

NÍVEIS DE NITROGÊNIO E LÂMINAS DE IRRIGAÇÃO NO RENDIMENTO DO MILHO VERDE¹

MARCO ALMIRO RESENDE MONTEIRO², ÊNIO FERNANDES DA COSTA³, HANȘ RAI GHEIY⁴, e JOSÉ MARIA PINTO⁵

RESUMO - Com o objetivo de estudar o efeito de níveis de nitrogênio e lâminas de irrigação no rendimento do milho verde (*Zea mays* L.) cultivar BR-126, foi conduzido um experimento, numa várzea do Centro Nacional de Pesquisa de Milho e Sorgo, da EMBRAPA, em Sete Lagoas, MG, com quatro tratamentos de irrigação (lâminas equivalentes a 25%, 50%, 75% e 100% da ETR) e seis subtratamentos de N (0, 40, 80, 120, 160 e 200 kg/ha de N). O delineamento experimental foi o de blocos casualizados, com parcelas subdivididas, tendo quatro repetições. O N foi incorporado na forma de uréia, sendo 1/3 no plantio, e o restante, em cobertura, aos 49 dias após o plantio. O sistema de irrigação utilizado foi o de infiltração com sulcos fechados. Foram analisados o peso e o número de espigas comerciais/ha. Considerando-se os efeitos das lâminas de irrigação e dos níveis de N no rendimento do milho verde, uma aplicação de 120 kg/ha de N e uma lâmina de irrigação equivalente a 50% da ETR poderão ser recomendadas para as condições de estudo; entretanto, deve-se salientar a necessidade imprescindível de um estudo econômico mais detalhado desses fatores.

Termos para indexação: Zea mays, sulcos fechados, adubação nitrogenada.

LEVELS OF NITROGEN AND DEPTHS OF IRRIGATION ON THE PRODUCTION OF GREEN CORN

ABSTRACT - To study the effects of different levels of nitrogen and depths of irrigation on the production of green corn (*Zea mays* L.) cultivar BR-126, a field experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) of (EMBRAPA) at Sete Lagoas, MG, Brazil. The study consisted of four irrigation treatments (depths equivalents to 25%, 50%, 75% and 100% of real evapotranspiration) and six nitrogen subtreatments (0, 40, 80, 120, 160 and 200 kg/ha). A split plot randomized block design with four replications was adopted for the experiment. The nitrogen was applied in the form of urea, 1/3 at the time of sowing and the rest 49 days after sowing. The irrigation system utilized was the closed furrow procedure. Weight and number of commercial cobs/ha were the parameter studied. Considering the effects of different depths of irrigation and levels of nitrogen, on the production of green corn, an application of 120 kg N/ha and a depth of irrigation equivalent to 50% of real evapotranspiration may be recommended under similar conditions, although the economic aspects involved need to be analized.

Index terms: Zea mays, closed furrow, nitrogeneous fertilization.

INTRODUÇÃO

O Provárzeas Nacional incorporou até 1988, 835.456 ha de terras irrigadas e/ou drenadas ao processo produtivo (PROVÁRZEAS... 1988) sendo que estas áreas podem ser utilizadas para a produção de milho verde na entressafra, em face dos problemas de escassez e alta de preços e dado que o consumo do milho verde "in natura" ou enlatado está crescendo ano a ano, principalmente nos centros urbanos (O promissor..., 1983).

Embora o Brasil seja o terceiro produtor mundial de milho, com uma produção de 16,46 x 10⁶ t, a sua produtividade média é ainda bastante baixa, cerca de 1.461 kg/ha em relação a 6.865 kg/ha dos Estados Unidos, que é o primeiro produtor mundial (Moura & Oliveira 1980). Para melhorar o rendimento brasileiro, é preciso que sejam observadas as recomendações técnicas - entre outras, sobre irrigação e fertilizantes (Empresa Brasileira de Pesquisa Agropecuária 1982b).

A água é fator de máxima importância nas diferentes fases do ciclo vegetativo da planta, e o seu consumo é variável e proporcional ao seu desenvolvimento, atingindo um máximo na fase de floração e frutificação (Veihmyer & Hendrickson, 1955).

Também a aplicação de fertilizantes é fator de grande importância na produção agrícola, sendo que dos nutrientes essenciais fornecidos através da adubação química, o N é o que recebe maior atenção, uma vez que ele é muito importante no crescimento e

Aceito para publicação em 9 de maio de 1989. Parte da tese de mestrado apresentada pelo primeiro autor.

² Eng. - Agr., M.Sc., EMBRAPA/Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA), Caixa Postal 23, CEP 56300 Petrolina, PE.

³ Eng. - Agr., M.Sc., EMBRAPA/Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS), Caixa Postal 151, CEP 35700 Sete Lagoas, MG.

⁴ Eng. - Quím., UFPB/CCT, Campina Grande, PB.

⁵ Eng. - Agr., M.Sc., EMBRAPA/CPATSA.

desenvolvimento de vegetais, é pouco retido pelos colóides do solo, e facilmente lixiviado, recomendando-se, por isto, a sua aplicação parcelada e em maior proporção que os demais fertilizantes (Malavolta 1976, Godoy Júnior & Graner 1960 e 1961).

Quando se estudam isoladamente os efeitos de lâminas de irrigação e os níveis de N num determinado cultivo, não é possível o estabelecimento das interações destes fatores; assim, torna-se necessário a realização de experimentos em que se estude a interação dos fatores de produção, com o objetivo de obter-se uma utilização mais eficiente da água e dos fertilizantes (Silva et al. sd.).

Este trabalho foi desenvolvido com o objetivo de avaliar os efeitos de diferentes níveis de N e lâminas de irrigação no rendimento do milho verde (*Zea mays* L.) cultivar BR-126, em várzea do Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS), em Sete Lagoas, MG.

MATERIAL E MÉTODOS

O experimento foi conduzido no perfodo de 13 de maio a 29 de setembro de 1983, numa várzea do CNPMS da EMBRAPA (19°28'00'° S, 44°15'99" W e altitude de 732 m), distante 15 km de Sete Lagoas, MG. Segundo a classificação de Köppen, o clima da região está situado na transição entre o Mesotérmico Subtropical Úmido (Cw) e o Tropical Úmido (Aw), apresentando temperatura e precipitação médias anuais de 22,1°C e 1.340 mm, respectivamente, e tendo como mais seco o trimestre de junho, julho e agosto (Empresa Brasileira de Pesquisa Agropecuária 1982a).

O solo da área experimental é classificado como um Aluvial Eutrófico (A2), horizonte A proeminente, textura média com camada arenosa, bem drenado, campo limpo de baixada e de relevo plano (Tabela 1). Suas características químicas e físicas são apresentadas na Tabela 2.

A área experimental foi arada e gradeada, e depois aplicou-se a enxada rotativa, para um melhor destorroamento do solo. As parcelas experimentais foram constituídas de dez linhas de plantio de 6,0 m de comprimento, a espaços de 0,9 m, com áreas total e útil de 54,0 m² e 10,8 m², respectivamente. Os sulcos de irrigação, também a espaços de 0,9 m, eram triangulares, e possuíam, em média, 0,25 m de profundidade e 0,35 m de largura na sua parte superior. Os sulcos, em número de seis, foram abertos apenas nos 4,5 m centrais de cada parcela. Na Fig. 1 é mostrado o croqui experimental com as linhas de plantio e os sulcos de irrigação.

A adubação nitrogenada foi fornecida na forma de uréia e nos níveis de 0, 40, 80, 120, 160 e 200 kg/ha de N, com a aplicação de 1/3 no plantio juntamente com o superfosfato triplo (30 kg/ha de P₂O₅) e o sulfato de potássio e magnésio (30 kg/ha de K₂O), de acordo com as recomendações da Comissão de Fertilidade do Solo do Estado de Minas Gerais (1978), baseadas na análise de fertilidade do solo (Tabela 3), sendo o restante do N aplicado em cobertura aos 49 dias após o plantio.

O plantio foi realizado manualmente, no dia 13 de maio, deixando-se, após o desbaste, uma população de 40.000 plantas/ha. Fez-se a limpeza e fechamento dos sulcos de irrigação, além de duas capinas, uma amontoa, uma pulverização com bico em leque 8004, (80° e 0,4 gl/min) de Lanate L-21,5% para o combate a *Spodoptera frugiperda* (lagarta-docartucho), e várias aplicações para o combate às saúvas.

A irrigação da área experimental até o dia 12 de julho foi realizada uniformemente em toda a área, através do sistema de irrigação por aspersão, com espaçamento de 18 m x 18 m, pressão de serviço de 2,5 atm, bocal duplo ZED-30 (4,5 mm x 5 mm), com precipitação média de

TABELA 1. Descrição do perfil do solo da área experimental*.

Horizonte	Profundidade (cm)	Descrição
A1 _p	0 - 30	Bruno escuro (7,5 YR 3/2); franco argilo-arenoso; pequena e média moderada blocos sub-angulares; muitos poros pequenos; ligeiramente duro; friável, ligeiramente plástico; ligeiramente pegajoso; transição clara e plana,
A3	30 - 45	Bruno escuro (7,5 YR 4/2); franco argilo-arenoso; média moderada blocos sub-angulares, muitos poros pequenos, ligeiramente duro; friável; ligeiramente plástico; ligeiramente pegajoso; transição gradual e plana.
II C1	45 - 70	Bruno (7,5 YR 5/4); franco argilo-arenoso; média moderada que se desfaz em pequena e muito pequeno blocos sub-angulares; muitos poros pequenos; friável; ligeiramente plástico; ligeiramente pegajoso; transição abrupta e plana.
III C2	70 - 100	Bruno (7,5 YR 5/4); areia franca, sem estrutura; solto; muito friável; não plástico; não pegajoso; transição abrupta e plana.
IV C3	100 - 110+	Bruno amarelado (10 YR 5/8); franco argiloso-siltoso; maciço, que se desfaz em muito pequeno fraco; blocos sub-angulares muitos poros muito pequenos; plástico; pegajoso.

^{*} Descrição e amostragem feitas por Sobral Filho em 05.83.

9,38 mm/hora. Após este período, utilizou-se o sistema de irrigação por infiltração com sulcos fechados, com a água sendo conduzida até a área experimental por tubulação de aço zincado sob pressão (2,5 atm), e distribuída nas parcelas por tubos janelados. As lâminas a serem aplicadas foram calculadas através das equações 1 e 2, com base nos dados de eva-

poração do tanque Classe A da Estação Meteorológica Principal de Sete Lagoas.

$$ETP = E_{v} \cdot C$$
 (1)

$$ETR = ETP \cdot K_{c}$$
 (2)

TABELA 2. Características químicas e físicas do solo da área experimental.

Horizonte	Alp	A3	II C1	III C2	IV C3
Profundidade (cm) pH (1:2,5)	0 - 30	30 - 45	45 - 70	70 - 100	100 - 110
Água	6,0	6,1	6,4	6,4	6,4
KCI 1N	5,0	4,9	5,0	5,1	5,2
Complexo sortivo (meq/100 g)					
Cálcio	5,7	5,3	3,7	1,0	3,5
Magnésio	0,3	0,4	0,2	0,1	0,2
Potássio	0,26	0,12	0,08	0,06	0,11
Sódio	0,02	0,01	0,01	0,02	0,02
Valor S (soma)	6,3	5,8	4,0	1,2	5,8
Alumínio	0	0	0	0	0
Hidrogênio	3,8	3,4	1,9	0,6	1,0
Valor T (soma)	10,1	9,2	5,9	1,8	6,8
Valor V (sat. de bases) %	62	63	68	67	85
Fósforo assimilável ppm	15	1			
Carbono orgânico %	1,32	1,02	0,44	0,08	0,17
N %	0,11	0,10	0,06	0,03	0,05
C/N	12	10	7	3	3
Ataque por H ₂ SO ₄ (1:1)					
SiO ₂	9,7	13,7	14,9	6,0	18,7
Al ₂ O ₃	7,8	11,5	11,9	4,7	14,5
Fe ₂ O ₃	2,7	3,9	4,1	1,8	4,8
TiO ₂	0,21	0,28	0,28	0,13	0,36
SiO ₂ /AlO ₃ (ki)	2,11	2,03	2,13	2,17	2,19
SiO ₂ /Fe ₂ O ₃ (kr)	1,73	1,67	1,74	1,74	1,81
Al ₂ O ₃ /Fe ₂ O ₃	4,53	4,62	4,56	4,08	4,74
Umidade equivalente	19,4	21,6	20,8	8,2	26,4
Frações da amostra total %					
Calhaus 20 mm	0	0	0	0	0
Cascalho 20 - 2 mm	3	1	1	2	tr.
Terra fina 2 mm	97	99	99	98	100
Comp. granulom. terra fina %					
Areia grossa 2-0,20 mm	43	28	27	68	15
Areia fina 0,20 - 0,05 mm	10	8	14	8	5
Silte 0,05 - 0,002 mm	25	36	34	15	54
Argila 0,002 mm	22	28	25	9	26
Argila dispersa em água %	17	24	22	8	24
Grau de floculação %	23	14	12	11	8
% silte/% argila	1,14	1,29	1,36	1,67	2,08
Densidade aparente g/cm²	1,42 ^a	1,56 ^b	men.		•
Capacidade de campo %	23,7 ^C				
Ponto de murchamento %	13,0 ^C				

a = camada de 0 - 20 cm; b = camada de 20 - 40 cm; c = camada de 0 - 40 cm.

onde:

ETP = evapotranspiração potencial em mm

 E_{v} = evaporação do tanque Classe A em mm

C = constante do tanque Classe A = 0,8

ETR = evapotranspiração real em mm

K_C = constante da cultura, que para o milho verde foi considerada 0,5 da emergência até aos 24 dias; 0,9 dos 24 aos 90 dias e de 1,2 dos 90 dias até a colheita.

Na Tabela 4 encontram-se os dados referentes ao cálculo de ETR, e as lâminas de irrigação aplicadas no tratamento L4. Com exceção das duas irrigações iniciais, em que foram utilizadas lâminas superiores à ETR para auxiliar a germinação, todas as demais foram baseadas na ETR acumulada, menos a precipitação pluvial ocorrida no período.

O delineamento experimental adotado foi o de blocos casualizados, em parcelas subdivididas, com quatro repetições, tendo quatro tratamentos de irrigação (L) com lâminas

equivalentes a 25%, 50%, 75% e 100% da ETR, e seis subtratamentos de níveis de N com aplicação de 0, 40, 80, 120, 160 e 200 kg/ha de N.

Foi estudado estatisticamente o efeito das lâminas de irrigação e dos níveis de N sobre o peso e número de espigas comerciais, sendo consideradas comerciais as espigas com mais de 60% de granação e peso com palha superior a 100 g. Efetuou-se a análise de variância dos dados através do teste F (peso e número de espigas, transformados, respectivamente, em kg/ha e \sqrt{x}), e comparação das médias pelo teste de Duncan ao nível de 5% de probabilidade (Pimentel-Gomes 1976). Foi também realizada a análise de regressão dos dados, e traçados mapas de isoquantas de acordo com metodologia descrita por Draper & Smith (1981).

RESULTADOS E DISCUSSÃO

São apresentadas, na Tabela 5, as análises de variância e de regressão múltipla, da produção de espigas comerciais com palha obtidas sob os diferentes

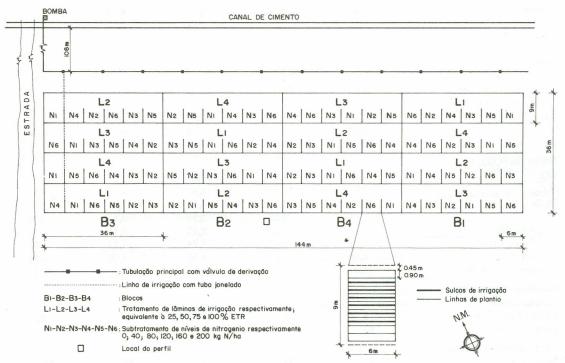


FIG. 1. Croquí da área experimental.

TABELA 3. Análise de fertilidade do solo da área experimental.

			and the second second second			
pH (ågua)	P	K	Ca	Mg meq _• /100 g	Al	M.O. %
6,0	69	73	6,04	0,54	0	1,85
6,1	36	57	5,03	0,43	0	1,35
	(ågua) 6,0	(ågua) pr	(ågua) ppm	(ågua) ppm 6,0 69 73 6,04	(água) ppm meq./100 g	(ågua) ppm meq./100 g

TABELA 4. Evapotranspiração real, precipitação e lâminas de irrigação aplicadas para o tratamento, L4.

Períodos	E _V (mm)	С	ETP (mm)	Кс	ETR (mm)	P (mm)	L4 (mm)
13.05 a 18.05	21,24	0,8	17,0	0,5	9,0		37,52
19.05 a 05.06	53,02	0,8	42,0	0,9	38,0	46,8	28,14
06.06 a 14.06	33,42	0,8	27,0	0,9	24,0		
15.06 a 22.06	25,16	0,8	20,0	0,9	18,0		28,14
23.06 a 30.06	25,94	0,8	21,0	0,9	19,0		18,76
01.07 a 11.07	42,24	0,8	34,0	0,9	31,0		18,76
12.07 a 26.07	46,64	0,8	37,0	0,9	33,0	19,2	32,83
27.07 a 03.08	34,00	0,8	27,0	0,9	25,0		16,00
04.08 a 10.08	30,54	0,8	24,0	0,9	22,0		25,00
11.08 a 16.08	27,19	0,8	22,0	1,2	26,0		25,00
17.08 a 21.08	28,85	0,8	23,0	1,2	27,5	1,5	25,00
22.08 a 26.08	24,34	0,8	19,0	1,2	23,0		25,00
27.08 a 30.08	25,90	0,8	21,0	1,2	25,0		25,00
31.08 a 04.09	26,78	0,8	21,5	1,2	26,0		25,00
05.09 a 22.09	78,80	0,8	63,0	1,2	76,0	85,3	25,00
Total		11111	00	critico sa g	422,5	152,8	355,15

TABELA 5. Análises de variância e de regressão múltipla, da produção de espigas comerciais com palha obtidas sob diferentes níveis de nitrogênio e lâminas de irrigação.

Fonte de variação	GL	SQ	QM	F
Bloco	3	148673069		
Irrigação	3	434935543	144978514	14,76**
Resíduo (a)	9	88386012	9820668	
Parcela	15	671994625		
Nitrogênio	5	364884069	72976813	16,37**
Interação I x N	15	157821480	10521432	2,36**
Resíduo (b)	60	267460359	4457672	
Total	95	1462160534		
Regressão	5	150589000	30117900	9,92**
Erro	18	54669700	3037210	
Total	23	205258700		

/ariável	Coeficiente	Teste t	Erro padrão
a	-2602,60	-1,08 NS	2043,34
1	247,69	3,32**	74,64
N	64,85	2,96**	21,92
 ²	-1,83	-3,22**	0,57
N^2	-0,31	-3,44**	0,09
IN	0,25	1,35 NS	0,19

CV = 22,20%

s = 1742,76

 $r^2 = 0,734$

NS = não-significativo

^{** =} significativo ao nível de 1% de probabilidade.

tratamentos; suas produtividades médias se encontram na Tabela 6, onde se observa que as lâminas de irrigação equivalentes a 50%, 75% e 100% da ETR não apresentaram diferenças significativas entre si e foram superiores à menor lâmina, proporcionando um aumento médio de 94.4% na produção. Por outro lado, a incorporação de N aumentou a produção, em média, 103%, sendo que o nível de 120 kg/ha de N apresentou a maior produção para a média das lâminas de irrigação, não diferindo estatisticamente dos níveis de 80 e 160 kg/ha de N. As maiores produções sob os tratamentos de irrigação e N foram em consequência de um melhor desenvolvimento das plantas sob esses tratamentos. Deve-se salientar que Nunes et al. (1977), Pereira Filho (1977) e Corrêa et al. (1983) também encontraram aumentos na produção com o incremento das dosagens de N.

Uma análise cuidadosa da Tabela 6 mostra que os benefícios do N na produção, até certo ponto, estão relacionados com as lâminas de irrigação aplicadas, e que no tratamento de irrigação mais crítico as produções obtidas foram menores e não apresentaram efeitos significativos para a incorporação de N. Esses resultados indicam que, nos cultivos onde a água for o fator limitante, a incorporação de fertilizantes nitrogenados praticamente não afetará a produção. A maior produção de espigas (14.194 kg/ha) foi obtida com uma lâmina de irrigação equivalente a 50% da ETR e uma aplicação de 160 kg/ha de N, enquanto Busquets (1954) encontrou a maior produção com 200 kg/ha de N, e Reddy et al. (1980) tiveram a eficiência de uso da água, na cultura do milho, aumentada até a dosagem de 180 kg/ha de N.

O estudo de regressão e os resultados do teste t para os parâmetros da equação mostram um efeito altamente significativo, linear e quadrático para as lâminas de irrigação e níveis de N (Tabela 5), e a equação de regressão Y = -2.602,60 + 247,69 I + 64,85 N - 1,83 I² - 0,32 N² + 0,25 IN, significativa ao nível de 1% de probabilidade, demonstra que 73,4% da variação na produção é referente aos níveis de N e às lâminas de irrigação, e que em condições semelhantes de clima e solo, essa equação poderá ser utilizada satisfatoriamente para fins de prognósticos. Na Fig. 2 é apresentado um mapa de

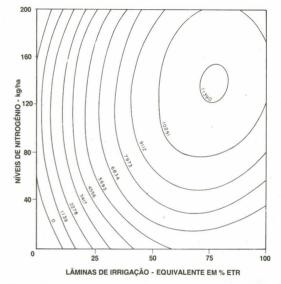


FIG. 2. Mapa de isoquantas para a produção de espigas comerciais com palha (kg/ha) em função dos níveis de nitrogênio e lâminas de irrigação.

TABELA 6. Produções médias* de espigas comerciais com palha sob os diferentes níveis de nitrogênio e lâminas de irrigação.

h litura - e - i -		8.8.8 all a			
Nitrogênio	25	50	75	100	— Média
kg/ha			kg/ha		
0	4270 a A	5595 d A	4204 c A	4178 c A	4562 d
40	6036 a A	8556 cd A	8168 b A	8579 b A	7835 c
80	4723 a B	10128 bc AB	10146 ab AB	11574 a A	9143 abc
120	5884 a B	12940 ab A	11983 a AB	11070 ab AB	10470 a
160	4459 a B	14194 a A	9549 ab AB	12113 a A	10079 ab
200	4413 a B	12316 ab A	8786 b AB	9574 ab AB	8772 bc
Média	4964 B	10622 A	8806 A	9515 A	

^{*} Médias de 4 repetições. Letras iguais, maiúsculas na mesma linha ou minúsculas na mesma coluna, não diferem entre si pelo teste de Duncan ao nível de 5% de probabilidade.

isoquantas da produção de espigas em função dos níveis de N e das lâminas de irrigação, onde se estima uma produção máxima de 11.390,5 kg/ha de espigas, para uma dosagem de 137 kg/ha de N e uma lâmina equivalente a 77% da ETR.

As análises de variância e de regressão múltipla para o número de espigas comerciais/ha obtidas sob os diferentes tratamentos encontram-se na Tabela 7. Na Tabela 8, temos os números médios de espigas comerciais, onde se verifica também que as lâminas de irrigação, equivalentes a 50%, 75% e 100% da ETR, não apresentaram diferenças significativas entre si e foram superiores em, aproximadamente, 67,2% à menor lâmina, enquanto a aplicação de N elevou, em média, 65,4%, quando comparada com a testemunha, onde o número de espigas foi significativamente inferior ao dos demais tratamentos. Embora o maior número de espigas/ha tenha sido encontrado no nível de 120 kg/ha de N, este trata-

mento não diferiu estatisticamente dos níveis de 80 e 160 kg/ha de N. Esses resultados explicam, em parte, os maiores pesos de espigas encontrados nos níveis de 80, 120 e 160 kg/ha de N, como também a existência de uma alta correlação (r = 0,989) entre os dois parâmetros. No presente estudo, para a lâmina de irrigação equivalente a 25% da ETR o maior número de espigas foi obtido com 40 kg/ha de N. enquanto para os tratamentos com 50%, 75% e 100% da ETR os níveis de 160, 120 e 80 kg/ha de N. respectivamente, proporcionaram as maiores produções. Mostram, assim, os resultados, que o nível da adubação nitrogenada depende da umidade do solo ou da quantidade de água a ser aplicada. Em sua pesquisa, Silva et al. (sd.) encontraram a maior produção para uma utilização de 50% da água disponível do solo e uma aplicação de 300 kg/ha de N. Os resultados do presente trabalho evidenciam que, para as lâminas superiores a 50% da ETR, o nível ótimo

TABELA 7. Análises de variância e de regressão múltipla, do número de espigas comerciais/ha obtidas sob diferentes níveis de nitrogênio e lâminas de irrigação.

Fonte de variação	GL	SQ		QM	F	
Bloco	3	10,06	_	_	_	
Irrigação	3	37,12		12,37	14,77**	
Resíduo (a)	9	7,54		0,84		
Parcela	15	54,72				
Nitrogênio	5	25,38		5,08	12,72**	
Interação I x N	15	14,24		0,95	2,38**	
Resíduo (b)	60	23,94		0,40		
Total	95	118,28				
Regressão	5	1,56 x 10 ⁹		3,11 x 10 ⁸	8,65**	
Епто	18	6,48 x 10 ⁸		$3,60 \times 10^7$	W 10.11	
Total	23	$2,20 \times 10^9$				

CV(a) = 15,58%

CV(b) = 10.75%

Média = 33,195 esp./ha

Variável		Coeficiente	Teste t	Erro padrão
a	E compression	-1285,02	-0,16 NS	8274,47
192 181 200		851,51	3,31**	256,98
N		203,67	2,70*	75,47
l ²		-6,23	-3,18**	1,96
N^2	*	-1,03	-3,35**	0,31
IN		0,82	1,29 NS	0,64

CV = 18,08%

s = 6000.15

 $r^2 = 0,706$

NS = não-significativo

^{* =} significativo ao nível de 5% de probabilidade.

^{** =} significativo ao nível de 1% de probabilidade.

TABELA 8. Números médios* de espigas comerciais/ha obtidas sob diferentes níveis de nitrogênio e lâminas de irrigação.

Nitrogênio		Lâmina de irrigação equivalente - % ETR							
	25	50	75	100	Média				
kg/ha			kg/ha						
0	19444 b A	24768 c A	20139 c A	21296 b A	21412 c				
40	28935 a A	32639 bc A	33333 b A	35648 a A	32639 b				
80	21065 ab B	38194 ab A	40509 ab AB	43518 a A	35822 ab				
120	20074 ab B	47222 a A	45370 a A	40509 a AB	39294 a				
160	18519 b B	47917 a A	34722 b AB	42824 a A	35996 ab				
200	19907 b B	44213 a A	33333 b AB	35879 a AB	33333 b				
Média	21991 B	39159 A	34568 A	36612 A					

^{*} Médias de 4 repetições. Letras iguais, maiúsculas na mesma linha ou minúsculas na mesma coluna, não diferem entre si pelo teste de Duncan ao nível de 5% de probabilidade.

de N situa-se entre 80 e 160 kg/ha de N e mostram a necessidade imprescindível de um estudo econômico mais detalhado.

O estudo de regressão múltipla mostrou efeitos significativos (lineares e quadráticos) de lâminas de irrigação e níveis de N para o número de espigas comerciais (Tabela 7) e a equação de regressão múltipla $Y=-1.285,02+851,51~I+203,67~N-6,23~I^2-1,03~N^2+0,82~IN$, significativa ao 1% de probabilidade, atribui uma variação de 70,6% no número de espigas aos níveis de N e lâminas de irrigação. É apresentado, na Fig. 3, o mapa de isoquantas para níveis de N e lâminas de irrigação, onde se estima que o número máximo de 44.724 espigas comerciais/ha, poderá ser alcançado com uma lâmina de irrigação equivalente a 77% da ETR e um nível de 130 kg/ha de N.

CONCLUSÕES

- 1. As maiores produções (14.194 kg/ha e 47.917 espigas comerciais/ha) ocorreram para uma aplicação de 160 kg/ha de N e uma lâmina de irrigação equivalente a 50% da ETR, demonstrando uma alta correlação (r = 0,989) entre o peso e o número das espigas comerciais.
- 2. O número de espigas comerciais/ha apresentou um aumento de aproximadamente 67,2%, devido às lâminas de irrigação, e uma elevação média de 65,4% com as aplicações de N em relação aos tratamentos mais críticos.
- Considerando-se os efeitos das lâminas de irrigação e dos níveis de N no rendimento do milho ver-

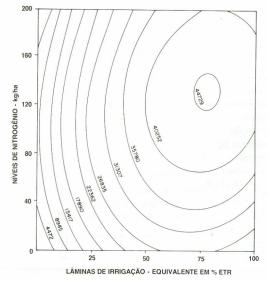


FIG. 3. Mapas de isoquantas para o número de espigas comerciais/ha em função dos níveis de nitrogênio e lâminas de irrigação.

de, uma aplicação de 120 kg/ha de N e uma lâmina de irrigação equivalente a 50% da ETR poderão ser recomendadas para as condições do estudo; entretanto, salienta-se a necessidade imprescindível de um estudo econômico mais detalhado desses fatores.

AGRADECIMENTOS

À EMBRAPA, pela oportunidade oferecida para o aperfeiçoamento profissional. Ao Centro Nacional de Pesquisa de Milho e Sorgo, pelo apoio fornecido durante o desenvolvimento do experimento.

Ao Dr. Augusto Ramalho de Morais, pela eficiente colaboração na análise estatística dos resultados.

REFERÊNCIAS

- BUSQUETS, M.A. La densidad de plantación y el abonado en el híbrido US-13. An. Estac. Exp. Aula Dei, España, 3:261-5, 1954.
- COMISSÃO DE FERTILIDADE DO SOLO DO ESTADO DE MINAS GERAIS, Lavras, MG. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 3ª Aproximação. Belo Horizonte, EPAMIG, 1978. 80p.
- CORRÊA, L.A.; CRUZ, J.C.; SILVA, J.; OLIVEIRA, A.C. de; VIANA, A.C.; SILVA, A.F. da. Competição de cultivares, níveis de adubação e densidade de milho, em três regiões do Estado de Minas Gerais. Sete Lagoas, EMBRAPA-CNPMS, 1983. 15p. (EMBRAPA-CNPMS. Comunicado Técnico, 4)
- DRAPER, N.R. & SMITH, H. Applied regression analysis. 2.ed. New York, J. Wiley, 1981. 709p.
- EMPRESA BRASILEIRA DE PESQUISA AGROPE-CUÁRIA. Centro Nacional de Pesquisa de Milho e Sorgo, Sete Lagoas, MG. **Boletim agrometeorológico**; cinqüenta anos de observações meteorológicas 1931/80. Brasília, 1982a. 33p. (EMBRAPA-CNPMS. Boletim Agrometeorológico, 4)
- EMPRESA BRASILEIRA DE PESQUISA AGROPE-CUÁRIA. Centro Nacional de Pesquisa de Milho e Sorgo. Sete Lagoas, MG. Recomendações técnicas para a cultura do milho. Sete Lagoas, 1982b. 53p. (EMBRAPA-CNPMS. Circular Técnica,6)
- GODOY JÚNIOR, C. & GRANER, E.A. Milho: adubação mineral nitrogenada. R. Agric., Piracicaba, 35:298-310, 1960.

- GODOY JÚNIOR, C. & GRANER, E.A. Milho: adubação mineral nitrogenada. R. Agric., Piracicaba, 36:225-32, 1961.
- MALAVOLTA, E. **Manual de Química Agrícola.** São Paulo, Agronômica Ceres, 1976. 528p.
- MOURA, P.A.M. de & OLIVEIRA, A.C.S. de. Aspectos econômicos da cultura do milho. Inf. agropec., Belo Horizonte, 6:3-8, 1980.
- NUNES, M.R.; BORGES, L.C.V.; KIELMANN, H.J.; LEITE, D.R. Efeito de níveis de nitrogênio e densidade de plantas no rendimento de uma cultivar de milho (*Zea mays* L.). in: EMPRESA GOIANA DE PESQUISA AGROPECUÁRIA, GOIÂNIA, GO. **Relatório Técnico UEPAE**, 1; resumo de pesquisas 1974 a 1976. Goiânia, 1977. p.58-9.
- O PROMISSOR mercado do milho verde. J. Agroceres, São Paulo, 11(124):4-5, maio 1983.
- PEREIRA FILHO, I.A. Comportamento dos cultivares de milho (Zea mays L.) "Piranão" e "Centralmex" em diferentes condições de ambientes, espaçamentos e níveis de nitrogênio. Lavras, MG, ESAL, 1977. 84P. Tese Mestrado.
- PIMENTEL-GOMES, F. Curso de Estatística Experimental. 6.ed. Piracicaba, Nobel, 1976. 430p.
- PROVÁRZEAS E PROFIR atingem a meta de um milhão de hectares irrigados. J. Irrig., 1(7):8, jul. 1988.
- REDDY, M.D.; MURTHY, I.K.; REDDY, K.A.; VENKA-TACHARI, A. Consumptive use and daily evapotranspiration of corn under different levels of nitrogen and moisture regimes. Plant Soil, The Hague, 56:143-7, 1980.
- SILVA, A. de S.; SILVA, M.A. da; SOUZA, F. de; KIDMAN, D.C.; NUNES, R.F. de M. Interação entre umidade do solo, nitrogênio e densidade de plantio na produção do milho. Petrolina, PE, EMBRAPA/CPATSA, sd. 12p. Mimeografado.
- VEIHMYER, F.J. & HENDRICKSON, A.H. Does transpiration decrease as the soil moisture decreases? **Trans. Am. Geophys. Union.**, **36**:425-48, 1955.