AVALIAÇÃO DA DEPRESSÃO POR ENDOGAMIA EM 28 POPULAÇÕES

ELITES DE MILHO⁽¹⁾. <u>Cleso Antônio Patto Pacheco</u>⁽²⁾, Manoel Xavier dos Santos⁽²⁾, Cosme Damião Cruz⁽³⁾, Paulo Evaristo de Oliveira Guimarães⁽²⁾, Sidney Netto Parentoni⁽²⁾, Elto Eugênio Gomes e Gama⁽²⁾, Hélio Wilson Lemos de Carvalho⁽⁴⁾; Pedro Abel Vieira⁽⁵⁾ & Álvaro Eleutério da Silva⁽⁶⁾ - ⁽¹⁾ Universidade Federal de Viçosa (UFV), MG - ⁽²⁾Embrapa Milho e Sorgo, Sete Lagoas, MG - ⁽³⁾Dept^o Biologia Geral, UFV, MG - ⁽⁴⁾Embrapa Tabuleiros Costeiros, SE - ⁽⁵⁾Embrapa SPSB Sete Lagoas, MG; ⁽⁶⁾Pesquisador aposentado.

Palavras-chave: depressão endogâmica, endogamia, milho, melhoramento.

No milho, como em muitas outras espécies de plantas alógamas, a predominância do intercruzamento entre os indivíduos da população, além de fazer com que prevaleçam os tipos heterozigotos, possibilita que genes deletérios, normalmente recessivos, permaneçam na população escondidos pela heterozigose. A frequência desses alelos deletérios, que pode variar de população para população, é denominada carga genética (Vencovsky e Barriga, 1992). Segundo Hallauer e Miranda Filho (1988), apesar da importância da autofecundação na cultura do milho, são relativamente poucos os relatos sobre a depressão por endogamia, um fenômeno genético que só foi entendido a partir do trabalho de Shull, em 1908. Um modelo aditivo-dominante, bastante simples, foi proposto por Gardner (1965) e tem sido usado como forma de se conhecer a carga genética de populações de milho, e assim estimar as de maior potencial para extração de linhagens, com base na diferença entre a média de produção da população de polinização aberta (Pi), ou geração S_0 e a média da mesma população após uma geração de autofecundação (S_1). No Brasil, foi utilizado na cultura do milho por Vianna et al. (1982), em 14 populações, e por Lima et al. (1984) em 32 cultivares, entre outros, e está descrito em detalhe em Vencovsky e Barriga (1992). Como a depressão máxima esperada com uma geração de autofecundação é de 50%, em relação à geração S_0 , as maiores críticas ao modelo têm sido as estimativas negativas para o parâmetro $L_i = 2 \frac{1}{8} - \frac{1}{8} = \frac{1}{10} + \frac{1}{8}$, que estima a média das possíveis linhagens extraídas ao acaso. O estudo da depressão por endogamia foi feito concomitantemente com um dialelo de 28 populações de polinização aberta (P's), em que, além dos progenitores, foram avaliados seus 378 híbridos interpopulacionais (F1's) e a primeira geração de autofecundação (S1's) de cada uma das 28 populações, em cinco locais: Sete Lagoas (MG), Londrina (PR), Goiânia (GO), Ponta Grossa (PR) e Aracaju (SE), em dois anos não consecutivos, totalizando dez ambientes. Foi considerada a característica peso de espigas despalhadas, em kg/ha, a 14,5% de umidade. Os resultados do estudo da depressão por endogamia, na média dos dez ambientes, para as 28 populações, encontram-se na Tabela 1. Os resultados de (+ a) mostram que linhagens mais produtivas, em razão da mais alta frequência de alelos favoráveis, seriam as extraídas das populações BR 105, BR 111, CMS 01, CMS 03 e BR 106. Pela Tabela 2, percebe-se a relação inversa e quase perfeita (r= -0,98), entre a média estimada das linhagens e o percentual de endogamia dessas populações, de modo que, quanto maior a redução no rendimento médio devido à endogamia, menor a média esperada para as linhagens extraídas da população. Chama a atenção, no entanto, as correlações entre a depressão por endogamia e os efeitos genéticos de \vec{g}_i e \vec{s}_{ii} . Isso de deve ao fato de que, segundo Cruz e Vencovsky (1989), tanto os $\vec{g}_{i's}$ quanto os $\vec{s}_{ii's}$ dependem das heteroses varietais, que, por sua vez, estão associadas aos desvios da dominância. Foi observado, ainda, o fato, já

constatado por Vianna *et al.* (1982) e por Lima et al. (1984), de que populações de base mais ampla (BR 107, CMS 30, PH4, Cunha, Saracura, Nitrodent e Nitroflint), que nunca foram expostas à depressão por endogamia, tendem a apresentar maior depressão quando autofecundadas, se comparadas àquelas de base mais estreita, resultantes do acasalamento e da recombinação de linhagens (BR 105 e Sintético Elite). O estudo da depressão por endogamia, associado à análise de cruzamentos dialélicos de populações de milho, mostrou-se uma importante ferramenta na interpretação dos parâmetros genéticos e na seleção de progenitores para um programa de melhoramento intra e interpopulacional de milho.

Bibliografia

- Cruz, C.D. and Vencovsky, R.. Comparação de alguns métodos de análise dialélica. *R. Bras. Genet.*, 12: 425-438, 1989.
- Gardner, C.O..Teoria de genética estadística aplicable a las medias de variedades, sus cruces y poblaciones afines. *Fitotec. Latinoamer.*, 2:11-22, 1965.
- Hallauer, A.R. and Miranda Filho, J.B.. *Quantitative Genetics in Mayze Breeding*. 2nd edn. Iowa State Univ. Press, Ames, Iowa, pp.468, 1988.
- Lima, M., Miranda Filho, J.B., and Gallo, P.B.. Inbreeding depression in brazilian populations of maize (Zea mays L.). *Maydica*, 29: 203-215, 1984.
- Vencovsky, R. and Barriga, P.. *Genética Biométrica no Fitomelhoramento*. Sociedade Brasileira de Genética, Ribeirão Preto. pp. 496, 1992.
- Vianna, R.T., Gama, E.E.G., Naspolini Filho, V. et al.. Inbreeding depression of several introduced populations of maize (Zea mays L.). *Maydica*, 27: 151-157, 1982.

Tabela 1 - Estimativas médias da depressão por endogamia, para a característica peso de espigas (kg/ha) das 28 populações de milho avaliadas no dialelo, em dez ambientes.

Progenitores	¬¬	ḡi	∃ S _{1i}	चे + a	$\vec{S}_{0i} - \vec{S}_{1i}$	%Endog	¬ S _{ii}
01 - CMS 01	4744,81	-515,80	3103,63	1462,45	1641,18	34,59	-1320,04
02 - CMS 02	5486,81	-392,02	2921,78	356,75	2565,03	46,75	-825,61
03 - CMS 03	6050,86	-198,61	3718,78	1386,70	2332,08	38,54	-648,37
04 - CMS 04 N	7550,54	250,28	3725,19	-100,16	3825,35	50,66	-46,47
05 - CMS 04 C	7012,02	104,41	3474,52	-62,98	3537,50	50,45	-293,26
06 - BR 105	8156,64	533,73	4971,01	1785,38	3185,63	39,06	-7,26
07 - BR 106	7784,99	868,60	4423,60	1062,21	3361,39	43,18	-1048,66
08 - BR 107	6586,75	-227,50	2740,65	-1105,45	3846,10	58,39	-54,71
09 - BR 111	6619,58	43,26	4176,18	1732,78	2443,40	36,91	-563,40
10 - BR 112	6400,37	-189,23	3379,99	359,61	3020,38	47,19	-317,63
11 - CMS 14 C	6771,04	179,41	3813,46	855,88	2957,58	43,68	-684,23
12 - CMS 15	6950,98	-222,24	3304,24	-342,50	3646,74	52,46	299,00
13 - CMS 22	6063,45	-162,79	2866,63	-330,19	3196,82	52,72	-707,43
14 - CMS 23	5344,55	-692,39	2523,47	-297,61	2821,08	52,78	-367,12
15 - BR 126	5352,12	-78,70	2547,25	-257,62	2804,87	52,41	-1586,94
16 - CMS 28	6648,19	226,21	3625,03	601,87	3023,16	45,47	-900,68
17 - CMS 29	6279,25	-352,81	3108,57	-62,11	3170,68	50,49	-111,59
18 - CMS 30	5995,99	-250,63	2446,04	-1103,91	3549,95	59,21	-599,20
19 - BR 136	6362,09	-18,37	2952,63	-456,83	3409,46	53,59	-697,63
20 - CMS 39	7062,31	246,37	3644,17	226,03	3418,14	48,40	-526,88
21 - CMS 50	6670,08	345,02	3266,23	-137,62	3403,85	51,03	-1116,42
22 - Sint. Elite	7382,33	373,44	3772,05	161,77	3610,28	48,90	-461,01
23 - PH 4	5501,36	-297,48	2431,50	-638,36	3069,86	55,80	-1000,13
24 - Cunha	5776,74	-50,78	2576,07	-624,60	3200,67	55,41	-1218,15
25 - BA III- Tusón	3865,33	-632,96	2118,76	372,19	1746,57	45,19	-1965,20
26 - Saracura	7613,47	330,40	3499,97	-613,53	4113,50	54,03	-143,79
27 - Nitroflint	7234,76	303,19	3359,70	-515,36	3875,06	53,56	-468,08
28 - Nitrodent	7568,54	478,00	3501,05	-566,44	4067,49	53,74	-483,91

 \vec{S}_{0i} : peso médio de espigas (kg/ha) da população em panmixia, nos dez ambientes; \vec{g}_i : estimativa dos efeitos da capacidade geral de combinação, média dos dez ambientes; \vec{S}_{1i} : peso médio de espigas (kg/ha) da população após uma geração de autofecundação, nos dez ambientes; $\vec{g}_i + \vec{a}_i = L_i = 2 \vec{S}_{1i} - \vec{S}_{0i}$: média das possíveis linhagens extraídas da população i; $\vec{S}_{0i} - \vec{S}_{1i}$: depressão por endogamia; %Endog.: é o percentual de endogamia gerado pela autofecundação da população i, em relação à média da população i; \vec{S}_{ii} : estimativa do efeito da capacidade específica de combinação da população i cruzada com ela mesma, na média dos dez ambientes.

Tabela 2 - Correlações de Pearson entre as estimativas de sete parâmetros obtidos da análise dialélica e do estudo da depressão por endogamia, para o peso de espigas (kg/ha) de 28 populações de milho avaliadas em dez ambientes.

	S _{0i}	g _i	∃ S _{1i}	Ū + a	$\vec{S}_{0i} - \vec{S}_{1i}$	%Endog.	S _{ii}
S _{0i}	1	0,8614	0,7871	0,0522	0,7606	0,0391	0,6701
gi		1	0,7506	0,1625	0,5788	-0,0785	0,2003
S 1i			1	0,657	0,1983	-0,5782	0,4214
Ū + ā				1	-0,6086	-0,9839	-0,1367
$\vec{S}_{0i} - \vec{S}_{1i}$					1	0,6707	0,6213
%Endog						1	0,1902
⊐ Sii							1

 \vec{S}_{0i} : peso médio de espigas (kg/ha) da população em panmixia, nos dez ambientes; \vec{g}_i : estimativa dos efeitos da capacidade geral de combinação, média dos dez ambientes; \vec{S}_{1i} : peso médio de espigas (kg/ha) da população após uma geração de autofecundação, nos dez ambientes; $\vec{g}_i + \vec{a}_i = L_i = 2 \vec{S}_{1i} - \vec{S}_{0i}$: média das possíveis linhagens extraídas da população i; $\vec{S}_{0i} - \vec{S}_{1i}$: depressão por endogamia; %Endog.: é o percentual de endogamia gerado pela autofecundação da população i, em relação à média da população i; \vec{S}_{ii} : estimativa do efeito da capacidade específica de combinação da população i cruzada com ela mesma, na média dos dez ambientes.