edge (7,) will be included in II.

i) If node ¢ has a definition of a variable v , then path (¢, j) is an executable potential-
du-path from node : to edge (¢,j).

ii) Consider a path m; = (I,n1,n3,...,nk,i) as a loop-free executable path. Since pro-
gram P obeys LDEN property, node I has at least one definition of some variable
v. If nodes ny,n,,...,n; have no redefinition of variable v defined in node I, path
(I,n4,n,...,nk1,7) is an executable potential-du-path w.r.t. v from node I to edge
(1,7), by definition. If some node nq, 1 < d < k, has a redefinition of v, then path
(Ndynd41y- .-, Nky 3,) is an executable potential-du-path w.r.t. v from node ng to
edge (,7). ' ‘

iii) Consider a path 7; = (I,n1,n,,...,nk,i) which is not a loop-free path.
Let (14, %141, Mign,7u) be the last loop in path ; before the occurrence of node
i’ i°e'$ w = (I,nl’n% ceey R NELy ooy NUgns By They o v oy na+m,n’kai)~ Path T =
(R4, My ., Mopm, Mk, 3) I8 an executable loop-free path. If some node ny of path
7;; has some deﬁ'nition of a variable v, it is straightforward to see that path =;;; =
(P1y My« - -, Tiasmy ky 3, J) includes an executable potential-du-path w.r.t. v from node
nq to edge (¢,7) (part ii). Moreover, it is easy to see that path set II; = {(ni4,, ...,
iy Nay ..., ki) | 1 < ¢ < n} contains only executable loop-free paths. Furthermore,
one of the nodes ny,ni41,. . - , Niyn must have a definition to alter the loop condition.
Suppose there is such a deﬁmtlon in node ng € {ni4, | 1 < q¢ < n}. Since path
(Ndy -+ vy My Ry, .o oy nky i) € Il it is straightforward to see that this path includes
an executable potentxal du-path from node ny to edge (¢,7) (part ii). If node n,

E
i
!
:
:
z‘

-+ has such a definition (which alters the loop condition), we have the case of path
T = (N1 Mgy e ooy Ny 8) wnth a definition in node n;.

o(all — potential — uses)* = (all - edges)

Suppose T is (all - potential —uses)* — adequate for P. Let edge (i, j) be any executable
edge in P. Since edge (%,) is executable, there is at least one executable complete path
Te = (I,ny,ng,...,0%,%,j,..., F) from the entry node I to the exit node F such that edge
(¢,7) is included in 7.. To complete the proof, it must be shown that there is at least one
executable definition-clear path from some node nq4 to the edge (¢,;) w.r.t some variable
v defined in ng. Then, the association [n4,(3,7),v] must be covered by II, i.e., Il must
include at least one executable definition-clear path from ng4 to edge (i,7) w.r.t. v; so edge
(2,7) will be included in II. The reasoning is similar as above,

From Fig. 5, it can be extracted that some of the FPU criteria, for the class of programs
with property LDEN, "bridge the gap” between (all — edges)* and (all — paths)* criteria
and still satisfy the basic requirement, from the point of view of data flow, since all of
them include the (all — defs)* criterion. It must be pointed out that property LDEN is
fulfilled by the majornty of practical programs. On the other hand, none of the DF criteria
"bridges the gap” between (all — edges)* and (all — paths)* criteria. Also, a hierarchy of
criteria including (all — paths)* and (all — edges)* criteria is established.

Concerning the other data flow based testing criteria, consider the modified example
from Frankl[1987], shown in Fig. 6, and taking into account Frankl’s worst case assumption
that edges (5,6) and (5, 7) are both executable (consider an environment in which unini-
tialized variables receive arbitrary values); it is easy to conclude that Hermans’, Ntafos’,
Laski’s and Ural’s criteria, in the presence of infeasible paths, do not bridge the gap. For
example, all simple O/I criterion does not require path (1,2,4,5,7,8,9); observe that this
path is executable. Considering Figs. 1 and 6 and the criteria definitions the conclusion
that PU Criteria are incomparable with these criteria is immediate.

5 Complexity Analysis

A serious shortcoming of comparisons in terms of inclusion relation is that the cost of
the various strategies is not accounted for. The number of test cases needed to satisfy a
criterion is a common contributor to the cost of testing activities; complexity analysis gives
an upper bound to this number [Ntafos[1988]].

It can be shown [Maldonado[1991]] that the flow graph of Fig. 2 maximizes the number
of du-paths, hence, the number of potential-du-paths is given by ((11/2)t + 9)2* — 10t — 9
and 2! test cases are required to cover these potential-du-paths.

Concerning all-potential-uses criterion, it is known from the inclusion analysis (see
Section 4) that all-potential-du-paths criterion includes all-potential-uses criterion; then,
2t is assumed as an initial upper bound for all-potential-uses criterion. For the example
of Fig. 3, 2 test cases are required to satisfy the all-potential-uses criterion; hence, the
complexity of all-potential-uses criterion is 2°.

Cycle-extension criteria also require at most 2 test cases as they require only one
executable path 7 € cycle — extension(w,) for each potential-du-path 7 of the control
flow graph. Concerning the Feasible Potential Uses Criteria, it seems obvious that they

224

- should be less demanding than the Potential Uses Criteria and that, in the worst case, they

- would require the same number of test cases as the correspondent Potential Uses Criteria;
however, using a control flow graph similar to the one in Fig. 2, with an adequate data
definition distribution where every path with more than two loop is infeasible, the Feasible
Potential Uses Criteria would require more than 2¢ test cases, and so their complexity is
greater than 2! [Maldonado[1991]].

It is important to note that the example of Fig. 3 requires 2¢ test cases for both all-uses
and all-defs criteria, disagreeing with results presented by Weyuker[1984]; for example,
Weyuker says that all-uses criterion require at most (1/4)(¢? + 4t +3) test cases. According
to Ntafos[1988], required pairs, data-contexts, 2 — dr iterations criteria have the same

- complexity as all-uses criteria; but all of them include all-defs criteria and, consequently,
they would have complexity greater than or equal to 2'. Concerning all simple O/I paths,
from Fig. 2 it is easy to conclude that this criterion, with an adequate distribution of
variable uses and definitions, requires at least 2%~% 4 2*-! simple Ol-paths (in this case,
complete paths); thus, 2* is not the complexity of this criterion as established by Ural[1988].

Given that complexity of a criterion is an important factor in testing activities results
presented in this section point out that complex1ty analysis of criteria must be further
investigated.

6 Conclusions

We have introduced and analysed the Potential Uses Criteria Family in the presence of un-
executable paths; since these criteria do not fulfil the applicability property [Weyuker[1986]]
we defined the Feasible Potential Uses Criteria, by eliminating those required paths that
can never be exercised. All these criteria were compared to Data Flow, Feasible Data Flow
and cycle-extended Data Flow Criteria Families, based on an inclusion relation and on
complexity analysis. One basic consideration in establishing a structural testing criterion
is that branch coverage is a necessary condition to be fulfilled, as well as, from the point
of view of data flow analysis, that at least one use of every computation result must be
required by the criterion being defined [Clarke{1985]] .

" For the class of programs satlsfymg property LDEN, partial order analysis of Potential
Uses criteria shows that some of them bridge the gap between (all — edges)* and (all —
paths)* criteria, establishing a hierarchy of criteria. Additionally, some of them satisfy the
minimum coverage requirements from the data flow point of view. It was also shown that
data flow based criteria in the literature do not brldge the gap, consxdermg only property
LDEN.

All data-flow based criteria have complexity greater than or equal to 2; Potential Uses
Criteria (PU) have complexity 2. Disagreement with some complexity analysis results of
other data flow criteria has been pointed out. As complexxty of a criterion is an impor-
tant factor in testing activities, results presented in Sectlon 5 point out that this topxc,
complexity analysis, must be further investigated. ,

The introduction of the potential use concept enables us to relax the properties pro-
grams have to satisfy, i.e., for the class of programs P which satisfy property LDEN, for
some FPU criteria, essentially the same partial order for the corresponding PU criteria

332

T s mrtaathuteny

holds, Furthermore, even in the presence of unexecutable paths, FPU criteria provide a
hierarchy including (all — edges)* and (all — paths)* criteria, in addition to satisfying the
minimum coverage requirements from the data flow point of view. Note that the property
LDEN is easily fulfilled by the majority of real and practical programs.

Results of benchmarking Potential Uses Criteria, using POKE-TOOL, are very promis-
ing; for example, the empirical worst case was found to be 4 x t. POKE-TOOL design is
being reviewed to include all the criteria studied in this work; in this way, practical use and
comparisons of these criteria will be possible. Facilities to support testing activities in the
presence of unexecutable paths have been incorporated into POKE-TOOL (for example,
the heuristics proposed by Frankl[1987). :

Another direction of future work is the combination of criteria, as each of the data flow
based criteria introduces an interesting concept. For example, the all simple O/I paths
criterion [URAS8S], aims at capturing the effects of programs inputs to programs output;
such identification may be helpful in providing better understanding of a program and in

‘checking consistency of a program with its specifications. This effort will potentially lead

to the establishement of stronger criteria by combining the best characteristics of each one.
References:

L. Clarke, A. Podgurskl, D.J. Rxchardson and S J. Zexl [1985], "A Companson of Data
Flow Path Selection Criteria,” in Proc. of the 8th Int’l Conf. on Software Engineer-
ing, pp. 244-251, Aug. 1985.

M.L. Chaim[1991], “POKE-TOOL — Uma Ferramenta para Suporte ao Téste Estrutural
de Programas Baseado Em Anélise de Fluxo de Dados”, Master Thesis, DCA/FEE/-
UNICAMP, Campinas, SP, Brazil, 1991.

F. G. Frankl[1987], "The Use of Data Flow Information for the Selection and Evaluation
of Software Test Data,” Ph.D Dissertation, New York Univ., New York, Oct. 1987.

F. G. Frankl and E.J. Weyuker[1988], ”An Applicable Family of Data Flow Testing Cri-
teria,” IEEE Trans. on Software Eng., Vol. 14, No. 10, pp. 1483-1498, Oct. 1988.

P. M. Herman[1976), "A Data Flow Analysis Approach to Program Testing,” The Aus-
tralian Computer Journal, Vol. 8, No.3, pp.92-96, Nov.1976.

B. W. Kernighan e P. J. Plauger[1981], Software Tools in Pascal, Massachusetts: Addison-
Wesley Publishing Company, Reading, 1981.

J. W. Laski e B. Korel[1983], ”A Data Flow Oriented Program Testing Strategy,” IEEE
Trans. Software. Eng., Vol. SE - 9, No. 3, pp. 347-354, May 1983.

J. C. Maldonado, M. L. Chaim, M. Jino[1988], ”Selecio de Casos de Testes Baseada
nos Critérios Potenciais Usos”, in Proc. II Simpdsio Brasileiro de Engenharia de
Software, Canela, RS, Brazil, pp. 24-35, Oct. 1988.

J. C. Maldonado, M. L. Chaim, M. Jino[1989a], ” Arquitetura de uma Ferramenta de
Teste de Apoio aos Critérios Potenciais Usos ”, Proc. XXII Congresso Nacional de
Informdtica, Sao Paulo, SP, Brazil, Sept. 1989.

333

J. C. Maldonado, M. L. Chaim, M. Jino[1989b], "Feasible Potential Uses Criteria Analy-
© sis,” Technical Report - DCA/FEE/UNICAMP - RT/DCA-001/89 - Campinas, SP,
Brazil, 1989.

J. C. Maldonado[1991], “Critérios Potenciais Usos: uma Contribuicio ao Teste Estrutural
de Software”, Doctoral Dissertation, DCA/FEE/UNICAMP - Campinas, SP, Brazil,
1991.

S. C. Ntafos[1984], "On Required Element Testing,” IEEE Trans. Software Eng., Vol. SE
- 10, pp. 795-803, Nov. 1984.

S. C. Ntafos[1988], ”A Comparison of Some Structural Testing Strategies,” IEEE Trans.
Software Eng., Vol. 14, No. 6, pp. 868-873, Jun. 1988.

A. Podgurski and L. A. Clarke[1990], A Formal Model of Program Dependences and Its
Implications for Software Testing, Debugging, and Maintenance,” IEEE Trans. on
Software Eng., Vol. SE - 16, No. 9, pp. 965-979, Sept. 1990.

S. Rapps and E. J. Weyuker[1985], ”Selecting Software Test Data Using Data Flow In-
formation,” IEEE Trans. Software Eng., Vol. SE - 11, pp. 367-375, Apr. 1985.

R. N. Taylor, D. L. Levine and C. D. Kelly[1992], "Structural Testing of Concurrent
Programs,” IEEE Trans. on Software Eng., Vol. 18, No. 3, pp. 206-215, March
1992.

E. J. Weyuker[1984], "The Complexity of Data Flow Criteria for Test Data Selection,”
Information Processing Letters, Vol. 19, No.2, pp. 103-109, Aug. 1984.

E. J. Weyuker[1986], " Axiomatizing Software Test Data Adequacy,” IEEE Trans. on
Software Eng., Vol. SE - 12, No. 12, pp. 1128-1138, Dec. 1986.

E. J. Weyuker[1990], " The Cost of Data Flow Testing: An Empirical Study,” IEEE Trans.
on Software Eng., Vol. SE - 16, No. 2, pp. 121-128, Feb. 1990.

H. Ural and B. Yang[1988], ” A Structural Test Selection Criterion,” Information Process-
ing Letters, Vol. 28, pp. 157-163 Jul. 1988.

Acknowledgment
The authors wish to thank E. J. Weyuker and C. J. P. Lucena for their va,luable com-

ments which helped to improve this paper.

MAX « 32000
0 READ(x,y)

y20 y<o0

POW oy (2) (3) POW -y

POW =0
5

&/
POW # 0 \
G AUX «— E » abp(X)
|AUX>MAX AUX<MAX
PRINT('OVF’ E o abb(X
o Ve (1) (8) E -+ abs(X)

e CORRECT
E -

POW — POW -1 E abs(X)

y<eo

E—1/E (1) PRINT(E +1)

Figure 1: Example to Illustrate Potential Uses Criteria Application

335

336

—

O
Q

¢

Figure 2: Control Flow Graph that Maximizes the Number of Potentialh Du-paths

t decision comands

R ————

READ (At xl’ xﬂo Xa, X‘)

A0

Xa—A
X.‘—A

READ (A)
A0 A<O
Xz ~22A X1¢—2'wA
Xso—2tAK Xe—22A
READ (A)
A>0 <0

Xoe—32+A X1 —3+A
Xe—32A Xa—~3%xA

PRINT (Xl'. X2, X3, X4)

Figure 3: An Example Used in the Complexity Analysis

337

All-du-paths

N

Cycle-extended-du-paths

All-c-uses/some-p-uses

Figure 4: Partial Order for Potential Uses and Data Flow Criteria Families

All-paths

|

All-potential-du-paths

Cycle-extended-potential-du-paths

N
N
/N
N/

All-defs

All-potential-uses

All-p-uses/some-c-uses

AN

All-potential-uses/du !

/

|

All-p-uses

|

All-edges

|

All-nodes

(All-paths)*

/ N\

(Cycle-extended-potential-du-paths)* (All-potential-du-paths)*
' i . ol * ' ‘
5 (Cycle-extended (All-potential-uses) (All-potentiak-uses/du)* (All-du-paths)*

du-paths)*

NN/

(All-uses)* (All-edges)*
(All-c-uses/ (All-p-uses/
some-p-uses)* some-c-uses)* (All-nodes)*
(All-defs)* (All-p-uses)*

: Figure 5: Partial Order for Feasible Potential Uses and Feasible Data Flow Criteria Families

339

read(x) |
X — SQR(x)
x<0 x>=0

read(y)

y
PRINT x/y? PRINT y
(&)

O

Figure 6: Example of Infeasible Paths

40

