Influência de Paenibacillus Azotofixans Sobre a Morfologia e Crescimento do Sistema Radicular do Milho (Zea mays L.), em Substrato Hidropônico.

XXIV Congresso Nacional de Milho e Sorgo - 01 a 05 de setembro de 2002 - Florianópolis - SC

IVANILDO E. MARRIEL1; WANESSA A. COSTA 1; ANTÔNIO C. de OLIVEIRA1; EDILSON PAIVA1, LUCY SELDIN, L. 2

¹Embrapa Milho e Sorgo, CP 151, 35700-970, Sete Lagoas, MG e-mail: <u>imarriel@cnpms.embrapa.br</u> ³ UFRJ, Depto de Genética Microbiana, Ilha do Fundão, RJ

Palavras-chave: bactéria diazotrófica, inoculação, fixação biológica, gramínea.

INTRODUÇÃO

Os sistemas agrícolas sustentáveis dependem de alternativas inovadoras de manejo que otimizem a eficiência da utilização de nutrientes pelas culturas. Para o caso do nitrogênio, que responde por parcela significativa do custo da produção de cereais, além de seus impactos negativos sobre o ambiente, a exploração de associações biológicas que contribuam com parte desse nutriente, para a nutrição adequada da cultura do milho, torna-se importante do ponto de vista ecológico e econômico. Inúmeras pesquisas, conduzidas sob variadas condições edafoclimáticas, relatam ganhos em produção de massa seca e de grãos em cereais, inclusive milho, inoculados com bactérias diazotróficas associativas (Bashan & Levanony, 1990; Okon & Labandera-Gonzales; Dobbelaere et al., 2001). Em geral, os benefícios da inoculação com essas bactérias envolvem mecanismos múltiplos, incluindo a contribuição da fixação biológica e alteração do sistema radicular, dentre outros (Garcia de Salomone et al., 1996; Okon & Kapulnik, 1986).

Paenibacillus azotofixans são bactérias fixadoras de nitrogênio encontradas em alta diversidade genética na rizosfera de milho (Seldin *et alli*., 1998), cuja interação bactéria-planta ainda é pouco estudada. Neste trabalho, procurou-se avaliar o impacto da inoculação com uma mistura estirpes de *P. azotofixans*, isoladas de milho, sobre o sistema radicular de diferentes genótipos de milho.

MATERIAL E MÉTODOS

Utilizou-se como inóculo uma suspensão de células obtida da mistura das estirpes CRIP15, CRIP125 e CRIP165 de *P. azotofixans* da coleção do Depto de Genética Microbiana - UFRJ. As estirpes foram crescidas em meio TBN líquido e ajustada para uma concentração final de 107 UFC mL-1. **No bioensaio 1**, as plântulas de duas linhagens de milho crescidas em ágar-água, placas de petri, foram avaliadas aos quatro dias após o início da germinação das sementes. **No bioensaio 2**, as plântulas de duas linhagens de milho crescidas em 50 mL de solução nutritiva, em tubos de vidro, foram avaliadas aos seis dias após a germinação. **No**

bioensaio 3, as plântulas de seis linhagens de milho, crescidas em nove litros de solução nutritiva, com dois níveis de N ($10 \text{ e } 100 \text{ mg L}_{-1}$), em bandejas de plástico, foram avaliadas aos 14 dias após a germinação. Nos três casos, as plântulas foram crescidas na presença e ausência da bactéria. Para as estimativas de área e do comprimento radicular, as raízes foram coradas com cristal violeta, digitalizadas e analisadas, utilizando-se um software para análise de imagens ().

RESULTADOS E DISCUSSÃO

As linhagens utilizadas nesse estudo, quando cultivadas no campo em solo com baixa disponibilidade de N, apresentaram comportamento diferencial em relação à eficiência no uso de N, produção de grãos por unidade de N aplicado (Marriel et al., 2000). Os mecanismos envolvidos nesse processo não estão ainda bem entendidos. Os resultados mostraram que, nas avaliações efetuadas aos quatro (dados não mostrados) e seis dias após a germinação, a massa e morfologia radicular das plantas não foram afetadas significativamente pela inoculação com *Paenibacillus azotofixan* (Tabela 1), embora tenha sido observados acréscimos de 20,70% e 26,1% para área e comprimento de raízes, respectivamente, em relação às plantas não-inoculadas. Nessas duas épocas, houve influência significativa do genótipo em relação ao comprimento radicular.

Tabela 1. Massa seca, área e comprimento radicular de duas linhagens de milho com e sem inoculação com *P. azotofixans* e cultivadas em substrato hidropônico, aos seis dias após a germinação. Valores médios de 5 plantas.

Inoculação	Genó		
11 00 31494 0	Linhagem 2	linhagem 5	Média
	Massa sec	a (gpl ⁻¹)	
Com	0,52	1,15	0,83 A(2,5%)
Sem	0,54	1,08	0,81 A
Média	0,53 ъ	1,11 a	
	Årea (cn	n ² pl ⁻¹)	
Com	8,85	28,99	18,92 A(20,7%)
Sem	9,30	22,00	15,67 A
Média	9,12 b	25,50 a	
	Compri	mento (cm pl ⁻¹)	
Com	89,03	408,05	248,54 A(26,1%)
Sem	90,94	303,21	197,07 A
Média	90,00 ъ	248,54 a	

Com	89,03	408,05	248,54 A(26,1%)
Sem	90,94	303,21	197,07 A
Média	90,00 ъ	248,54 a	

Médias seguidas das mesmas letras maiúsculas (colunas) e minúsculas (linhas) não diferem entre si pelo teste de Tukey (P>0,05).

Aos 14 dias após a germinação, os fatores estudados, inoculação, nitrogênio e genótipo afetaram significativamente (P<0,05) e de forma independente a massa seca das raízes (Tabelas 2 e 3). Ao contrário da redução observada para o efeito de N, observou-se acréscimo da massa seca das raízes nas plantas inoculadas, independente do suprimento de N e do genótipo. Observou-se também efeito positivo e significativo da inoculação (P<0,05) sobre a relação massa seca da raiz/massa seca da parte aérea das plantas, na condição de baixo suprimento de N. Os aumentos observados no sistema radicular das plantas inoculadas sugerem a produção de metabólitos por essas estirpes de bactérias, com atividade de fito-hormônios, alterando as características morfológicas e o crescimento de raízes de plantas de milho cultivadas sob condições controladas. Em diferentes pesquisas, aumentos em crescimento e produção de plantas não – leguminosas, na presença de batérias diazotróficas associativas, têm sido atribuídos ao aumento do sistema radicular e, consequentemente, maior absorção de nutrientes e de água pelas plantas (Okon & Kapulnik, 1986). De acordo com os dados obtidos, independente da idade das plantas e do tratamento de inoculação, observaram-se efeitos significativos de genótipos (P<0,05) sobre as variáveis estudadas.

Tabela 2. Massa seca de raízes das plantas de seis linhagens de milho, com e sem inoculação com *P.azotofixans*, crescidas em substrato hidropônico com dois níveis de N, aos 14 dias após a germinação. Valores médios de três repetições

Nitrogênio	Genótipo	Inoculação		
		Com	Sem	Média
		g 7p1	-1	
	L1	1,06	1,05	1,06 AB
	L2	1,30	1,10	1,20 AB
10 mg L ⁻¹	L3	1,44	1,32	0,38 A
	L4	1,22	0,76	0,99 B
	L5	0,73	0,58	0,65 C
	L6	1,01	0,65	0,83 BC
Média		1,13a	0,92b	
	L1	0,92	0,80	0,86 AB
	L2	1,06	0,96	1,01 A
100 mg L ⁻¹	L3	1,16	0,94	1,05 A
	L4	0,87	0,67	0,77 AB
	L5	0,73	0,53	0,63 B
	L6	0,80	0,73	0,76 AB
Média		0,92a	0,77ь	

Médias seguidas das mesmas letras maiúsculas (colunas) e minúsculas (linhas) não diferem entre si pelo teste de Tukey (P>0,05).

Tabela 3. Relação entre a massa seca de raízes e da parte aérea das plantas de seis linhagens de milho, com e sem inoculação com *P. azotofixans*, crescidas em substrato hidropônico com dois níveis de N, aos 14 dias após a germinação. Valores médios de três repetições

NT(' 1	a:	Inoci	Inoculação	
Níveis de N	Genótipo	Com	Sem	Média
	L1	0,66	0,57	0,61 C
	L2	0,53	0,41	0,47 C
$10 \; { m mg} \; { m L}^{-1}$	L3	0,88	0,70	0,79 B
_	L4	1,17	0,54	0,86 AB
	L5	1,15	0,80	0,97 A
	L6	1,14	0,52	0,58 C
Média		0,92 a	0,59 ხ	
	L1	0,32	0,29	0,31 A
	L2	0,31	0,28	0,30 A
100 mg L ⁻¹	L3	0,32	0,24	0,28 A
	L4	0,40	0,24	0,32 A
	L5	0,39	0,37	0,38 A
	L6	0,37	0,31	0,34 A
Média		0,35 a	0,29 ъ	

Médias seguidas das mesmas letras maiúsculas (colunas) e minúsculas (linhas) não diferem entre si pelo teste de Tukey (P>0,05).

CONCLUSÕES

A inoculação com *Paenibacullus azotofixans* e o genótipo influenciaram a morfologia e o crescimento radicular de milho cultivadas em solução nutritiva, sendo os efeitos da bactéria dependente da idade da planta.

LITERATURA CITADA

- BASHAN, Y; LEVANONY, H. Current status of *Azospirillum* inoculation technology: *Azospirillum* as a challenge for agriculture. **Canadian Journal of Microbiology**, v.36, p.591-605, 1990.
- DOBBELAERE, S., et al.. Responses of Agronomically important crops to inoculation with *Azospirillum*. **Australian Journal of Plant Physiology**, 28,871-879 (2001).
- GARCIA DE SALOMONE, I. E.; DOBEREINER, J.; URGUIAGA, S.; BODDEY, R. M. Biological nitrogen fixation in *Azospirillum* strain-maize genotype associations as evaluated by the 15N isotope diluition technique. Plant and Soil, 23 (3):249-256. 1996. KAPULNIK, Y.; OKON, Y.; HEIS, Y. Changes in root morphology caused by *Azospirillum*

- inoculation. Canadian journal of Microbiology, v.31, p.881-887. 1985.
- LIN, W.; OKON, Y.; HARDY, R.W. Enhanced mineral uptake by *Zea mays* and *Sorghum bicolor* roots inoculated with *Azospirillum brasilense*. **Applied Environment Microbiology**. v.45, p.1775-1779, 1983.
- MARRIEL, I.E.; ALVES, V.M.; VASCONCELLOS; C.A.; FRANÇA, G.E.; GOMES E GAMA, E.E.G.; SANTOS, M.X. E OLIVEIRA, A.C. Variabilidade e Potencial Produtivo de Linhagens da População CMS 28 sob Estresse de Nitrogênio In: **CONGRESSO BRASILEIRO DE MILHO E SORGO, 23,** 2000, Uberlândia, MG, **Resumos...** Uberlândia: CNPMS, SBMS, 2000. p 80..
- OKON, Y & LABANDERA-GONZOLEZ, C. A. Agronomic aplications of *Azospirillum:* Evaluation of 20 years worlwide field inoculation. **Soil Biology Biochemstry**, v.26, p.1591-1601, 1994.
- OKON, Y.; KAPULNIK, Y. Development and function of *Azospirillum*-inoculated roots. **Plant and Soil**, v.90, p.3-18, 1986.
- SELDIN, L., ROSADO, A.S., CRUZ, D.W., NOBREGA, A., VAN ELSAS, J.D. & PAIVA, E. 1998. .Comparison of *Paenibacillus azotofixans* strains isolated from rhizoplane, rhizosphere and non-root-associated soil from maize planted in two different brazilian soils. **Appl. Environ. Microbiol.** <u>64</u>: 3860-3868.

XXIV Congresso Nacional de Milho e Sorgo - 01 a 05 de setembro de 2002 - Florianópolis - SC