Composição Centesimal e Solubilidade da Proteína de Cultivares de Soja Especiais para Alimentação Humana no Processamento de Extrato Solúvel de Soja.

SILVA, S.O¹.; OLIVEIRA, E.F¹.; OLIVEIRA, G.B.A².; SILVA, J.B¹.; CAMPOS-FILHO, P.J².; MANDARINO, J.M.G³.; CARRÃO-PANIZZI, M.C³.; ¹Universidade Estadual de Londrina – UEL, Caixa Postal 6001, CEP 86051-990, Londrina PR; ² Universidade Norte do Paraná – UNOPAR; ³ Embrapa Soja

A soja [Glycine max (L) Merril] apresenta elevado valor econômico e agrícola devido a vários fatores, entre eles a sua adaptação em solos e climas diversos, efeitos benéficos à saúde e ampla diversidade de uso, seja na alimentação humana, na alimentação animal, ou como matéria-prima industrial de produtos não-alimentícios (Liu, 1999). O consumo de soja e do extrato hidrossolúvel "leite", vem aumentando devido ao seu elevado valor nutricional, associação na profilaxia de problemas cardio-vasculares e na redução do nível de colesterol. O extrato é uma bebida alternativa para aqueles que são intolerantes à lactose, não contém colesterol e tem menos gordura que o leite de vaca (Nelson & Steinberg, 1978). O objetivo do trabalho foi comparar a composição química dos grãos e dos extratos de soja produzidos de cultivares destinadas à alimentação humana e determinar o índice de solubilidade e dispersibilidade protéica dos grãos.

As análises foram realizadas no Laboratório de Análises Físico-Químicas da Embrapa Soja em Londrina-PR. Foram utilizadas as cultivares de soja: BRS 213 e BRS 257 (desprovidas das enzimas lipoxigenases) (Carrão-Panizzi et al., 2002); BRS 258 e Embrapa 48 (convencionais) e BRS 267 que apresenta sabor suave e adocicado e pode ser utilizada como

hortaliça (Carrão-Panizzi et al., 2006). Os extratos foram produzidos no equipamento SOJAMAC, modelo MJ 720. No processo, os grãos selecionados foram macerados por duas horas a 50 °C. Logo após, a água de maceração foi descartada e os grãos foram moídos com 2 L de água. As análises de umidade, proteínas, lipídeos e cinzas foram realizadas nos grãos e nos extratos de soja, conforme metodologias descritas pelo Instituto Adolfo Lutz (2005). O fator de correção para o cálculo do conteúdo de proteínas foi de 6,25. O teor de carboidratos totais foi calculado por diferença dos demais constituintes. O Índice de Solubilidade de Nitrogênio (ISN) e o Índice de Dispersibilidade Protéica (IDP) analisados nos grãos foram determinados de acordo com a metodologia oficial AOCS (1980).

Na Tabela 1 são apresentados os resultados médios da composição centesimal dos grãos de soja. A composição química das cultivares de soja em estudo aproxima-se dos valores observados por COSTA et al. (1973/74) que encontraram nos grãos maduros 40,7 % de proteína; 22,7 % de óleo; 5,8 % de cinzas e 30,8 % de carboidratos em base seca. Os teores de lipídeos e proteínas são influenciados por uma série de fatores, entre eles, o genótipo da planta, as condições ambientais, o local de plantio e a época da safra (LIU, 1999). O ISN e de IDP são usados como guia prático para saber a funcionalidade da proteína. Quanto maior a solubilidade, menor o grau de desnaturação da proteína, assim, cultivares de soja que apresentam estes requisitos (valores altos de ISN e IDP) podem ser recomendadas para o uso em produtos cárneos, de confeitaria e de chocolataria, sopas, molhos, cremes e bebidas (Van De Kamer & Van Ginkel, 1952). Carrão-Panizzi et al. (2006) verificaram maiores valores dos ISN e IDP para os grãos da BRS 213 cultivados em Ponta Grossa indicando influência de temperaturas elevadas. No presente trabalho foi encontrado maior valor de ISN para a cultivar BRS 258, que também apresentou maior teor de proteínas (Tabela 1). A cultivar Embrapa 48 mostrou o maior valor para o IDP contudo, menor conteúdo protéico tanto nos grãos como no extrato solúvel (Tabelas 1 e 2).

O extrato de soja produzido a partir da cultivar BRS 267 apresentou maior teor de proteínas (Tabela 2) e valores de 74,25 % para o ISN e 75,71 % para o IDP. O menor conteúdo de lipídios foi observado para o extrato da cultivar BRS 257, que também, mostrou menor valor de IDP (50,07 %). ROSENTHAL et al. (2002) trabalhando com cultivares próprias para alimentação humana encontraram nos extratos de soja valores de 2,86 % de proteína e 1,53 % de lipídeos. CIABOTTI et al. (2005) ao produzirem o extrato de soja da cultivar BRS 213 obtiveram um teor de proteínas de 3,26 % porém, a proporção soja : água foi de 1 : 10 enquanto neste trabalho foi usado a proporção de 1 : 20 diminuindo, assim, as concentrações protéicas dos extratos.

Conclusões

Os grãos de soja das cultivares BRS 257, BRS 258 e BRS 267 apresentaram valores superiores a 70 % para o índice de solubilidade protéica e conteúdo de proteína, portanto, podem ser recomendados para o uso em produtos cárneos, de confeitaria e de chocolataria, sopas, molhos, cremes e bebidas. Sugere-se a diminuição da proporção de soja : água no preparo dos extratos para otimizar a composição dos produtos.

Tabela 1 – Valores médios da composição centesimal (%), ISN (Índice de Solubilidade de Nitrogênio) (%) e IDP (Índice de Dispersibilidade Protéica) (%), nos grãos de cultivares de soja.

IDP	50,07	62,47	73,06	75,71	84,85
NSI	78,04	80,25	68,10	74,25	71,43
Carboidratos	28,43	28,79	30,26	31,51	31,43
Cinzas	4,63	4,36	4,42	4,78	4,11
Lipídios	20,50	19,10	19,90	16,10	20,50
Proteínas	40,49	41,76	39,61	41,72	38,08
Umidade	5,95	5,99	5,81	5,89	5,88
Cultivares	BRS 257	BRS 258	BRS 213	BRS 267	Embrapa 48

¹valores são médias de três repetições

Tabela 2 - Valores médios da composição centesimal (%) dos extratos das cultivares de soja¹.

S	0,70				
Cinzas	0,19	0,17	0,21	0,20	0,17
Lipídios	0,79	06'0	1,06	0,95	1,13
Proteínas	1,73	1,80	1,90	2,04	1,69
Umidade	96,59	69'96	96,47	96,37	96,53
Extrato de soja	BRS 257	BRS 258	BRS 213	BRS 267	Embrapa 48

¹valores são médias de três repetições

Referências

AMERICAN OIL CHEMIST'S SOCIETY. Official and tentative methods of the American Oil Chemist's Society. 3.ed. Champaing: AOCS, 1980.

CARRÃO-PANIZZI, M.C.; ALMEIDA, L.A.; MIRANDA, L.C.; KIIHL, R.A.S.; MANDARINO, J.G.M.; ARIAS, C.A.A.; YORONORI, J.T.; ALMEIDA, A.M.R.; TOLEDO, J.F.F. BRS 213 - nova cultivar de soja para alimentação humana. In: CONGRESSO BRASILEIRO DE SOJA, 2.; MERCOSOJA 2002, 2002, Foz do Iguaçu. Perspectivas do agronegócio da soja: resumos. Londrina: Embrapa Soja, 2002. p. 201. (Embrapa Soja. Documentos, 181). Organizado por Odilon Ferreira Saraiva, Clara Beatriz Hoffmann-Campo.

CARRÃO-PANIZZI, M. C.; PÍPOLO, A. E.; ALMEIDA, L. A.; MANDARINO, J. M. G.; KASTER, M.; ARIAS, C. A. A.; CARNEIRO, G. E. de S.; TOLEDO, J. F. F. de; MIRANDA, L. C.; YORINORI, J. T.; DIAS, W. P.; ALMEIDA, A. M. R.; DOMIT, L. A.; BENASSI, V. de T; ARANTES, N. E.; OLIVEIRA, A. C. B. de; BROGIN, R. L.; LAMBERT, E. de S.; BERTAGNOLLI, P. F.; RANGEL, M. A. S.; SOUZA, P. I. de M. de. BRS 267: cultivar de soja para alimentação humana. In: REUNIÃO DE PESQUISA DE SOJA DA REGIÃO CENTRAL DO BRASIL, 28., 2006, Uberaba. **Resumos...** Londrina: Embrapa Soja: Fundação Meridional: Fundação Triângulo, 2006. p. 315-317. (Embrapa Soja. Documentos, 272).

CARRÃO-PANIZZI, M. C.; CRANCIANINOV, W. S.; MANDARINO, J. M. G. Índice de solubilidade de nitrogênio (ISN) e índice de dispersibilidade de proteína (IDP), em cultivares de soja, produzidas em Londrina e em Ponta Grossa. Mesas Científico-Técnicas / Resúmenes Expandidos III Congresso de Soja do Mercosul - **Mercosoja 2006.** Rosário, Argentina, ACSOJA, p.297-299, 2006.

CIABOTTI, S.; BARCELLOS, M.F.P.; MANDARINO, J.M.G.; TARONE, A.G. Avaliações químicas e bioquímicas dos grãos, extratos e tofus de soja comum e de soja livre de lipoxigenases. **Ciência agrotec.**, Lavras, v. 30, n. 5, p. 920-929, set./out., 2006.

COSTA, S.I.; MIYA, E.E.; FUJITA, J.T. Composição química e qualidade organolépticas e nutricionais das principais variedades de soja cultivadas no Estado de São Paulo. **Coletânea do Instituto de Tecnologia de Alimentos**, Campinas, v.5, p.305-319, 1973/74.

INSTITUTO ADOLFO LUTZ. Métodos físico-químicos para análise de alimentos. Brasília: Instituto Adolfo Lutz, IV edicão, p. 1018, 2005.

LIU, K. **Soybeans**: chemistry, technology and utilization. New York: Chapman & Hall, 1999. p. 532.

NELSON, A.I.; STEINBERG, M.P.; WEI, L.S. Illinois process for preparation of soymilk. **Journal of Food Science**, v.41, n.1, p.57-61, 1976.

ROSENTHAL, A.; DELIZA, R.; CABRAL, L.M.C.; CABRAL, L.C.; FARIAS, C. A. A.; DOMINGUES, A. M. Effect of enzymatic treatment and filtration on sensory characteristics and physical stability of soymilk. **Food Control**, Oxford, v.14, n.3, p.187-192, Apr.2002.

VAN DE KAMER, J.H.; VAN GINKEL, L. Rapid determination of crude fiber in cereals. **Cereal Chemistry**, St. Paul, v. 29, n. 4, p. 239-251, July/ Aug. 1952.