

XXXI CONGRESSO CONQUISTAS BRASILEIRO & DESAFIOS DE CIÊNCIA da Ciência do DO SOLO Solo brasileira

De 05 a 10 de agosto de 2007 Serrano Centro de Convenções - Gramado-RS

DENSIDADE E POROSIDADE DE UM LATOSSOLO VERMELHO TÍPICO, SUBMETIDO A DIFERENTES USOS E MANEJOS

R.C. ALVARENGA¹, E.P. CLEMENTE², A.A.D.N. CASTRO³, G.C. FREITAS⁴ & J.L. BRAZ⁵

RESUMO - A densidade e a porosidade do solo estão intimamente relacionadas com o movimento e o armazenamento de água e com o crescimento das raízes das plantas, assumindo, portanto, grande importância agronômica e no manejo e conservação do solo e da água. O trabalho foi conduzido na Embrapa Milho e Sorgo, em Sete Lagoas, MG, e teve como objetivo avaliar a densidade e a porosidade de um Latossolo Vermelho em diferentes tipos de usos e manejos e em várias profundidades do perfil. Foram testados quatro sistemas de manejo do solo: Preparo convencional de solo com arado de discos e duas gradagens (destorroadora e niveladora) (PC); sistema de plantio direto (SPD), ambos com cultivo do milho; cerrado nativo (CN) e floresta de pinus (FP). Apesar de a densidade do solo situar-se dentro de limites considerados adequados, o SPD apresentou valores mais elevados. Embora isso tenha ocorrido, acredita-se que eles não interferiram na taxa de infiltração de água, ao mesmo tempo em que não foi verificada alteração do crescimento de raízes e também não ocorreu erosão. O diferencial entre os tratamentos situou-se no volume dos macroporos. Enquanto este foi de 46%, em média, da porosidade total no CN, foi de 42% no FP, 31% no PC e 23% no SPD. Considerando 0,15 m³ m⁻³ de macroporos como limite à adequada taxa de infiltração no solo, preocupam os resultados apresentados pelo PC e pelo SPD. Nestes, a macroporosidade situou-se próximo a esse limite. Apesar disso, somente no PC foi observada erosão laminar ligeira, possivelmente, em decorrência da falta de proteção da superfície por cobertura com resíduos vegetais. A macroporosidade do solo foi o atributo de maior sensibilidade aos manejos empregados. A presença de erosão no PC indica a necessidade de estudos mais apurados para identificar as causas e o SPD adotado necessita de correção de rumos para se tornar mais sustentável.

Introdução

A qualidade e a conservação do solo e da água estão intimamente relacionadas com os sistemas de uso e manejo dos solos. A estrutura é importante indicador dessas alterações, em função do sistema de manejo a que o solo está submetido. Uma das alternativas para conhecer o impacto do manejo sobre a estrutura do solo é a verificação de sua densidade e porosidade. A densidade expressa a relação entre a massa e o volume de solo e a porosidade, o volume do espaço aéreo do solo. Esses atributos estão intimamente relacionados com o movimento e o armazenamento de água e com o crescimento das raízes das assumindo, portanto, grande plantas, importância agronômica e no manejo e conservação do solo e da água. Então, adequar o uso e o manejo do solo segundo sua aptidão é, antes de tudo, garantir sustentabilidade ao solo, ao uso da água e também à exploração agropecuária.

O trabalho teve como objetivo avaliar a densidade e a porosidade de um Latossolo Vermelho em diferentes tipos de usos e manejos e em várias profundidades do perfil.

Palavras-Chave: Estrutura do solo, sustentabilidade, compactação

Material e Métodos

O estudo foi conduzido no campo experimental da Embrapa Milho e Sorgo, localizada no município de Sete Lagoas, MG, com latitude 19°28'S, longitude 44°15'W e altitude de 732m. O clima é Aw (Köppen), ou seja, típico de savana, com inverno seco e temperatura média do ar no mês mais frio superior a 18° C. O solo é um Latossolo Vermelho típico, muito argiloso.

Do histórico dessas áreas consta a retirada do cerrado nativo, em 1975. Em parte da área, foi plantado pinus, em 1976, e o restante da área foi corrigido quimicamente e passou a ser cultivado em sistema de preparo convencional do solo, com arado de discos e gradagens. Em 1993, implantou-se um ensaio de manejo de solos, do qual foram selecionados dois tratamentos: sistema

¹ Ramon Costa Alvarenga Eng. Agr., DSc Embrapa Milho e Sorgo. Rodovia MG 424 km 65, 35701-970, C. Postal 151, Sete Lagoas- MG. E-mail: ramon@cnpms.embrapa.br

² Eliane de Paula Clemente Eng. Florestal, DSc.Bolsista do CNPq. Embrapa Milho e Sorgo. Rodovia MG 424 km 65, 35701-970, C. Postal 151, Sete Lagoas- MG.

³ Andréa Aparecida Dutra Naves de Castro. Geógrafa, .Bolsista do CNPq. Embrapa Milho e Sorgo. Rodovia MG 424 km 65, 35701-970, C. Postal 151, Sete Lagoas-MG.

Gilberto Carlos de Freitas Eng. Agr. BS, Emater-MG, Rua Antônio Rezende, 15. 38175-000 Santa Juliana-MG.

Jussara Lima Brás Eng. Agr. BS, Rua Ciríaco Gimenes, 284, Bairro Parque Nações Unidas, 02996-070 São Paulo, SP.

convencional de preparo com arado de discos e duas gradagens (destorroadora e niveladora) (PC) e sistema de plantio direto (SPD), que, junto com o cerrado nativo (CN) e floresta de pinus (FP), completaram os quatro tratamentos para este estudo.

Em cada um dos tratamentos, foram coletadas amostras indeformadas de solo, nas profundidades de 0-5, 5-10, 10-15, 15-25 e 30-45cm. Cada tratamento possuía cinco repetições e em cada unidade experimental foram retiradas duas amostras por profundidade, considerando-se a média destas. Para extração e confinamento da amostra, utilizaram-se anéis de alumínio com uma das bordas cortantes (Blake & Hartge) [1], com volume de 100,1416 cm³.

O volume dos macroporos correspondeu ao volume de água drenada da amostra saturada e submetida a uma tensão de -6 kPa, em câmara de pressão de Richards, seguindo a metodologia da Embrapa (Embrapa, 1997) [2]. Os microporos equivaleram ao volume total de água extraída da amostra saturada e submetida a secamento, a 105°C, descontado o volume de macroporos. A densidade do solo correspondeu à relação entre a massa de solo seco e o respectivo volume ocupado pela amostra.

Resultados e Discussão

Os resultados da densidade do solo e da porosidade são mostrados na Tabela 1. Os valores da densidade do solo foram baixos para todos os tratamentos, de tal modo que não se esperou interferência dela sobre a infiltração de água e o crescimento de raízes. Somente no PC, foi verificada erosão laminar, o que pode ser atribuído à deficiência de cobertura morta sobre o solo. Não eram esperados valores como aqueles verificados na camada intermediária do SPD e é difícil a sua explicação. Será que calagem em superfície pode ter dispersado partículas na superfície e estas se depositado mais embaixo? De qualquer maneira, não houve evidências de erosão nem modificação no padrão de crescimento das raízes do milho na época de avaliação.

A porosidade total nos tratamentos CN e FP foi mais elevada e situou-se na faixa em que normalmente são encontrados valores para solos de cerrado em seu estado natural. A ligeira queda na porosidade total no tratamento FP pode ser atribuída a duas causas principais: efeito do impacto do desmatamento em 1975 e preparo com aração e gradagem, para implantação de pinus, em 1976, e atividade de macro e mesofaunas e de microrganismos, bactérias, segundo Marriel (informação pessoal), muito pobre em relação ao CN. Em decorrência do longo período decorrido desde o preparo, é razoável afirmar que o diferencial é a maior diversidade e atividade biológica no solo CN. Enquanto, no CN, a atividade de macro e mesofaunas é facilmente verificada, no FP, isso é muito menos frequente. Além disso, Marriel estudou a composição de comunidades microbianas nesses locais e observou que a abundância relativa de bactérias foi superior no CN e menor na FP, indicando alteração na estrutura das comunidades microbianas em

função da cobertura vegetal. Verificou também que a comunidade fúngica foi mais abundante na FP que no CN. Esse fato indica a importância desses microrganismos como decompositores primários nesse ecossistema, com litter de lenta decomposição. Em FP, o grande acúmulo de litter no solo é devido à difícil decomposição dos acúleos dessa espécie de planta, o que favorece mais populações que atuem na decomposição primária, sendo essa relacionada, principalmente, com a população de fungos (Zinn et al., 2002) [3].

Quanto aos tratamentos PC e SPD, a porosidade total é da ordem de 15 a 20% menor, respectivamente, que no CN. A porosidade de armazenamento de água no solo, microporos, é semelhante entre tratamentos, ao passo que as maiores diferenças são verificadas na macroporosidade. Enquanto esta foi de 46%, em média, da porosidade total no CN, é de 42% no FP, 31% no PC e 23% no SPD. Considerando 0,15 m3 m3 de macroporos como limite à adequada taxa de infiltração no solo, preocupam os resultados apresentados pelo PC e SPD. Primeiramente, o PC, devido ao revolvimento, pode, ainda, estar em processo de consolidação; portanto, muito do espaço aéreo computado como macroporosidade constitui, na realidade, apenas bolsões de vazios, sem continuidade capilar e, portanto, sem efeito significativo sobre a dinâmica de percolação de água. Isso, assim como a deficiência de cobertura morta, pode ter contribuído para a ocorrência de erosão laminar. O SPD, por sua vez, mostra problemas especialmente em profundidades intermediárias, o que pode limitar a infiltração, apesar de a cobertura morta atuar em sentido contrário. Apesar disso, não existiu, na área do SPD, evidência de erosão.

Conclusões

A macroporosidade do solo foi o atributo de maior sensibilidade aos manejos empregados. A presença de erosão no PC indica a necessidade de estudos mais apurados para identificar as causas e o SPD adotado necessita de correção de rumos, para se tornar mais sustentável.

Agradecimentos

Ao pesquisador da Embrapa Milho e Sorgo Dr. Ivanildo Evódio Marriel (<u>imarriel@cnpms.embrapa.br</u>) as informações cedidas.

Referências

[1] BLAKE, G.R. and HARTGE, K.H. Bulk density. In: KLUTE, A, ed. *Methods of soil analysis*. Physical and mineralogical methods. Madison: ASA, p.363-375, 1986.

[2] EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária – Manual de métodos de análise de solo. 2 ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 212p.: il. 1997.

[3] ZINN, Y.L., RESCK, D.V.S., SILVA, J. E.. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. Forest Ecology and Management 166, 285-294p., 2002.

Tabela 1. Porosidade e densidade do solo em diferentes profundidades de um Latossolo Vermelho típico submetido a quatro sistemas de cultivo.

Profundidade	Manejo			
(cm)	PC	SPD	FP	CN
	Macronor	osidade (m³ m⁻³)		
0-5	0,1784 bc1	0,1448 b	0,2606 c	0,2973
5-10	0,1920 c	0,1119ab	0,2505 bc	0,2894
10-15	0,1463abc	0,0896a	0,2092abc	0,2590 b
15-20	0,1404abc	0,0872a	20,78ab	0,1738a
25-30	0,1060a	0,1002ab	0,1948a	0,2351 b
35-40	0,1303ab	0,1116ab	0,2017ab	0,2335 b
	Micropore	osidade (m³ m⁻³)		2
0-5	0,3593a	0,3846a	0,3279a	0,3251a
5-10	0,3532a	0,3934a	0,3347a	0,3293a
10-15	0,3702a	0,3971a	0,3424a	0,3437a
15-20	0,3853a	0,3970a	0,3552a	0,3503a
25-30	0,3921a	0,3917a	0,3521a	0,3447a
35-40	0,3800a	0,3962a	0,488 b	0,3439a
	Porosidad	le Total (m³ m⁻³)		
0-5	0,5589a	0,5553a	0,6052a	0,6429a
5-10	0,5643a	0,5213a	0,6105a	0,6369a
10-15	0,5337a	0,5130a	0,5773a	0,6224a
15-20	0,5444a	0,5002a	0,5875a	0,6058a
25-30	0,5174a	0,5107a	0,5746a	0,6072a
35-40	0,5332a	0,5140a	0,7124 b	0,6044a
8	Densidade	e do solo (g cm ⁻³)		
0-5	1,03a	1,05a	0,89ab	0,79a
5-10	1,02a	1,12a	0,88ab	0,81a
10-15	1,07a	1,13a	0,90 b	0,83a
15-20	1,08a	1,14a	0,94 b	0,85a
25-30	1,07a	1,09a	0,93 b	0,84a
35-40	1,03a	1,05a	0,79a	0,84a

¹ Média proveniente de dez observações; Para um mesmo atributo do solo, médias seguidas de mesma letra, na coluna, não diferem entre si ao nível de 5% de probabilidade, pelo teste de Tuckey.