CONSIDERAÇÕES SOBRE AS CAUSAS GENÉTICAS DA ESTABILIDADE DE PRODUÇÃO

PACHECO C.A.P.1, SANTOS M. X. 1, CRUZ C. D. 2, PARENTONI S. N. 1 GAMA E. E. G. 1 e GUIMARÃES P. E. O. 1

1Embrapa Milho e Sorgo – C.P.151, 35 701-970 Sete Lagoas, MG,. cleso@cnpms.embrapa.br 2UFV – DBG – 36 571-000 Viçosa, MG,.

Palavras chaves: estabilidade, dialelo, milho, CGC, CEC.

INTRODUÇÃO

Embora, desde cedo, melhoristas e estatísticos tenham identificado e reconhecido a importância da interação genótipos x ambientes na seleção, Rojas e Sprague (1952) foram os primeiros a investigar a consistência das estimativas da capacidade geral e específica de combinação (CGC e CEC), quando os experimentos são repetidos numa série de locais ou de anos. Assim, pode-se chegar a decisões mais acertadas sobre a escolha de progenitores para iniciar um programa de melhoramento bem como sobre os métodos de seleção a serem empregados, quando as variâncias dos efeitos de CGC e CEC são estimadas em vários ambientes, Matzinger et alii (1959). Avaliando dois dialelos, um com onze e outro com oito linhagens de milho, em oito e doze ambientes, respectivamente, Eberhart e Russell (1966) apresentaram a decomposição das somas de quadrados de tratamentos, em suas partes devidas a CGC e CEC e suas respectivas interações. No entanto, apesar de terem apresentado os parâmetros de adaptabilidade e estabilidade para os progenitores do dialelo. não fizeram comparações com os parâmetros produzidos pelos híbridos, para tentar entender o que acontece, por exemplo, quando se cruza uma linhagem estável com outra instável. Mais recentemente, Gama e Hallauer (1980), partindo do princípio de que a estabilidade de produção é geneticamente controlada, trabalhando com linhagens selecionadas e não-selecionadas para produção de grãos, concluíram que os híbridos de linhagens selecionadas tiveram média de produção significativamente mais elevada que os de linhagens não-selecionadas, mas os dois grupos não diferiram entre si quanto aos estimadores de adaptabilidade e estabilidade de produção. Sugeriram, então, que o melhorista deveria enfatizar a seleção para produção e só então checar a estabilidade de produção do grupo-elite de híbridos. Essa opinião é compartilhada por Torres (1988) que observou, em dados de ensaios nacionais de cultivares, que adaptabilidade e rendimento devem ter controle genético independente, dado a falta de correlação entre elas e, em virtude do coeficiente de determinação para rendimento de grãos ter sido, aproximadamente, duas vezes maior que para o parâmetro de adaptabilidade. Entretanto, além de não fazer referência ao parâmetro de estabilidade, estimado pelos desvios da regressão linear, não acrescenta explicações a respeito de como esses parâmetros são herdados. Partindo de um modelo simples de um gene com dois alelos (BB, Bb e bb), semelhante ao apresentado por Falconer (1987), mas considerando vários ambientes, Vencovsky e Barriga (1992) demonstraram que o

componente de variância da interação genótipos x ambientes (σ_{GA}^2) é devido à instabilidade

dos efeitos genotípicos u, a e d, de um ambiente para o outro, ou seja, tem natureza genética. Chamam a atenção para o fato de que, ao contrário das variâncias tradicionais, definidas entre genótipos dentro de ambientes, σ_{GA}^2 é definido entre ambientes dentro de genótipos, sendo ainda uma variação genética entre ambientes, porém intragenotípica.

MATERIAL E MÉTODOS

Considerando-se que o modelo de Eberhart e Russell (1966) é baseado na regressão linear simples e ainda, que os efeitos genéticos estimados pelo método 2, modelo 1, de Griffing (1956) são aditivos, um novo modelo, resultante da associação dos dois anteriores:

$$Y_{ijk} = m_k + g_{ik} + g_{jk} + g_{ijk} = \beta_{0ij} + \beta_{1ij} I_k + \delta_{ijk} + \bar{\epsilon}_{ijk}.$$

pode ser trabalhado com enfoque de múltipla regressão linear.

Supondo-se um dialelo de **p** progenitores (i = j = 1, ..., p) e seus p(p - 1)/2 cruzamentos F1, avaliado em **a** ambientes (k = 1, ..., a), e empregando-se a notação matricial, o modelo i) passa a ser:

$$Y_{ijk} = m_k + g_{ik} + g_{jk} + g_{ijk} = \beta_{0ij} + \beta_{1ij} I_k + \rho_{ijk}$$
ii)

correspondente a $Y = X \beta + \rho$, para cada ij, em que Y é uma matriz (a x 4) dos efeitos genéticos estimados pela metodologia de Griffing (1956), relativos ao genétipo ij nos vários

ambientes; X é uma matriz (a x 2), onde 2 é o número de parâmetros a serem estimados; ^β

é uma matriz (2 x 4) da decomposição dos parâmetros a serem estimados; e ^p uma matriz (a x 4) de erros. Detalhes do desenvolvimento matricial e suas soluções pelo método dos mínimos quadrados são apresentados em Pacheco et al. (1999). A maneira mais ilustrativa de expressar a decomposição dos desvios da regressão em suas partes devidas aos efeitos genéticos de Griffing (1956), preservando as relações entre os genótipos, é através da relação entre os respectivos quadrados médios dos desvios e o quadrado médio do resíduo, inclusive para os duplos produtos, como se fosse uma decomposição da estatística F total, não estando, entretanto, as partes da decomposição associadas a nenhuma função probabilística. Essa metodologia foi aplicada aos dados de produção (kg/ha) de 28 populações de milho e seus 378 cruzamentos dialélicos avaliados em 10 ambientes. As análises foram executadas pelo Programa Genes, de Análises de Modelos Biométricos Aplicados ao Melhoramento Genético.

RESULTADOS E DISCUSSÃO

Observando-se, no Quadro 1, os valores da estatística F para os quadrados médios dos desvios da regressão para os progenitores envolvidos no dialelo, bem como as suas decomposições para os efeitos genéticos e seus duplos produtos, percebe-se que a estatística F foi fortemente influenciada pela magnitude dos desvios da regressão associados à CEC. As cinco populações que apresentaram os maiores desvios da regressão associados aos ⁹i foram: BA-III-Tusón (25), Cunha (24), BR-136 (19), CMS-23 (14) e CMS-50 (21). Para os desvios da regressão associados aos ^{\$\sigma_i\$} as cinco populações mais instáveis foram: CMS-01 (1), CMS-14C (11), CMS-50 (21), BR-105 (6) e Nitrodent (28). Também contribuíram para a magnitude da estatística F os desvios da regressão associados aos duplos produtos entre os

efeitos genéticos, principalmente nessas cinco populações: CMS-39 (20), Cunha (24), BR-136 (19), CMS-04 N (04) e CMS-23 (14). As populações classificadas entre as cinco mais instáveis por pelo menos um dos efeitos genéticos apresentaram também teste F significativo para os desvios da regressão totais, com exceção da BR-105 e da Nitrodent, em que o F foi não-significativo, devido aos seus duplos produtos negativos. Em virtude de os duplos produtos se deverem às covariâncias da regressão entre os efeitos genéticos, têm difícil interpretação, que ainda é complicada pela soma de todos os duplos produtos, de modo que não serão estendidas as discussões a seu respeito, sem deixar, no entanto, de se reconhecer sua importância para o valor e para a significância do teste F. Os resultados para os 378 cruzamentos ocupam muito espaço e não puderam ser apresentados aqui. Entretanto, a partir do Quadro 2 pode-se ter uma visão completa do comportamento dos progenitores e seus cruzamentos, quanto à significância dos desvios da regressão totais e quanto à relação QM desvio da regressão da CEC / Erro efetivo médio, maior que 1,94. Considerando-se que, para ser significativo, a pelo menos 5% de probabilidade, o F calculado total precisou ser de, no mínimo, 1.94, os desvios devidos aos duplos produtos seriam responsáveis, sozinhos, pela significância do teste F em dois tratamentos: CMS-22 x PH 4 e CMS-50 x PH 4. Os desvios da regressão devidos à CEC seriam os responsáveis pela significância em 57 outros tratamentos e também no tratamento CMS-50 x PH 4. Desse modo, embora os desvios da regressão devidos a CEC e aos duplos produtos tenham sido os mais fortes determinantes da instabilidade de produção em 59 tratamentos (54.63% daqueles com F significativo), a combinação de pequenos desvios de todos os efeitos foi responsável pela significância do teste F em 49 outros tratamentos (45.37% daqueles com F significativo), o que pode ser visto no Quadro 2. Pela penúltima coluna do Quadro 2, pode-se verificar que os progenitores tiveram comportamentos diferentes quanto à estabilidade de produção, tanto de "per se" quanto influenciando os cruzamentos dos quais participaram. A população BA III- Tusón (25) foi instável e contribuiu para que 48.1% dos cruzamentos em que participou fossem também imprevisíveis. O contrário aconteceu com a população Saracura (26), que foi estável e contribuiu para que apenas 7.4% dos cruzamentos em que participou fossem instáveis. Na última coluna do Quadro 2 observa-se que a importância da parte devida aos desvios devidos à CEC para a significância dos desvios da regressão variou conforme o tratamento. De modo que, ao mesmo tempo em que 22.2% dos cruzamentos com a população CMS-01 (1) apresentaram F significativo para os desvios da regressão totais, com base exclusivamente na contribuição dos desvios devidos à CEC, nenhum dos cruzamentos em que participou a BR-136 (19) teve desvios significativos com base somente nos desvios devidos à CEC. Merece destaque, contudo, o fato de que nas populações que foram selecionadas sob alguma condição de estresse ambiental, a importância dos desvios devidos à CEC foi mais reduzida. A população CMS-04 é um bom exemplo, porque em determinado momento de seu programa de melhoramento, foi dividida em duas versões, uma para solos férteis (CMS-04 N) e outra para solos sob vegetação de cerrado (CMS-04 C). O mesmo foi observado nas populações BR-136, CMS-30 e CMS-14 C, selecionadas em solos sob vegetação de cerrado; nas CMS-22, Nitrodent e Nitroflint, selecionadas em solos com estresse de nitrogênio e, sobretudo, na Saracura, desenvolvida para tolerar os solos encharcados das várzeas.

CONCLUSÕES

As principais conclusões a que se pode chegar foram: - os efeitos dos desvios devidos à dominância foram os principais responsáveis pelas instabilidades de produção; - as

populações que foram selecionadas sob alguma condição de estresse ambiental, como a Saracura, aparentemente contribuíram para que os híbridos intervarietais dos quais participaram, fossem mais estáveis, principalmente devido à redução dos desvios da regressão ocasionados pela capacidade específica de combinação. - a prática de se selecionar primeiro para produção e, entre os mais produtivos, selecionar os mais estáveis, teria sua eficiência melhorada, se o programa fosse iniciado com populações cujos efeitos das capacidades geral e específica de combinação, além de altos, fossem, também, de adaptabilidade ampla e tivessem desvios da regressão próximos de zero.

LITERATURA CITADA

- EBERHART, S.A., RUSSELL, W.A. Stability parameters for comparing varieties. **Crop Science**, Madison, v. 6, p. 36-40, 1966.
- FALCONER, D.S. Introdução à genética quantitativa. Viçosa MG: UFV, 1987. 279p.
- GAMA, E.E.G.; HALLAUER, A.R. Stability of hybrids produced from selected and unselected lines of maize. **Crop Science**, Madison, v.20, p.623-626, 1980.
- GRIFFING, B.A. Concept of general and specific combining ability in relation to diallel crossing systems. **Australian Journal Science**, Carlton, v.9, p.463-493, 1956.
- MATZINGER, D.F.; SPRAGUE, G.F.; COCKERHAN, C.C. Diallel crosses of maize in experiments repeated over locations and years. **Agronomy Journal**, Madison, v.51, p.346-350, 1959.
- PACHECO, C.A.P.; CRUZ, C..D., SANTOS, M.X. Association between Griffing's diallel and the adaptability and stability analyses of Eberhart and Russell. **Genetics and Molecular Biology**, Ribeirao Preto, v.22, n.3, p.451-456.1999.
- ROJAS, B.A.; SPRAGUE, G.F. A comparison of variance components in corn yield trials: III. general and specific combining ability and their interaction with locations and years. **Agronomy. Journal**, Madison, v.44, p.462-466, 1952.
- TORRES, R.A.A. Estudo do controle genético da estabilidade fenotípica de cultivares de milho (Zea mays L.). Piracicaba: ESALQ, 1988. 133 p. Tese Doutorado
- VENCOVSKY, R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genetica, 1992. 496 p.
- Quadro 2 Identificação dos progenitores e seus cruzamentos, em razão da significância dos desvios da regressão totais e da relação entre os desvios da regressão devidos à CEC e o erro efetivo médio.

Progenitores	01	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	%Des. Tot.	%Des. CEC
01 - CMS 01	P	х			x		x	П	Г	S		Г	П		П	×	x				x	Г	Г					Х	25,9	22,2
02 - CMS 02	_	_	Х				X	X	Г			Г	×		П	_	_	×			S		Г		x			Г	25,9	14,8
03 - CMS 03					Г		Г	П	Г		×	Г			П	Г	Г	Х					Г		X			Г	14,8	3,7
04 - CMS 04 N				Р	Г		Г	×	Г	Х	x	Г	П		П	Г	Г	×	Х		×		×	Х	x		П	Г	33,3	22,2
05 - CIMS 04 C			Г		Г				Г	П		Г				Г								Х		x	x	Г	18,5	11,1
06 - BR 105								Х	×	×				x			S	Х	Х		Х			Х	×		X		37,0	14,8
07 - BR 106									Г	Г						×		Х		x	x	Х	S	Х	×		x		37,0	22,2
08 - BR 107							П		Г		X	Г				Г				×					×		Г		22,2	11,1
09 - BR 111					П		Г	П	Г		X	Г			П	Г	Х						Г	×	×		×	Г	22,2	14,8
10 - BR 112												×					x	Х	Х					X	Х				29,6	14,8
11 - CMS 14 C											P	X																	18,5	11,1
12 - CMS 15												Г		Х			x			Х		x		Х					25,9	14,8
13 - CMS 22									П			П		Х	X				Х	Х	Х		Х						25,9	3,7
14 - CMS 23														Р		Х		x	Х		S		Х	S					25,9	7,4
15 - BR 126																		Х		x	Х		x	x	Х		x		29,6	14,8
16 - CMS 28																	Х	Х							Х			Х	25,9	7,4
17 - CMS 29																													18,5	11,1
18 - CMS 30									П			П												Х					37,0	11,1
19 - BR 136			Г		Г				Г	П		Г				Г			Ρ	Х	Х		Г					Г	25,9	0,0
20 - CMS 39																				Р	x	x							29,6	18,5
21 - CMS 50																					Р		x						33,3	18,5
22 - Sint. Elite																									×				14,8	11,1
23 - PH 4							П		Г			Г																	18,5	11,1
24 - Cunha																								Р				×	37,0	14,8
25 - BA III- Tus			Г		Г				Г	П		Г				Г							Г		Ρ			Х	48,1	25,9
26 - Saracura																											×		7,4	7,4
27 - Nitroflist																												x	25,9	22,2
28 - Nitrodent																													18,5	7,4

X = cruzamento e P = progenitor, com F significativo para os desvios da regressão totais;

X= cruzamento e P= progenitor, com relação QM desvio da regressão da CEC / Erro efetivo médio, maior que 1,94; S= cruzamento com F não-significativo para os desvios da regressão totais e com relação QM desvio da regressão da CEC / Erro efetivo médio maior que 1,94; % Des. Tot. = percentual dos genótipos em que entrou o progenitor i, que apresentou desvios da regressão totais significativos; % Des. CEC = percentual dos genótipos em que entrou o progenitor i, que apresentou relação QM desvio da regressão da CEC / Erro efetivo médio maior que 1,94.

Quadro 1 - Parâmetros de adaptabilidade e estabilidade de EBERHART e RUSSELL (1966) e suas decomposições em função dos efeitos das capacidades geral e específica de combinação de GRIFFING (1956b) de um dialelo de 28 populações, avaliado em 10 ambientes

	Tratamentos	ô	â	â	â	ô	ô	â	â	\hat{R}_t^2	F	QMD _{pl}	QMD _{al}	QMD sil	QMDDP
		β_{0t}	β _{Ogi}	β _{Ogj}	β _{Osij}	β _{tt}	β _{1gi}	β_{1gj}	β _{1sij}	$\kappa_{\rm t}$	'	QMR	QMR	QMR	QMR
1	CMS1	4744,81	-515,80	-515,80	-1320,04	0,4559**	-0,0856	-0,0856	-0,3730**	36,45	2,97**	0,16		3,20	-0,55
2	CMS 2	5486,81	-392,02	-392,02	-825,61	0,6885*	-0,0221	-0,0221	-0,2673*	88,60	0,50	0,24	0,24	1,01	-0,99
3	CMS 3	6050,86	-198,61	-198,61	-648,37	0,9050	0,0207	0,0207	-0,1364	82,96	1,38	0,11	0,11	0,75	0,41
4	CMS 4N	7550,54	250,28	250,28	-46,47	1,1392	0,0410	0,0410	0,0572	79,78	2,69**	0,15	0,15	1,15	1,25
5	CMS 4C	7012,02	104,41	104,41	-293,26		0,0008	0,0008	0,0547	87,40	1,32	0,07	0,07	1,39	-0,21
6	BR 105	8156,64	533,73	533,73	-7,26	1,2263	0,0724	0,0724	0,0816	91,21	1,19	0,09	0,09	1,70	-0,70
7	BR 106	7784,99	868,60	868,60	-1048,66	0,8909	0,1373	0,1373	-0,3837**	78,03	1,83	0,19	0,19	1,36	0,10
8	BR 107	6586,75	-227,50		-54,71	0,9427	-0,0415	-0,0415	0,0256	86,64	1,12	0,05	0,05	0,69	0,34
9	BR 111	6619,58	43,26	43,26	-563,40		0,0362	0,0362	-0,0763	94,43	0,48	0,08	0,08	1,18	-0,86
10	BR 112	6400,37	-189,23	-189,23	-317,63			-0,0454	-0,1692	73,70	1,60	0,07	0,07	1,35	0,10
	CMS14C	6771,04	179,41	179,41	-684,23		0,0154	0,0154	0,0438	74,23	3,28**	0,04	0,04	2,26	0,94
	CMS 15	6950,98	-222,24	-222,24	299,00		-0,0371	-0,0371	-0,0471	96,91	0,20	0,03	0,03	0,24	-0,10
	CMS 22	6063,45	-162,79	-162,79	-707,43			-0,0240	-0,1132	79,44	1,49	0,13	0,13	0,74	0,50
14	CMS 23	5344,55	-692,39	-692,39	-367,12		-0,1076	-0,1076	-0,0444	69,05	2,01*	0,30	0,30	0,34	1,08
15	BR 126	5352,12	-78,70	-78,70	-1586,94	0,8370	-0,0381	-0,0381	-0,0868	90,26	0,62	0,21	0,21	0,47	-0,28
	CMS 28	6648,19	226,21	226,21	-900,68		0,0817	0,0817	-0,0493	90,41	1,08	0,13	0,13	1,03	-0,22
17	CMS 29	6279,25	-352,81	-352,81	-111,59	0,8874	-0,0495	-0,0495	-0,0136	87,69	0,91	0,13	0,13	0,88	-0,24
18	CMS 30	5995,99	-250,63	-250,63	-599,20	0,6016**	-0,0748	-0,0748	-0,2489*	66,13	1,52	0,09	0,09	0,75	0,59
	BR 136	6362,09	-18,37	-18,37	-697,63		-0,0047		-0,0008	75,41	2,62**	0,33		0,48	1,48
20	CMS 39	7062,31	246,37	246,37	-526,88		0,0180	0,0180	-0,0488	69,30	3,53**	0,23	0,23	1,25	1,83
21	CMS 50	6670,08	345,02	345,02	-1116,42	0,9231	0,0807	0,0807	-0,2384*	67,58	3,35**	0,29	0,29	1,78	0,98
22	Sintético Elite	7382,33	373,44	373,44	-461,01	1,1061	0,0781	0,0781	-0,0500	94,15	0,62	0,02	0,02	0,57	0,02
	Africa do Sul ph4	5501,36	-297,48	-297,48			-0,0369	-0,0369	-0,0823	89,55	0,68	0,26		1,03	-0,87
	Cunha	5776,74	-50,78		-1218,15		-0,0672		-0,2162	46,25		0,51	0,51	1,30	1,69
	BA III - Tusón	3865,33	-632,96	-632,96			-0,0972	-0,0972	-0,0378	66,76	2,40*	0,59	0,59	0,93	0,30
	Saracura	7613,47	330,40	330,40	-143,79			0,0273	-0,1551	78,92	1,77	0,10		1,31	0,27
	Nitroflint	7234,76	303,19	303,19	-468,08		0,0598	0,0598	-0,1934	82,38	1,50	0,10	0,10	0,80	0,50
28	Nitrodent	7568,54	478,00	478,00	-483,91	0,9727	0,0624	0,0624	-0,1520	84,33	1,44	0,08	0,08	1,57	-0,29

Média geral (m) = 7096,45 kg/ha; $^{\vec{\beta}_{1m}}_{1m}$ = 1,0;* e ** significativo a 5% e 1% de probabilidade pelo teste F ou pelo teste t; QMD = quadrado médio dos desvios da regressão; QMR = quadrado médio do resíduo da ANOVA conjunta; 2 = coeficiente de determinação total.