

A4 - Phylogenetic Relationship and Correlations Between Genetic Distances Using RAPD Markers and Specific Combining Ability in 28 Tropical Open Pollinated Maize Varieties

S.N. Parentoni, J.Magalhães, E.E.G. Gama, M.X. Santos, C.A.P. Pacheco, P.E.O. Guimarães, M.A. Lopes, M.J.V. Vasconcelos, E. Paiva.

Brazilian National Maize and Sorghum Research Center-CNPMS/EMBRAPA, C.P. 151-Sete Lagoas, MG. CEP 35701-970 - Brazil.

Introduction

The active maize breeding germplasm collection used at the Brazilian National Maize and Sorghum Research Center (CNPMS/EMBRAPA) comprises 28 open pollinated varieties. Based on the Brazilian experience the most useful heterotic patterns are Tuxpeño x Caribbean Flints and Swan. A more detailed identification of heterotic groups in these populations were conducted using diallel crosses (Santos et al. 1994). RAPDs have been used in many crops to assess phylogenetic relationships. They have also been used to study genetic variation among open pollinated varieties of red clover (Kongkiatngam et. al. 1996). Correlations between molecular marker estimated genetic distance and heterosis are generally low, when the whole dataset is used (Lee et al. 1989; Melchinger et. al. 1990). Recently, Lanza (1996) showed that the use of principal component analysis to assign parents to heterotic groups could increase these correlations. The objectives of this study were: a) to compare phylogenetic relationships among tropical open pollinated maize varieties using RAPDs and pedigree data; and b) to verify the relationship between genetic distance estimated with RAPDs and specific combining ability obtained from 5 and 10 environments.

Methods

Twenty-eight open pollinated varieties were used as parents of a diallel. The 28 parents and their 378 F_1 crosses were evaluated at five locations and two years in Brazil. Specific combining ability (SCA) was estimated for five locations in one year (Santos et al. 1994) and for 10 environments (Pacheco 1997). The SCAs from the 10 environments were used to obtain two heterotic groups: Group I (BR106, BAIII Tuson, Sint. Elite and CMS50) and Group II (BR105, CMS14C, BR111, CMS04N, ND and CMS04C).

The 28 open pollinated varieties were genotyped using RAPDs. A bulk of 100 seedlings was used to obtain the DNA from each variety. Up to now we have screened 30 primers which generated a total of 92 polymorphic bands. This RAPD data were used to obtain a distance matrix from which an UPGMA we generated a dendrogram for the 28 varieties. Genetic distances obtained with RAPDs markers for the whole dataset and for the two heterotic groups were correlated with: a) SCAs obtained from one year and five locations; and b) SCAs obtained from the 10 environments.

Results

Phylogenetic data agreed with the known pedigree data. Flint and semi-flint genotypes tended to be grouped separately from the dent germplasm. However several clusters were observed in the dent germplasm (Figure 1). Correlations between genetic distances for each pair of parents and SCAs for the 378 F₁s in 10 environments was low and positive (r=0.15**). Correlations between genetic distances and SCA were higher (r=0.61**), when only the two heterotic groups were considered and the SCA data were obtained from 10 environments.

Conclusions

3093

RAPD marker can be used to assess phylogenetic relationships among maize open pollinated varieties. The quality of SCA estimators can influence the relationship between SCA and genetic distances; the correlation increases as with the number of environments.

References

Kongkiatngam, P., M.J. Waterway, B.E. Coulman, and M.G. Fortin. 1996 Euphytica 89:355-361. Lee, M., E.B. Godshlk K.R. Lamkey, and W.W. Woodman. 1989. Crop.Sci. 29:1067-1071. Lanza, L.L.B. 1996. M.S. Thesis, Universidade de São Paulo-Piracicaba, Brazil, 141 p. Melchinger, A.E., M. Lee, K.R. Lamkey, and W.L. Woodman. 1990. Crop Sci. 30: 1033-1040. Pacheco, C.A.P. 1997. PhD. Thesis, Universidade de Viçosa - MG. Brazil. 118 p. Santos, M.X., C.A.P. Pacheco P.E.O. Guimarães E.E.G. Gama, A.E. Silva and A.C. Oliveira. 1994. R. Bras. Genet. 17:277-282.

> Tree Diagram for 28 Maize Varieties Unweighted pair-group average Percent disagreement

Key to figure:

	Genotype	Origin		Genotype	Origin
1	CMS-01	Mezcla Amarillo	15	BR-126	Dentado Composto
2	CMS-02	Antígua x Vera Cruz	16	CMS-28	Tuxpeño Amarelo
3	CMS-03	Amarillo Cristalino	17	CMS-29	Amar. del Bajio x Templados
4	CMS-4N	Amarilo Dentado Normal	18	CMS-30	Composto Amplo
5	CMS-4C	Amarilo Dentado Cerrado	19	BR-136	Sintético Cerrado
6	BR-105	Suwan DMR	20	CMS-39	Sintético Híbridos Brasileiros
7	BR-106	Composto Tuxpeño	21	CMS-50	Vega Precoce
8	BR-107	Composto Cateto	22	SINT. ELITE	Sint. / CNPMS Elite Inbreds
9	BR-111	Pool 21	23	CUNHA	Tuxpeño Brasileiro
10	BR-112	Pool 22	24	PH4	Variedade da Africa do Sul
11	CMS-14C	Pool 25	25	BAIII - Tusón	Tusón Brasileiro
12	CMS-15	Pool 26	26	SARACURA	Composto tolerante a encharcamento
13	CMS-22	Amarillo del Bajio	27	NITROFLINTE	Composto selecionado para eficiência
		,			a nitrogênio
14	CMS-23	Ant. x Rep. Domin.	28	NITRODENTE	Composto selecionadao para
		0.0			eficiência a nitrogênio