
W. bowl 036% SQCQ‘\3) A 3W?Who/01,1,
Bridging theGap in the Presence of InfeaSible

Paths: Potential Uses TestingCriteria?
José C. Maldonado

University of Sic Paulo (USP)
C. P. 668, 13560 850 Carlos, SP, Brazil
e-mailzjcmaldon@icmsc.usp.ansp.br

Marcos L. Chaim
Mario Jino

‘

State University of Campinas (UNICAMP)
C.P. 6101, 13081 Campinas, SP, Brazil

Abstract
I

Data Flow based Structural Testing Criteria have been introduced- aiming at
“bridging the gap” between branch testing and path testing, and at making stronger
the structural testing criteria, but none in the literature “bridges the gap” in the pres-
ence of infeasible paths. Potential Uses Criteria Family (PU), based on the potential
use concept, is introduced. Potential Uses Criteria are analysed in the presence of in-
feasible (unexecutable) paths; these criteria establish a hierarchy including all-edges
and all-paths criteria in addition to satisfying the minimum coverage requirements
from the dataflow point of view. Potential Uses criteria were inspired the Data Flow
Criteria Family (DF); each PU criterion includes its correspondent DF criterion and
no other data flow based criterion includes PU criteria. Complexity analysis of other
data flow criteria is revisited and disagreement with published results is highlighted;
all data-flow based criteria have complexity greater than or equal to 2‘.

Keywords: structural testing criteria, complexity analysis, hierarchy of testing
criteria, infeasible paths, data-flow based criteria.

1 Introduction
The major objective of software testing is to reveal the presence of program faults or
defects; in other words, to refute the claim that a program is correct. Ideally, a program
should be exercised for all possible input values; however, it is known that in practice
exhaustive testing is impossible due to time and cost restrictions. Criteria have been

'This work was partly supported by CNPq, CAPES and SID Informatica S.A..

meow,—
DATA____L____L..__

lCMC-SBAB 323

‘5:
'-

.l

devised to provide a systematic way to select an input domain subset — a test case set T
i

—— that is relatively small and, even so, effective in refutting the claim that the program is
correct, within minimal time and costs.

One class of these criteria, named structural testing criteria, uses implementation infor-
_

mation to characterize the required elements. The three most known and well-established
criteria are statement testing, branch testing and path testing [Taylor[l992]]; basically,
these criteria use control flow information of programs being tested to establish required
elements and are referred to as control-flow based criteria.

Motivated by the fact that, even for small programs, control-flow based criteria are more
appropriate for revealing the presence of domain-errors than computation-errors (i.e., do
not contribute to reveal the presence of simple computation errors/defects) and that, in
general, path coverage is impractical (there may be an infinite number of paths), criteria -

using data flow information have been introduced [Herman[1976], La'ski[1983], Ntafos[1984],
Rapps[1985], Ural[1988]]. This class of data-flow based criteria is more appropriate for
revealing computation errors and requires basically that program paths, from points where
variables are defined to points where those definitions are used, to be exercised by the test
case set.

In selecting or establishing a structural testing criterion three basic conditions must be
fulfilled:

I

o i) branch coverage must be ensured;

0 ii) from the data-flow information point of view, one use of every computation result
must be required (and ensured) by the criterion [Clarke[1985]]; and

0 iii) for any program P, the test case set required by the criterion must be finite.

Condition iii) takes into account costs and practical considerations. The first condition
is the minimal requirement of most testing strategies and ensures that every statement is
exercised. The second condition is implied by the weakest data flow based testing criterion,
“-alldefs” [Rapps[1985]].

Although data-flow based criteria, such as Data Flow Criteria Family [Rapps[1985]]
and Ntafos’ criteria [Ntafos[1984]], were introduced aiming at “bridging the gap” between
branch testing and path testing, and at making stronger the structural testing criteria,
none available in the literature “bridges the gap” in the presence of infeasible paths —-- a
path is infeasible if there is no assignment of values to the input variables. which .Causes

’ the path to be executed [Maldonado[l991]]; for example, Frankl[1987],[1988] pointed out
that DFCF' does not “bridge the gap” in the presence of infeasible paths. Notice that» in
practice the ocurrence of infeasible paths in programs is quite common.

The Potential Uses Criteria Family (PUCF) although strongly based on the Data F low
Criteria Family is fundamentally different; these criteria use the concept of: potential use
Potential Uses (PU)Criteria satisfy the three conditions discussed above; more specifically,
“bridge the gap” betWeen branch testing and path testing even in the presence of infeasible
paths. They require essentially the execution of definition clear paths from every node 1'

containing variable definitions, even if there are no uses of these variables through these
paths; if a use might occur in a path —- a potential use —- we require this path to be

324

3 .

l

in

first

, .< ii—W~<;if ~”- ' 1 I A.
V

. m.» .w m.mwm,®mmmuxnafls

examined during testing" activities. Moreover, requiring the execution of definition clear
paths w.r.t. a variable or, independently of use occurrences of 2:, enables us to verify if the
value of z is not being modified through these paths, possibly due to collateral effects, for
example. Also, they may make easier the detection of faults caused by missing data flow
dependences [PodgurskiI19901]originated by a missing variable use, for example, as illus—
trated in Fig. l. Additionally,’the automation of PU Criteria requires less static analysis
than other data flow criteria do, since it is not necessary to identify uses of variables.

Comparison studies of these criteria based on inclusion relation and complexity anal-
ysis have been conducted [Clarke[1985], Rappsl1985], Weyuker[1984], Ntafos[1988]]. The
inclusion relation and the complexity of a criteria must be considered in defining or in
selecting a criterion. The inclusion relation establishes a hierarchy (partial order) for these
criteria and provides information on testing effectiveness and adequacy to classes of errors.
Test selection criterion c1 includes test selection criterion c; if, for any given control flow
graph 0, any set of complete paths of G satisfying c1 also satisfies 0,». Test selection cri-
terion c1 strictly includes criterion c2, denoted by c; => (:2, provided a; includes c2 and
for some graph G there is a set of complete paths of G satisfying c, but not c,. If neither
c1 => c2 nor c2 => c1, we say that these criteria are incomparable. One of the strongest
data-flow based testing [Taylor[1992]],all-du-paths [Rappsl1985]] is included by some of the
PU Criteria Family; no data-flew based testing criteria include Potential Uses Criteria
[Maldonado[1991]].

'

Complexity of a testing criterion is defined as the upper bound on the number of test
cases needed to satisfy the criterion. All data-flow based criteria, including PU Criteria,
have complexity greater than or equal to 2‘ [Maldonado[1991]], even the one at the bottom
of the hierarchy -— the all-defs criterion. As a common contributor to the cost of testing
activities -— generation of a. test case, execution of test cases and results evaluation —— is
the number of test cases needed to satisfy each criterion, the relevance of benchmarking
such criteria is obvious; the same benchmark1 established by Weyuker[1990] has been used
with a testing tool named POKE—TOOL [Maldonado[1989a], Chaim[1991]]. POKE-TOOL
(a POtential use Criteria for program testing TOOL) consists in a multi-language testing
tool that supports the use of PU Criteria; in the present configuration, it is operational for
programming language C and is being instantiated for COBOL, FORTRAN and PASCAL

Results of this benchmark are very promising: the number of test cases required to
satisfy any of the Potential Use Criteria is linear in t, where t is the number of decision
commands in P; the maximum number of test cases (the empirical worst case) required
by the most demanding PU criteria was 4 * t. These results are an indication that sat-
isfaction of these criteria can be adopted as a practical goal of testing; they also provide
data for comparison studies in terms of the “average” number of test cases needed [Mal-
donado[1991]]. A more complete discussion of this benchmarkwill appear in a forthcoming
paper.

In Section 2, basic terminology and concepts are introduced. Potential Uses (PU)
and Feasible Potential Uses (FPU) Criteria Families are introduced in Section 3. The
inclusion analysis is presented in Section 4. Complexity analysis of PU and FPU criteria
is presented in Section 5; complexity analysis of other data-flow testing criteria is also
discused. Conclusions are presented in Section 6.

129 programs from Kernighan[l98l], translated into C

fit
A

\ Q

2 Potential Uses Criteria —- Terminology
A program P is decomposed into a set of disjoint blocks where each block has the property
that, whenever the first statement is executed, the other statements are executed in the
given order. The representation of a program P as a control flow graph, G = (N, E33),
consists in establishing a correspondencebetween nodes and blocks, and indicating possible
flow of control between blocks through edges; N is the set of nodes, E the set of edges,
and s the inicial node. We consider every program graph as a directed, connected graph
having a unique inicial node 3 E N and a unique exit node e E N.

A path is a finite sequence of nodes (n1, n2, . . . , n), k 2 2, such that there is an edge
from n; to ng+1 for i = 1,2,... ,1: — 1. A path is a simple path if all nodes, except possibly
the first and the last, are distinct. If all nodes are distinct it is a loop-free path. A complete
path is a path where the first node is the inicial node and the last node is the exit node.

A variable occurrence in a program can be a variable definition, a variable use (c-use
or p-use) or an undefinition. A c-use affects directly the computation being performed or
allows one to see the result of an earlier definition. A p-use affects directly the flow of
control through the program. .

A path (i,n1,...,nm,j), m 2 0, containing no definitions in nodes n1,... ,nm of a
variable :4: occurring in a program is called a definition clear path with respect to (w.r.t.)
z from node i to node j and from node i to edge.(nm, j).

In establishing the Data Flow Criteria Family, Rapps[1985] introduced the concept of
def—use graph. A def-use graph is obtained from the flow graph by associating to each node

,

i the sets c-use(i) = { variables x such that there is no definitionof 1:, precedingthe c—use "-

of a: , within the block i } and def (i) = { variables x such that a: is defined in block i ‘

and there is a definition~clear path from node i to some node containing a c — use or to
some edge containing a p - use of x}, and associating to each edge (2', j) the set p-use
(i, j) = { variables which have p-uses-‘on edge (i , j)} Also definedare the sets of nodes dcn
(132') = { nodes j such that a: 6' c~u$e (j) and there is a: definition~clear path with respect
to x from ‘i to j} and dpu‘ (m,i) = {edges (j,k) such that a: 6 p-use (j,k) and there is
a definition-clear path w.r.t. a: from i to (j,k)}. A path (121,722, . . . ,nhm) is a. du+path
w.r.t. a variable a if 721 has a global definition of m and: (I) either it]. has a c'use of z and 3

(711,122, . . . ,nj,n;.) is a definition-clear simple path w.r.t. m; or (2) (123,111.) has a p-use of 1,

a: and (nhnz, . . . ,nj, nk) is a definition-clearpath w.r.t. a; and 211,112,. . . ,n, is a loop‘free ;

path. 4‘ , , '- ‘ ~' ~ -

l
- i

A definition-c-u‘se-association is- a triple (i, j, :c) where x Edef (i) and j e dcu(:c,i)._ A. ,

definition-pouse-association is a triple (i, (j, k),:c) where's: E def(i) and (j, k) E dpu(:c,i). 3

An association is a definition c-use association, a definition-p-useassociation or a du-path. l

In the definition of Potential Uses Criteria minor but interesting modifications in these
concepts were introduced as follows: defg(i) is the set of variables for which node i con~
tains a definition; pdcn(z,i) ={nodes j I there is a definition clear path w.r.t a: from i to 5

j}; pdpu(z,i) ={edges (j,k) i there is a definition-clear path w.r.t :n from i to (j, k)}; def g

graph is a graph obtained by associating to each node i of the control flow graph the set i

defg(i); potential-du~path w.r.t. a variable .1; is a. definition~clear path (711,732, . . . ,nj,nk) ‘

w.r.t. a: from node n, to node m. and to the edge (nbnk) , where path (n1,ng,...,nj)
is a loop~free path and n, has a definition of z; potential-definition-c-use association is a

triple, Ii,j,a'] where a E defy(.i) and j e pdcu(a,i); potential-definitionopouse association
is a triple [i,(j, k),:c] where a; E defg(i) and ,(j, k) E pdpu(:r,i); and potentialmssocz‘atz‘on
is defined as a potential-definition-c-use association, a potential-definition-p-use associ-
ation or a potential-du-path. Observe that every association is a potential-association.
The notation [i,(j,k), {'01, . . . ,vn}] is also introduced to represent the set of associations
[i,(j,k),v;], ...:,,[>z',(j,lc),v,.]; itindicates that at least one def-clear path w.r.t. v1, . . . ,2)"
from node i to the arc ,(j, k) exists. ,

i

,
.A path 1r; .= (2'1, . . . gig) is said to be included in a set 11 of paths if [I contains a path

1r: =7 (n;,.,.,nm) such that 2'; = .n,,i2 = nj+1,...,i;, =xii+k-1, for some 9', .1 _<_ j S
m - 1H: 1. We say 1r; is included in 7:2 or that 7r; is a sub-path of m.

A complete path 1r covers a potential-definition-c—use association :[i,j, a] (respectively,
a potential-definition-p-use association [2',(j,lc),:c]] if it includes a definition clear path
w.r.t. a: from 2' to j [respectively, from i to (j, k)]. 1r covers a potential-du-path «I if 1r1

, is included in 1r. A set II of paths covers a potential-association if some element of the
’ set does. Note that, if a path set 11 covers an association or a potential-association from

node :27 to node j [respectively, to edge (j, k)}~,zthen‘tliere exists a definition clear path w.r.t.
variable a: 6 defy(i) from node 2' to node 3' (respectively, to edge (j, k)] which is included
in II. '

..

A complete path is executable or feasible if there exists some-assignment of values to the
i ‘ input variables which cause the path to be executed. A path is executable if it is a subpath
‘ of an executablecompletepath. A potential-association is executable if there is some

executable complete path which covers it; otherwise, it is unexecutable. Two other sets
are defined: fpdcu(:r,i) = {j E pdcu(z,i) I the potential-association [i,j,x] is executable }

i and fpdpu(:r,i)={(j,k) E pdpu(a:,i) | the potential-association [i,(j, lc),:c] is executable }.
i Aiming at keeping, even in the presenceof infeasible paths, an hierarchy of criteria that

bridges the gap between all-edges and all-paths, new criteria are defined using the cycle-
extended concept [Frankl[1988]]. Let 1r = (n1, n2, . . . ,nk) be a du-path (potential-du-path)
w.r.t. 2:; its cycle-extension (1r,a:) is defined as the set of definition clear paths w.r.t. :c

of the form (A1, A2, . . . , M) where each A.- is a path of length greater than or equal to one,
, beginning and ending with n;. Observe that for any du-path [potentiaLdu-path] 1r w.r.t.
l

. x, 1r 6 cycle-extension (7r, 2:).

3 Potential Uses and Feasible Potential Uses Crite-
ria Family

Potential Uses (PU) Criteria, initially introduced by Maldonado[1988], examine every pos-
sible definition clear paths starting at a definition node (program state change), in order to
refute the claim that the program is correct. Some of PU Criteria bridge the gap between

5 (all - edges) and (all —-paths) criteria, even in the presenceof infeasible paths, establishing
a hierarchy of criteria, in addition to satisfying the minimum coverage requirements from
the data flow point of View. The other data flow based criteria in the literature do not
bridge the gap; none of them includes PU Criteria.

Consider Fig. 1, a modified example from Rapps[1985]; the definition of variable :c at
node 1 would imply, for example, one potential-association between node 1 and arc(6, 7)

327

(as there might be a potential-use of a: at arc(6, 7)), denoted by [i, (6, 7), {3:}I, as well
_

as a potential-association between node 1 and node 8 (which has an explicit use of z),
denoted by [1,8, {3}]. The potential—associations [8, (6, 8), {EH and [8,8, {e}I would also
be required despite the occurence of a typo error (a missing data-flow dependence); keep
in mind that the aim of software testing18 to reveal the presence of defects Considering
the potential-association [1, (6, 7), {2:}I, the weakest of the Potential Use Criteria Family
— all-potential—uses -— would require at least one path (loop free or not) from node 1 to
edge (6,7) with no definition of variable a: to be exercised; the intermediate criterion —
all-potential~uses/du—- would require at least one loop free path from node 1 to edge (6,7);
the strongest criterion— all-potential-du-paths —- would require every loop free path from
node 1 to edge (6,7).

Potential Uses Criteria

Definition 1 All-potential-usescriterion - Requires all associations Ii, j, m] Ij E pdcu(:1:,i)
and all associations [i,(j,k),x] I (j, k) E pdpu(.v,i) for each node i E G and for each
a: 6 defg(i).

Definition 2 All-potential-uses/du criterion - Requires, for each i. E G I defg(i) 76 (0,

a potential-du-pathfrom i to j w.r.t. so for all associations Ii, j, z] I j E pdcu(x,i) and a
potential-da-pathfromi to (j,k) w.r.t. a: for all asSociations [i,(j, k),xI I (j, k) G pdpu(a:,i).

Definition 3 All-potential-du-pathscriterion - Requires, for each i E G I defg(i) 75 (I), all
potential-du-pathsfromi to j w.r.t. all variable a: 6 defg(i) for each j e pdcu(:t,i) and all
potential-du-pathsfrom i to (j, k) w.r.t. all variable :1: 6 defg(i) for each (7', k) 6 pdpu(a', i)
for alli I defg(i) # 0.

Potential Uses Criteria can be seen as an extension to all--uses and all-du-paths criteria
[RappsIl985II which require def- clear paths or du-paths w.r.t. variable a: to be executed
only if there13 a use of variable a: through these paths;1.e., in these criteria, associations

'

are characterized using dcu(:t, i) and dpu(:1:, i) while pdcu(:c, i) and pdpu(.1:, i) are used'in
Potential Uses Criteria. Observe that the computational defect introduced'1n node 8 can,
be detected only throughthe execution of path (8, 9,5,6 ,8), which13 required by Potential

’

UsesCriteria . — 7; '

Not all paths111 a program are feasible and the identification of feas1ble and infeasible

paths13 an undecidable problem [Ural[1988I]; for example, only three programs from the
benchmark we have used have no unexecutable path. Thus, PU criteria may require
paths and associations that are unexecutable; variations of these criteria have been defined
[MaldonadoI1989bII, considering infeasible paths, since they do not satisfy the applicability
property [WeyukerIl986]I: for every program P there exists some test case set which18 C-
adequate for P. Given a program P and its associated control flew graph (program graph),
a set Tis said to be C-adequate for P (satisfies criterion C for P) if and only if each of the
sequences required by C is a sub-path of any path of the set II, corresponding to the paths
executed by the test'cases.

Potential Uses Criteria are modified by selecting the. required potential-associations
from fpdcu(a:,i) and fptlpu(:1:,i) instead of pdcu(m,i) and pdpu(z,i); in other words, the

328.

I; unexecutable associations are eliminated fromsthe required components set, ensuring the
, applicability property. According to Frankl[1988], transition from a data~flow based crite-

i rion to the corresponding feasible data-flow criterion means a trade of the undecidability
of the existence question “Is there any test set T which is C-adequate for 1);?” for the
undecidability of the recognition problem “Is a given test set T C‘-adeq‘uate for P ?”
Frankl[1987],[1988] pointed out that, unfortunately, although the FDF criteria satisfy the
applicability property, the inclusion relation among FDF criteria has changed significantly
compared to DF criteria. In the next section, inclusion analysis of Potential Uses Criteria,

:
taking into account the presence of infeasible paths, is presented.

3 Attempting to fulfil the three properties discussed in Section 1, even in the presence
of infeasible paths, cycle-extended criteria — cycle—extended-potential-du-paths (cyex-

I potential-du—paths) and cycle-extended—all-potential-uses/du (cyex-all-potential-uses/du)
-— are defined using the'cycle-extensionconcept [Frankl[1988]]. These criteria require that
one element of the cycle-extension (1r, 1:) of a potential-du-path 1r be selected. Observe
that all-potential-uses and cyex-potential-uses/du criteria are equivalent.

The basic PU criteria and the cycle~extended PU criteria constitute the Potential Uses
(PU) Criteria Family; the correspondent feasible criteria 0" constitute the Feasible PU
Criteria Family {FPU}. Following, some of these criteria are defined; the other criteria are ‘

defined in a similar way.

Definition 4 (All —- potential - uses/du)* criterion - Requires, for each node i E G I

defg(i) 7‘ 0, an executable potential-du~path from i to j w.r.t. x for all associations
[i, j, :c] I j E fpdcu(:c,z') and an executable potential—du-path fromi to (j,lc) w.r.t. :r for all
associations [i,(j,lc),:l:] I (j, k) E fpdpu(a:,i).

Definition 5 Cyez-potentiaI-du-paths: II satisfies the cycz-potential-du-paths criterion for
P if and only if for each variable .1: and for each potential-du-path 1r w.r.t. a, II covers
some path 1r; 6 cycle-extension (7r,:c).

4 Partial Order Analysis of Potential Uses Criteria
in the Presence of Unexecutable Paths

Analysis of structural testing criteria have been conducted based on the inclusion relation
discussed earlier [Clarke[1985], Rapps[1985], Ntafos[1988]]; Frankl[1987],[1988] studied the
DF Family in the presence of unexecutable paths. Frank] pointed out that, unfortunately,
the inclusion relation has been changed significantly; for example, none of the criteria
bridges the gap between (all —- edges) and (all — paths). For programs satisfying the No-
Anomalies (NA) property —— every path from the start node to a use of a variable a must
contain a definition —-—, the FDF criteria would bridge the gap. However, according to
Frankl, requiring such a property is overly restrictive since many perfectly good programs
fail to satisfy the NA property.

For programs satisfying property LDEN (At Least one Definition in the Entry Node
Property) —~ P has at least one variable being defined in the entry node —— PU criteria
bridge the gap between all- edges and all-paths, even in the presence of infeasible paths;

3%)

furthermore, some of them exercise every computation result. Notice that property LDEN
is easily fulfilled by the majority of real and practical programs. The partial order for
(Feasible) Potential Uses and (Feasible) Data Flow criteria families18 presented1n Fig. 4
(Fig. 5).

Theorem 1 The Potential Uses and Data Flow Criteria Families are partially ordered by
strict inclusion as shown in Fig. 4. Families FDF and FPU are partially ordered by strict
inclusion as shown in Fig. 5. Furthermore, a criterion C,- includes a criterion 0, if and
only if it is explicitly shown to do so in Figs. 4 and 5 or if it follows from the transitivity
of the relation.

Proof: Let T be a test case set for a programP (G being the correspondingcontrol flow
graph), and let H be the set of paths executed by T. We present only the most relevant
aspects of this proof; for the remainder see Maldonado[1989b],[1991].

0(all -— potential— uses/du)* => (all — edges)*
Suppose T is (all —— potential — uses/du)* - adequate for P. Let edge (i, j) be any

executable edge in P. Since edge (i, j) is executable, there is at least one executable
complete path 11' = (I,n1,n2, . . . ,i, j,. . . , F) from entry node I to exit node F such that
edge (i, j) is included in P. To complete the proof, it must be shown that there is at least
one executable potential~du~path from some node 124 to edge (i, j) w.r.t. some variable 0
defined in 124. One of these executable potential-du-path will be included in H because T
is (all -- potential -— uses/du)* — adequate; so edge (i, j) will be included in H.

i) If node i has a definition of a variable v , then path (i, j) is an executable potential-
du-path from node i to edge (i, j).

11) Consider a path 1r,- = (I,n1,ng, .z,nk,i) as a loop-free executable path. Since pro-
gram P obeys LDEN property, node I has at least one definition of. some variable
v. If nodes 711,722, . . . ,nk have no redefinition of variable 1) defined in node I , path
(I, n1, n2, . . . , nk, i, j) is an executablepotential-du-path w.r.t. o from node I to edge
(i, j), by definition. If some node ad, 1 S- d is. 1:, has a: redefinition OE 11, then. path
(nd,nd+1,. . . ,nhi, j). is an executable potential-du-path w.r.t. vfifrom, node n; to
edge (i, j). ' ,.

iii) Consider a path r.- = (I , n1,n2,. . . ,nhi) which is not a loop-free path.
Let (n1,m+1,. . . ,n;+,.,n;) be the last loop in path 1r.- before the occurrence of node
is Lew 7'5 = (1,731,712, '“i nhnl-i-li "'1 nH-nynlvnn "'1 na+msnkai)t Path wil =
(n,,n,,.. . ,n,+,,,,nk,i) is an executable loop-free path. If some node ad of path
1m has some definition of”a variable o, it is straightforward to see, that path rm :1
(m,n,,. ., n,+,,., nine ,ij) includes an executable potential--du-path w.r. t. 11 from node
n; to edge (i,j) (part ii). Moreover, it19 easy to see that path set H = {(n1+.,, . . .,
n1,n.,. .,n," i) | l < q__< n} contains only executable loop-free paths. Furthermore,
one of the nodes n1, n1+1,.. .,n;+,. must have a definition to alter the loop conditiOn.
Suppose there is such a definition1n node 71.; 6 {111“ I l S q < n}. Since path
(nap. ...,n1,n., .,nhi) e Hg, it is straightforward to see that this path includes
an executable potentialdu-path from node n; to edge (i,j) (part ii) If node n;

13:5

i
t
t
Z

l

w ,
, has such a definition (which alters the loop condition), we have the case of path

1r“ = (n;,n.,. ..,n1,,1i) with a definitionin node 72;.

0(all - potential- uses)* => (all - edges)
Suppose T is (all -—potential-uses)*-—adequatefor P. Let edge (2', j) be any executable

edge in P. Since edge (2', j) is executable, there is at least one executable complete path
7rc = (1,711,712, . . . ,nk,i, j, . . . , F) from the entry node I to the exit node F such that edge
(1',j) is included in are. To complete the proof, it must be shown that there is at least one
executable definition-clear path from some node .714 to the edge (i, j) w.r.t some variable
i) defined in 714. Then, the association [nd, (i,j) :0] must be covered by H, i..e, H must
include at least one executable definition-clear :path from n; to edge (1,1) w.rt 1:; so edge
(5,]) will be included1n H. The reasoning is similar as above. ,

From Fig. 5, it can be extracted that some of the FPU criteria, for the class of programs
with property LDEN, ”bridge the gap between (all — edges)* and (all :— paths)* criteria
and still satisfy the basic requirement, from the point of view of data flow, since all of
them include the (all- defs)* criterion. It must be pointed out that property LDENlS
fulfilled by the majority of practical programs. On the other hand, none of the DF criteria
”bridges the gap” between (all -— edges)* and (all -— paths)* criteria. Also, a hierarchy of
criteria including (all - paths)* and (all - edges)* criteria is established.

Concerning the other data flow based testing criteria, consider the modified example
from Frankl[1987], shown in Fig. 6, and taking into account Frankl’s worst case assumption
that edges (5, 6) and (5, 7) are both executable (consider an environment in which unini-
tialized variables receive arbitrary values); it is easy to conclude that Hermans’, Ntafos’ ,
Laski’s and Ural’s criteria, in the presence of infeasible paths, do not bridge the gap. For
example, all simple 0/1 criterion does not require path (1,2, 4, 5, 7, 8, 9); observe that this
path is executable. Considering Figs. 1 and 6 and the criteria definitions the conclusion
that PU Criteria are incomparable with these criteria is immediate.

5 Complexity Analysis
A serious shortcoming of comparisons in terms of inclusion relation is that the cost of
the various strategies is not accounted for. The number of test cases needed to satisfy a
criterion is a common contributor to the cost of testing activities; complexityanalysis gives
an upper bound to this number [Ntafos[1988]].

It can be shown [Maldonado[1991]] that the flow graph of Fig. 2 maximizes the number
of du-paths, hence, the number of potential-du-paths is given by ((11 /2)t + 9)2‘ -— 10t — 9
and 2‘ test cases are required to cover these potential-du-paths.

Concerning all-potential-uses criterion, it is known from the inclusion analysis (see
Section 4) that all-potential-du-paths criterion includes all-potential-uses criterion; then,
2‘ is assumed as an initial upper bound for all-potential-uses criterion. For the example
of Fig. 3, 2‘ test cases are required to satisfy the all-potential-uses criterion; hence, the
complexity of all-potential-uses criterion is 2‘.

Cycle-extension criteria also require at most 2’ test cases as they require only one
executablepath 1n 6 cycle — extension(7r,x) for each potential-du-path 7r of the control
flow graph. Concerning the Feasible Potential Uses Criteria, it seems obvious that they

0’21

~ should be less demanding than the Potential Uses Criteria and that, in the worst case, they
v would require the same number of test cases as the correspondent Potential Uses Criteria;
however, using a control flow graph similar to the one in Fig. 2, with an adequate data
definition distribution where every path with more than two loop is infeasible, the Feasible
Potential Uses Criteria would require more than 2‘ test cases, and so their complexity is
greater than 2‘ [Maldonado[l991]].

It is important to note that the exampleof Fig. 3 requires 2‘ test cases for both all-uses
and all-defs criteria, disagreeing with results presented by Weyuker[1984]; for example,
Weyuker says that all-uses criterion require at most (1 /4)(t2 +4t +3) test cases. According
to Ntafos[1988], required pairs, data-contexts, 2 — dr iterations criteria have the same

.

complexity as all-uses criteria; but all of them include all-defs criteria and, consequently,
they would have complexity greater than or equal to 2‘. Concerning all simple 0/1 paths,
from Fig. 2 it is easy to conclude that this criterion, with an adequate distribution of
variable uses and definitions, requires at least 22‘“2 + 2‘"1 simple 01-paths (in this case,
complete paths); thus, 2‘ is not the complexity of this criterion as established by Ural[1988].

Given that complexity of a criterion is an important factor in testing activities results
presented1n this section point out that complexity analysis of criteria must be further
investigated.

6 Conclusions
We have introduced and analysed the Potential Uses Criteria Family in the presenceof un-
executable paths; since these criteria do not fulfil the applicability property [Weyuker[1986]]
we defined the Feasible Potential Uses Criteria, by eliminating those required paths that
can never be exercised. All these criteria were compared to Data Flow, Feasible Data Flow
and cycle-extended Data Flow Criteria Families, based on an inclusion relation and on
complexity analysis One basic consideration in establishing a structural testing criterion
is that branch coverage is a necessary condition to be fulfilled, as well as, from the point
of view of data flow analysis, that at least one use of every computation? result must be
required by the criterion being defined [Clarke[1985]].
" For the class of programs'satisfying property LDEN, partial order analysis of Potential
Uses criteria shows that some of them bridge the gap between (all — edges)* and'(all —-

paths)* criteria, establishing a hierarchy of criteria” Additionally, some of them satisfy the
minimum coverage requirements from the data flow point of view It was also shown that
data flow based criteria1n the literature do not bridge the gap, consideringonly property
LDEN.

All data-flow based criteria have complexity greater than or equal to 2‘; Potential Uses
Criteria (PU) have complexity 2‘. Disagreement with some complexity analysis results of
other data flow criteria has been pointed out As complexity of a criterion is an impor-
tant factor in testing activities, results presentedin Section 5 point out that this topic,
complexity analysis, must be further investigated. ,

The introduction of the potential use concept enables us to relax the prOperties pro-
grams have to satisfy, i.e., for the class of programs P which satisfy property LDEN, for
some FPU criteria, essentially the same partial order for the corresponding PU criteria

332

Wm

‘"Y“’“"‘"

,1

aft-

..

1

'W‘l’

.

holds. Furthermore, even in the presence of unexecutablepaths, FPU criteria provide a
hierarchy including (all - edges)* and (all - paths)" criteria, in additionto satisfying the
minimum coverage requirements from the data flow point of view. Note that the property
LDEN is easily fulfilled by the majority of real and practical programs.

Results of benchmarking Potential Uses Criteria, using POKE-TOOL, are very promis-
ing; for example, the empirical worst case was found to be 4 a: t. POKE-TOOL design is
being reviewed to include all the criteria studied in this work; in this way, practical use and
comparisons of these criteria will be possible. Facilities to support testing activities in the
presence of unexecutable paths have been incOrporated into POKE-TOOL’(for example,
the heuristics proposed by Fiankl[1987]. '

Another direction of future work is the combination of criteria, as each of the data flow
based criteria introduces an interesting concept. For example, the all simple 0/! paths
criterion [URA88], aims at capturing the effects of programs inputs to programs output;
such identification may be helpful in providing better understanding of a program and in
checking consistencyof a program with its specifications. This effort will potentially lead
to the establishement of stronger criteria by combining the best characteristics of each one.

References:
L. Clarke, A. Podgurski,D. J. Richardson and S. J. Zeil [1985], ”A Comparison of Data

Flow Path Selection Criteria,” in Proc. of the 8th Int ’1 Conf. on Software Engineer-
ing, «pp. 244-251, Aug. 1985.

ML. Chaim[1991], “POKE-TOOL —— Uma Ferramenta para Suporte a0 Teste Estrutural
de 'Programas Baseado Em Analise de Fluxo de Dados” , Master Thesis, DCA/FEE/—
UNICAMP, Campinas, SP, Brazil, 1991.

F. G. Frankl[1987], ”The Use of Data Flow Information for the Selection and Evaluation
of Software Test Data,” Ph.D Dissertation, New York Univ., New York, Oct. 1987.

F. G. Frankl and E.J. Weyuker[1988], ”An Applicable Family of Data Flow Testing Cri-
teria,” IEEE Trans. on Software Eng., Vol. 14, No. 10, pp. 1483-1498, Oct. 1988.

P. M. Herman[1976], ”A Data Flow Analysis Approach to Program Testing,” The Aus-
tralian Computer Journal, Vol. 8, No.3, pp.92-96, Nov.1976.

B. W. Kernighan e P. J. Plauger[1981], Software Tools in Pascal, Massachusetts: Addison-
Wesley Publishing Company, Reading, 1981.

J. W. Laski e B. Korel[1983], ”A Data Flow Oriented Program Testing Strategy,” IEEE'
Trans. Software. Eng., Vol. SE - 9, No. 3, pp. 347-354, May 1983.

J. C. Maldonado, M. L. Chaim, M. Jino[1988], ”Selecao de Casos de Testes Baseada
nos Critérios Potenciais Usos”, in Proc. II Simpésio Brasileiro de Engenharia de
Software, Canela, RS, Brazil, pp. 24-35, Oct. 1988.

J. C. Maldonado, M. L. Chaim, M. Jino[1989a], ”Arquitetura de uma Ferramenta de
Teste de Apoio aos Critérios Potenciais Usos ”, Proc. XXII Congresso Nacional de
Informa’tica, 85.0 Paulo, SP, Brazil, Sept. 1989.

333

J. C. Maldonado, M. L. Chaim, M. Jino[1989b], ”Feasible Potential Uses Criteria Analy—
sis,” Technical Report - DCA/FEE/UNICAMP - RT/DCA-001/89 - Campinas, SP,
Brazil, 1989.

J. C. Maldonado[1991], “Critérios Potenciais Usos: uma Contribuigaoao Teste Estrutural
de Software”, Doctoral Dissertation, DCA/FEE/UNICAMP - Campinas, SP, Brazil,
1991.

S. C. Ntafos[1984], ”On Required Element Testing,” IEEE Trans. Software Eng., Vol. SE
- 10, pp. 795-803, Nov. 1984.

S. C. Ntafos[1988], ”A Comparison of Some Structural Testing Strategies,” IEEE‘ Trans.
Software Eng., Vol. 14, No. 6, pp. 868-873, Jun. 1988.

A. Podgurski and L. A. Clarke[1990], ”A Formal Model of Program Dependences and Its
Implications for Software Testing, Debugging, and Maintenance,” IEEE Trans. on
Software Eng., Vol. SE - 16, No. 9, pp. 965979, Sept. 1990.

S. Rapps and E. J. Weyuker[1985], ”Selecting Software Test Data Using Data Flow In-
formation,” IEEE' Trans. Software Eng., Vol. SE - 11, pp. 367-375, Apr. 1985.

R. N. Taylor, D. L. Levine and C. D. Kelly[1992], ”Structural Testing of Concurrent
Programs,” IEEE' Trans. on Software Eng., Vol. 18, No. 3, pp. 206-215, March
1992.

E. J. Weyuker[1984], ”The Complexity of Data Flow Criteria for Test Data Selection,”
Information Processing Letters, Vol. 19, No.2, pp. 103-109, Aug. 1984.

E. J. Weyuker[1986], ”Axiomatizing Software Test Data Adequacy,” IEEE' Trans. on
Software Eng., Vol. SE - 12, No. 12, pp. 1128-1138, Dec. 1986.

E. J. Weyuker[1990]v, ”The Cost of Data Flow Testing: An Empirical Study,” IEEE Trans.
on Software Eng., Vol. SE - 16, No. 2, pp. 121-128, Feb. 1990.

H. Ural and B. Yang[1988], ”A Structural Test Selection Criterion,” Information Process—

ing Letters, Vol. 28, pp. 157- 163 Jul. 1988.

Acknowledgment
The authors wish to thank E. J. Weyuker and C. J. P. Lucena for their valuable com-

ments which helped toimprove this paper.

MAX - 320000 READ(x,y)

yZO y<0

Powhy‘ 0 fl pow~-y

POW=0
5frown \
a AUX *- Et abs(X)

AUXgMAx‘AUX>MAX. ‘

PRINT ’OVF’ E ‘— Xpowl 1
’0 0 “‘5‘ ’

a counter
a ..

; POW .— POW - 1 E'm‘x’

Figure 1: Example to Illustrate Potential Uses Criteria Application

335

336

F—

6)

Q

@
Figure 2: Control Flow Graph that Maximizes thé Number of Potential.Du—paths

t decision comands

1*

F

l

E

z

i,

READ (A, X1, X2. X3, X4)

1120
Xzo-A
X4‘-A

MAMA)

A20 A<0
Xgo—ZtA Xifi—ZviA

X39—2tAKA
X4‘—2tA

READ(A)

A20 <0
X2«-3#A X1~3tAX4t—3tA X3+—3#A

PRINT (X1: X2, X3. X4)

Figure 3: An Example Used in the Complexity Analysis

337

I"
» All-paths

l

All-potential—du-paths/ l \All-du—paths Cycle-extended-potential-du-paths All-potential—uses/du\ / \ /Cycle-extended-du-paths All-potential-usm\ '/All-uses/ \All~c-uses/some—p-uses All-p-um/some-c—uses\ / l

All-defs All-p-uses

j [i

All-edges

l

All-nodes

Figure 4: Partial Order for Potential Uses and Data. Flow Criteria Families

(All-paths)*/ \(Cycle-extended-potential-du-paths)* (All-potential—du-paths)*

_
-

_ t i

.(Cycle—extended (All potential uses) (All-potential—uses/du)* (All-du-paths)*
du-paths)*\/\/(All-um)* (All-edges)*

(All-c—uses/ (All-pmses/
some-p~uses) * some-c-uses)* (All-nodes)*

(All-defs)* (All-p-uses)*

Figure 5: Partial Order for Feasible Potential Uses and Feasible Data Flow Criteria Families

339

read(x)
I

x ‘— SQR(x)
x < 0 x >= 0

read(y)

y(K = 0Y

PRINT x/y2 PRINT y

0
@

Figure 6: Example of Infeasible Paths

349

