LIMITAÇÕES DA FERTILIDADE DO SOLO E USO DE FERTILIZANTES E COMPOSTO ORGÂNICO NO RESFLORESTAMENTO DAS ÁREAS DE CLAREIRAS DO POLO PETROLIFERO DO URUCU, AMAZONAS

Adônis Moreira, Embrapa Pecuária Sudeste, São Carlos, SP - E-mail: adonis@cppse.embrapa.br; Wenceslau Geraldes Teixeir, 2 Embrapa Amazônia Ocidental, Manaus, AM - Email: lau@cpaa.embrapa.br;

Gilvan Coimbra Martins, gilvan@cpaa.embrapa.br

Introdução

província petrolífera Base Na Operacional Geólogo Pedro de Moura (BOGPM), localizada as margens do rio Urucu no municipio de Coari - AM, são encontradas areas alteradas para prospecção de gás natural e de petróleo e, principalmente, para retirada de grandes quantidades de terra para construção de estradas, que propiciam manutenção aos dutos e infraestrutura para na realização dos trabalhos. Nas areas alteradas após a retirada da terra, e em muitas vezes a desposição de material é feito reflorestamento com espécies nativas da região.

Apesar da exuberância, a floresta Amazônica está estabelecida em grande parte, em solos pobres em nutrientes minerais, o que torna sua manutenção dependente dos ciclos biogeoquímicos dos excassos nutrientes. Desse modo, os nutrientes no processo de ciclagem, passam do meio biótico para o abiótico e vice-versa, sendo esse processo proveniente equilíbrio dinâmico (Poggiani & Schumacher, 2004).

Com a remoção da floresta esse ciclo é quebrado, alterando a qualidade e a quantidade de matéria orgânica do solo (Malavolta, 1987), havendo diminuição da atividade da biomassa microbiana. principal responsável pela ciclagem de nutrientes e pelo fluxo de energia dentro do solo, e que exerce influência na liberação e na imobilização de nutrientes (Jenkinson & Ladd, 1981). Os efeitos dessa perturbação nas propriedades do solo interferem na capacidade de regenerar a floresta ou mesmo a introdução de outras plantas (Nascimento & Homma, 1984).

O objetivo deste trabalho foi comparar a fertilidade do solo nas áreas cobertas pela floresta original e a solo exposto na superfície das clareiras com diferentes idades.

Material e Métodos

Os trabalhos foram realizados na BOGPM - Base Operacional Geólogo Pedro de Moura, Petrobras-BR, situada nas coordenadas geográficas 04°53'S e 65°11'W, município de Coari, Estado do Amazonas.

Nesta região um trabalho de mapeamento semidetalhado está em andamento, entretanto sabe-se da existência de áreas com Argissolos, Plintossolos, Latossolos e Gleissolos. O clima predominante é o tropical úmido, tipo Afi pela classificação de Köppen, apresentando chuvas relativamente abundantes durante todo o ano (média de 2.518 mm), sendo que a quantidade no mês de menor precipitação é sempre superior a 60 mm (Arruda, 2005). A temperatura média anual da região é de aproximadamente 26°C (Vieira & Santos, 1987).

Áreas de floresta primária adjacente as Jazidas 10 e 21 e as áreas alteradas localizadas nas clareiras 18, 21 e 22 foram amostradas e comparadas. A correção da acidez foi feita com de duas toneladas de calcário dolomítico e adubação padrão no plantio das mudas em covas de 40x40x40 cm, feitas com brocas mecanizadas, e posterior aplicação dois litros de composto orgânico, 200 gramas do formulado 10-30-10 (N-P₂O₅-K₂O) e 50 g de sulfato de magnésio (Relatório Parente Andrade, np).

Foram coletadas amostras de solo em diferentes profundidades. Depois de coletadas, as amostras foram secas ao ar,

Limitações da fertilidade do

peneiradas e levadas ao laboratório para determinação do pH (água), Carbono e Matéria Orgânica (Walkley-Black), P e K disponível (extrator Mehlich 1) e Ca, Mg e Al trocável (extrator KCl 1,0 mol L⁻¹) e H+Al trocável (extrator Ca(CH₃COO)₂.H₂O 0,5 mol L⁻¹), Cu, Fe, Mn e Zn disponível (extrator Mehlich 1), conforme metodologias descritas pela Embrapa (1997). O teor de carbono orgânico foi transformado em matéria orgânica total (MOS), multiplicando pelo fator 1,724 (Embrapa, 1997).

Resultados e Discussão

Nas Tabelas 1 e 2 são apresentados os resultados de fertilidade do solo em diferentes profundidades de quatro áreas alteradas (jazidas). Os resultados mostraram que, independentemente das profundidades e do teor de matéria orgânica do solo, a aplicação de corretivos, fertilizantes e de composto não acarretou em aumento da fertilidade, ficando os teores de P e K disponível e Ca e Mg trocável, abaixo das faixas consideradas adequadas por Ribeiro et al. (1999), com os extratores Mehlich 1 e KCl 1,0 mol L⁻¹. Segundo Demattê (1988), os solos das regiões apresentam carência de bases

Agradecimentos

À Petrobras pelo apoio logístico e suporte financeiro para realização deste trabalho.

Bibliografia Citada

ARRUDA, W. da C. Estimativa dos processos erosivos na base de Operações Geólogo Pedro de Moura – Urucu – Coari – AM. UFAM, Manaus, 2005.80p. (Dissertação de mestrado)

DEMATTÊ, J.L.I. 1988. Manejo de solos ácidos dos trópicos úmidos — Região Amazônica. Campinas: Fundação Cargill, 215p.

EMBRAPA. 1997. Manual de métodos de análise de solo. Rio de Janeiro: CNPS/EMBRAPA, 212p.

JENKINSON, D.S.; LADD, J.N. 1981.

trocáveis, sendo os sítios de troca ocupados, quase que exclusivamente por hidrogênio e alumínio.

Os altos teores de matéria orgânica na camada superficial do solo não proporcioram efeito tampão do pH e no aumento na disponibilidade, em especial dos micronutrientes (Tabelas 1 e 2), que exceto o Fe disponível, os teores de Cu, Mn e Zn disponível, também ficaram abaixo das faixas consideradas adequadas por Ribeiro et al. (1999).

Tais resultados corroboram os obtidos por Moreira & Costa (2004), e mostram que em decorrência da alteração do ambiente ocasionada pela retirada de toda camada superficial do solo, é primordial um aporte inicial com maiores quantidades de corretivos e fertilizantes, de forma a construir um solo com menor toxidez de alumínio, menor acidez e maior disponibilidade de nutrientes. Isto certamente aumentaria a sobrevivênica das espécies, e a eficiência da ciclagem de nutrientes que na situação de teores muito baixos torna-se ineficiente e lenta. ocasionando em baixo desenvolvimento das plantas, dificultando o processo de regeneração natural da floresta implantada.

Microbial biomass in soil measurement and turnover. In: PAUL, E.A.; LADD, J.N. (Eds.). *Soil Biochemistry*. New York: Dekker, v.5,

MALAVOLTA, E. 1987. Fertilidade dos solos da Amazônia. In: VIEIRA, L.S.; SANTOS, P.C.T.C. (Eds.) Amazônia; seus solos e outros recursos naturais. São Paulo: Agronômica Ceres, p.374-416.

MOREIRA, A.; COSTA, D.G. 2004. Dinâmica da matéria orgânica na recuperação de clareiras da floresta amazônica. *Pesquisa Agropecuária Brasileira*, v.39, n.10, p.1013-1019.

NASCIMENTO, C.; HOMMA, A. 1984. *Amazônia: meio ambiente e tecnologia agrícola*. Belém: Embrapa/CPATU, 282p. POGGIANI, F.; SCHUMACHER, M.V. 2004. Nutrient cycling in native forests. In:

GONÇALVES, J.L.M.; BENEDETTI, V. (Eds.). *Forest nutrition and fertilization*. Piracicaba: IPEF, p.285-306.

RIBEIRO, A.C.; GUIMARÃES, P.T.G.; ALVAREZ, V.H. 359p.Recomendações para uso de corretivos e fertilizantes em Minas Gerais, 5^a aproximação. Viçosa: SFSEMG, 1999.

VIEIRA, L.S.; SANTOS, P.C.T.C. 1987. *Amazônia; seus solos e outros recursos naturais*. São Paulo: Editora Ceres, 416p.

Tabela 1. Resultados de pH, P, K, Ca, Mg, H+Al e matéria orgânica de áreas alteradas e da sob floresta primaria na BOĜPM - Coari - AM

Jazidas/profundidade	N	рН	P	K	Ca	Mg	H+Al	M.O.
		- água -	mg	dm ⁻³	cmol _c dm ⁻³			- g kg ⁻¹ -
21 (Floresta)	(1)					-iii		
0-5cm		4,03	2	63	0,05	0,11	13,48	82.77
5-50cm		4,09	1	34	0,03	0,02	8,61	17,82
10 (Floresta)	(1)							
0-25cm		4,06	1	21	0,03	0,06	10,75	28,98
25-30cm		3,84	1	40	0,04	0,07	12,84	49.20
18 (Reflorestada em 10/1999)	(3)							
0-10cm		5,01	4	25	0,38	0,05	8,61	12,63
15-30cm		5,11	0	20	0,21	0,01	8,26	5,74
21 (Reflorestada em 10/2003)	(2)							
0-10cm		6,56	1	30	2,13	0,17	3,00	9,15
15-30cm		5,93	0	22	0,95	0,09	4,84	3,44
22 (Reflorestada em 03/1994)	(3)							
0-10cm		4,61	2	42	0,03	0,03	10,31	16,77
15-30cm		4,88	0	23	0,02	0,04	7,77	5,79
Ribeiro et al. (1999) ⁽¹⁾		5.5 - 6.0	8.1 - 12.0	71 - 120	2.4 - 4.0	0.9 - 1.5	$5,0-9,0^{(1)}$	4,0 - 7,0
número entre parênteses	repres	senta a quanti	dade de amo	stra por clare	eira; M.O. maté	éria orgânica		12.
1)teor considerado alto								
1)teor considerado Bom, e			1 (PeKdi	sponível), K	.Cl 1,0 mol 1	L' (Ca e Mg	g trocável), ace	etato de cál
H+Al trocável) e Walkley	Втаск	(M.O.)						
abela 2. Teores de Al,		e, Mn, e Zn	de áreas alt	teradas e da	sob floresta	a primaria n	ia BOGPM - 0	Coari - AN
Jazidas/profundidade	NI	Al		Cu	Fe		Mn	ZI

	- cmol _c dm ⁻³ -		mg	dm -3	
	1)				
0-5cm	3,66	0,27	241	1,72	1,0
5-50cm	3,49	0,33	267	1,43	0,9
10 (Floresta)	1)				
0-25cm	4,49	0,38	208	0.84	0.60
25-30cm	4,64	0,43	211	1,01	0.97
18 ((Reflorestada em (3 10/1999)	3)				
0-10cm	4,53	0,21	21	0,26	0.44
15-30cm	5,62	0,25	9	0,21	0,37
21 ((Reflorestada em (2 10/2003)	2)				
0-10cm	1,55	0,63	92	1,31	1.31
15-30cm	3,35	0,20	49	0,5	0,44
22 ((Reflorestada em (3 03/1994)	3)				
0-10cm	6,68	0,30	45	0.17	0.69
15-30cm	6,20	0,31	14	(),13	(),4()
Ribeiro et al. (1999) ⁽¹⁾ Numero de amostra por clar	1,0 - 2,0	1,3 - 1,8	31 - 45	9 - 12	1,6 - 2,1