Adaptabilidade e Estabilidade de Híbridos de Milho na Região Meio-Norte do Brasil. Ano Agrícola de 2000/2001.

XXIV Congresso Nacional de Milho e Sorgo - 01 a 05 de setembro de 2002 - Florianópolis - SC

M. J. Cardoso1, H. W. L. de Carvalho2, M. de L. da S. Leal2, M. X. dos Santos3 e A. C. Oliveira.3.

1 Embrapa Meio- Norte, Caixa Postal 01, Teresina- PI, E-mail: milton@cpman.embrapa.br, 2 Embrapa Tabuleiros Costeiros, Caixa Postal 44, Aracaju-SE, E-mail: helio@cpatc.embrapa.br e 3 Embrapa Milho e Sorgo, Sete Lagoas, MG, Caixa Postal, 151.

Palavras-chave: Zea mays, interação genótipo x ambiente, cultivares

Empresas públicas e privadas na área de melhoramento de milho lançam, anualmente, no mercado, inúmeros híbridos de milho, os quais podem apresentar comportamento não coincidente quando avaliados nos diferentes ambientes, o que, dificulta, sobremaneira, a identificação daqueles de melhor adaptação. Essa inconsistência no comportamento dos híbridos denomina-se interação híbridos x ambientes e sua importância tem sido detectada em diversos trabalhos no Nordeste brasileiro (Cardoso et al., 2000; Carvalho et al., 2000 e 2001), onde ficou demonstrada a necessidade de selecionar cultivares adaptadas e de maior estabilidade para difusão na Região. Por essa razão, procedeu-se a avaliação de diversos híbridos de milho no Meio-Norte brasileiro, objetivando conhecer a adaptabilidade e a estabilidade desses materiais, para dotar a agricultura regional de híbridos superiores. Foram executados nove ensaios, no ano agrícola de 2000/2001, distribuídos nos Estados do Maranhão (quatro ensaios) e Piauí (cinco ensaios). Utilizou-se o delineamento experimental em blocos ao acaso, com três repetições dos 42 híbridos. Cada parcela constou de quatro fileiras de 5,0 m de comprimento e espaçadas de 0,80 m e 0,25 m entre plantas dentro das fileiras. As adubações realizadas em cada ensaio obedeceram à análise de solo, de cada área experimental, e a exigência da cultura. Os pesos de grãos, de cada tratamento, depois de ajustados para 15 % de umidade, foram submetidos a análise de variância. A análise de variância conjunta obedeceu ao critério de homogeneidade dos quadrados médios residuais. Os parâmetros de adaptabilidade e estabilidade foram estimados segundo a metodologia proposta por Cruz et al. (1989). Na Tabela 1 consta um resumo das análises de variância de cada ensaio e conjunta, para o peso de grãos, detectando-se diferenças (P<0,01) pelo teste F, o que revela comportamento diferenciado entre os híbridos avaliados, dentro de cada local, à exceção do ensaio realizado no município de Palmeiras do Piauí, onde os híbridos apresentaram o mesmo comportamento. A média de produtividade nos ensaios variou de 5.481 kg ha-1, no município de Palmeiras do Piauí a 8.368 kg ha-1, em São Raimundo das Mangabeiras, no Maranhão, destacando-se como mais favoráveis ao desenvolvimento da cultura do milho os municípios de São Raimundo das Mangabeiras, Teresina, Parnaíba e Baixa Grande do Ribeiro, com produtividades superiores a 8.000 kg ha-1. Na análise de variância conjunta ficou evidenciado diferenças marcantes entre os híbridos e inconsistência no comportamento desses materiais nas diferentes condições ambientais. Detectada a presença da interação híbridos x ambientes, procurou-se minimizar o seu efeito por meio da seleção de híbridos de melhor estabilidade fenotípica. Aliado ao modelo bissegmentado de Cruz et al. (1989), considerou-se como híbridos de melhor adaptação aqueles de rendimentos

médios superiores à média geral. As produtividades médias de grãos (b₀) oscilaram de 6.035 kg ha-1 (A 2005) a 7.786 kg ha-1 (AG 1051), com média geral de 6.986 kg ha-1, o que mostra ótimo desempenho produtivo dos híbridos avaliados e o potencial da Região Meio-Norte do Brasil para o desenvolvimento da cultura do milho. Os híbridos de rendimentos superiores à média geral mostraram melhor adaptação, destacando-se, entre eles, os Cargill 747, AG 6690, Pioneer 30 F 33, Pioneer X 1318 H, Zeneca 84 E 90 e AG 1051, apesar de serem semelhantes, estatísticamente, a alguns outros. Analisando-se o comportamento dos híbridos de melhor adaptação, verificou-se que, a estimativa de b1, que avalia o desempenho das cultivares nos ambientes desfavoráveis, mostrou que os híbridos AG 1051, Zeneca 84 E 90, Zeneca 84 E 60, Pioneer 3021, DKB 350, Pioneer 30 F 75 e AG 8080 foram muitos exigentes nessas condições, em razão de apresentarem estimativas de bi superiores à unidade (Tabela 2). A estimativa de b₁ + b₂, que avalia as respostas das cultivares nos ambientes favoráveis, evidenciou que no grupo de materiais de melhor adaptação, apenas os AG 8080 e A2560 responderam à melhoria ambiental (b1 + b2 >1). Nota-se também que no grupo de híbridos de melhor adaptação, à exceção dos Zeneca 8410, BRS 3060, Zeneca 84 E 60, Cargill 747 e Pioneer X 1318 H, os quais mostraram estimativas de R2<80 %, o que indica baixa estabilidade nos ambientes considerados, os demais evidenciaram boa previsibilidade de produção nesses ambientes (R2>80 %). Considerando-se esses resultados, nota-se que o genótipo ideal preconizado pelo modelo bissegmentado (bo alto, b₁<1, b₁+ b₂>1 e desvios da regressão igual a zero)não foi encontrado no conjunto avaliado. Da mesma forma, não foi encontrado qualquer material com adaptação nos ambientes desfavoráveis (b₀ alto, b₁ e b₁ + b₂ <1) no conjunto avaliado. Observou-se, por outro lado, que o híbrido AG 8080 apresentou os requesitos necessários para adaptação nos ambientes favoráveis (bo alto, b1 e b1 + b2>1 e R2 >80 %). Os híbridos Pioneer X 1318 H, Pioneer 30 F 33, AG 6690, Cargill 747, Zeneca 8420, Agromen 3050, A 2366, Dina 657, A 2560, BRS 3060, AG 7575, Zeneca 8410, Agromen 2012 e Zeneca 85 E 03, com estimativas de b₁=1, evidenciaram adaptabilidade geral, justificando suas recomendações na Região.

Literatura citada

CARDOSO, M. J.; CARVALHO, H. W. L de.; LEAL, M. de L da S.;SANTOS, M. X. dos. Estabilidade de cultivares de milho no Estado do Piauí. **Revista Científica Rural**, Bagé, v. 5, n. 1, p. 62-67, 2000.

CARVALHO, H. W. L de.; LEAL, M. de L da S.; CARDOSO, M. J.; SANTOS, M. X. dos. CARVALHO, B. C. L. de.; TABOSA, J. N.; LIRA, M. A.; ALBUQUERQUE, M M. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 1999. **Pesquisa Agropecuária Brasileira**, Brasília, v. 36, n. 4, p. 637-644,2001.

CARVALHO, H. W. L de.; LEAL, M. de L da S.; SANTOS, M. X. dos. MONTEIRO, A. A. T.; CARDOSO, M. J.; CARVALHO, B. C. L. de.. Estabilidade de cultivares de milho em três ecossistemas do Nordeste brasileiro. **Pesquisa Agropecuária Brasileira**, Brasília, v. 35, n. 9, p. 1773-1781,2000

CRUZ, C. D.; TORRES, R.T. de.; VENCOVSKY, R. Alternative approach to the stabilityanalysis proposed by Silva and Barreto. **Revista Brasileira de Genética**., v.12, n. 13, p. 567-582, 1989.

Tabela 1. Média e resumo das análises de variância por local e conjunta para a produtividade de grãos, obtidas nos ensaios de competição de híbridos. Região Meio-Norte do Brasil, 2000/2001.

Híbridos	Sambaiba	S. Raimundo das Mangabeiras	Brejo	Barra do Corda	Teresina	Parnaiba	Palmeiras	Bom	Baixa G.	Análise
								Jesus	Ribeiro	conjunta
AG 1051 ³	7467	8875	5934	7516	9271	9908	5867	5700	9533	7786
Z 84 E 90'	6025	9375	6000	6937	10092	9033	5896	6833	9721	7768
PX 13181	5971	8646	6092	7683	8092	9171	5625	8816	9212	7701
P 30 F 331	6667	9275	5145	7329	9254	8471	5625	7846	7992	7511
AG 6690 ²	5917	9596	6050	6996	7979	8945	5979	6721	8746	7436
C 747 ³	8083	8700	5250	7091	8108	8108	5800	6875	8687	7411
Z 84 E 60'	6233	9175	6229	5437	9891	8441	5304	7201	8437	7372
Z 84201	6775	8862	5225	7305	9029	8421	5908	5937	8666	7348
AGN 30501	5750	8450	5883	7375	8837	7879	6208	6979	8721	7342
A 23661	6842	9062	5902	5896	8237	8446	6141	6604	8791	7325
D 6571	5391	8579	6704	6312	9225	8612	5912	7062	8121	7324
P 3021 ³	4354	9462	5866	8129	8362	8471	5833	6783	8645	7323
A 25601	6887	9891	6154	7008	7787	8404	5962	5867	7925	7321
DKB 350 ²	6104	8929	5458	7241	8812	8570	5167	7042	8396	7302
BRS 3060 ²	6942	9137	5371	8050	7354	7962	5587	6875	8291	7285
AG 75751	5416	8271	5754	7504	8421	8883	5854	6875	8479	7273
P 30 F 751	4850	8958	5700	7058	7425	9467	5608	6658	8679	7156
Z 8410¹	5804	7404	5950	7733	9621	7696	5342	5854	8646	7116
AGN 2012 ³	5987	8487	5441	6204	8367	8692	5783	6179	8846	7110
Z 85 E 03 ²	6358	8696	5117	6750	8643	8433	4917	6708	7516	7016
AG 8080 ²	5883	9683	4321	6983	7946	8437	5096	6512	7958	6980
Colorado 32 ²	5183	8167	4695	8200	7833	8245	5325	6979	7833	6940
BR 3123 ²	5700	7187	5541	7283	8596	6275	5741	6962	8850	6904
BR 206 ³	6229	7750	5521	6183	8187	8150	5187	6695	7454	6817
SHS 50702	5862	7875	5908	6779	8436	6662	5304	6104	8354	6809
SHS 50502	4350	7629	5458	7346	8946	7062	5354	6762	8050	6773
A 3663 ²	7321	7491	5712	7108	7398	7853	5041	5437	7196	6729
HT 52	6112	7687	5204	6604	7975	7321	5687	6779	7103	6719
MR 26011	5546	7650	5687	6537	7267	8037	5250	6958	7433	6707
P 30 F 881	5512	8071	5250	6108	7833	7854	4367	6592	8596	6687
BRS 3101 ²	5775	8375	5629	6971	6687	7646	5892	5837	7312	6681
A 3565 ²	6333	8187	5566	6908	7641	7666	4825	5396	7416	6660
DAS 112 X ¹	4783	8116	5679	7333	7446	7921	4942	6267	7437	6658
AG 9010 ¹	4542	7517	5887	7458	7575	7383	5229	6842	7396	6647
HT 12	5821	8375	5612	5891	6816	7020	5791	6362	7979	6630
AGN 3180 ²	5245	7967	5158	6504	7517	6870	5541	5916	8104	6536
A 22881	5258	8004	6658	5421	7879	7721	4812	5958	7021	6526
A 435 ³	5362	8375	4408	6575	8108	7587	5429	5842	6916	6511
AGN 3150 ²	5329	7708	5491	5633	7887	7175	5458	6325	7504	6501
AGN 3060 ²	5645	7529	5937	6225	7067	7042	4617	5812	7896	6419
BRS 2110 ²	5612	6962	5406	6867	6491	6875	5625	6221	7124	6354
A 20051	5171	7308	4375	4404	7383	7600	5387	6054	6633	6035
Média	5867	8368	5579	6830	8136	8010	5481	6524	8086	6986
C. V. (%)	12	9	9	10	8	7	11	10	7	9
F (H)	4,1**	2,9**	3,1**	4,1**	4,5**	6,1**	1,5ns	3,0**	5,4**	11,7**
F(A)	-	-	-	-	-	-	-	-	-	444,7**
F(HxA)	-	-	-	-	-	-	-	-	-	2,8**
D.M.S(5%)	2279	2495	1700	2216	2257	1826	-	2126	1808	1134

^{**} Significativo a 1 % de probabilidade pelo teste F. 1 Híbrido simples, 2 híbrido triplo e 3 híbrido duplo.

Tabela 2. Estimativas das médias e dos parâmetros genéticos de adaptabilidade e estabilidade de 42 híbridos de milho em nove ambientes da Região Meio-Norte do Brasil, no ano agrícola de 2000/2001. Média geral= 6.986 kg ha-1. Coeficiente de variação = 9 %.

Hibridos	Média (kg/há)			Тъ	Ъ2	[b1.b2	5	R'(%)
	Geral desfavorável			1	1-	1		<u> </u>
AG 1051°	7786	6497	9397	1,29**	-4,07**	-2,78**	1794350,52**	84
Z84E90'	7768	6338	9555	1,45**	-1,10ns	0,34ns	637769,43ns	95
PX 1318'	7701	6837	8630	1,00ms	-4,36**	-2,78**	1952728,25**	75
P30F33'	7511	6522	8748	1,14ns	1,63ns	2,78ns	1115551,65*	87
AG 6690°	7436	6332	8704	1,09ns	2,14ns	3,23ns	446010,82ns	93
C 747°	7411	6620	8401	0,86ns	0,46ns	1,33ns	1982341,31**	68
Z84E60'	7372	6081	8986	1,24**	0,84ns	2,09ns	2465681,70**	78
Z 8420'	7348	6230	8744	1,16ns	-0,08ns	1,07ns	896078,42*	89
AGN 3050'	7342	6439	8472	0,99ns	-0,05ns	0,93ns	449196,05ns	92
A 2366'	7325	6277	8634	0,98ns	0,64ns	1,63ns	1253435,04**	81
D 657'	7324	6776	8634	1,03ns	-0,80ns	0,23ns	1370097,73**	81
P 3021°	7323	6193	8735	1,29**	1,62ns	2,91ns	1929722,95**	83
A 2560'	7321	6376	8502	0,93ns	4,11**	5,04**	1276818,41**	81
DKB 330'	7302	6202	8677	1,23*	0,01ns	1,22ns	159661,85ns	98
BRS 3060°	7285	6565	8186	0,89ns	2,51ns	3,40ns	1375333,80**	77
AG 7575'	7273	6281	8513	1,10ms	-2,59ns	-1,48ns	339776,70ns	95
P 30 F 75'	7156	5975	8632	1,27*	-1,92ns	0,66ns	1633788,16**	84
Z 8410'	7116	6137	8342	1,08ns	3,00*	-1,92ns	2063297,23**	76
AGN 2012°	7110	5919	8598	1,17ns	-1,90ns	-0,72ns	535867,82ns	93
Z85E03'	7016	5970	8322	1,15ns	0,40ns	1,55ns	707429,84ns	91
AG 8080 °	6980	5759	8498	1,35**	2,94ns	4,29*	820349,02ns	93
Colorado 32°	6940	6076	8019	1,12ns	-0,95ns	0,15ns	1705806,43**	81
BR 3123°	6904	6245	7727	0,79ns	-0,42ns	0,36ns	2520111,56**	57
BR 206°	6817	5963	7885	0,90ms	-1,55ns	-0,64ns	461282,36ns	91
SHS 5070°	6809	5991	7832	0,87ns	1,22ns	2,01ns	975820,15*	82
SH2 2020,	6773	5854	7921	1,07ns	-0,38ns	0,68ns	2120359,53**	95
A 3663°	6729	6124	7484	0,66**	-1,16ns	-0,51ns	1839483,41**	57
HT 5°	6719	6077	7521	0,72*	0,50ms	1,23ns	400704,53ns	88
MR 2801'	6707	5996	7597	0,80ms	-1,39ns	-0,59ns	422720,20ns	89
P30F88'	6687	5566	8088	1,21*	-1,16ns	0,04ns	546327,46ns	94
BRS 3101°	6681	6081	7805	0,66**	1,96ns	2,63ns	778271,86ns	78
A 3565°	6660	5805	7727	0,91ns	0,90ms	1,81ns	843326,83*	84
DAS 112 X'	6658	5801	7730	1,00ms	0,06ns	1,06ns	895771,09*	86
AG 9010'	6647	5992	7468	0,82ns	-0,44ns	0,38ns	1442703,18**	72
HT 1'	6630	5896	7547	0,72*	2,63ns	3,38ns	693686,48ns	83
AGN 3180°	6536	5672	7614	0,91ns	1,34ns	2,25ns	429360,57ns	92
A 2288'	6526	5621	7656	0,85ms	0,58ns	1,44ns	1767557,78**	70
A 435°	6511	5523	7746	1,07ns	1,85ns	2,92ns	693838,87ns	91
AGN 3150°	6501	5647	7568	0,85ms	0,42ns	1,27ns	460402,32ns	90
AGN 3060°	6419	5647	7383	0,81ns	-0,03ns	0,77ns	651811,79ns	85
BRS 2110°	6354	5946	6863	0,50**	-0,40ns	0,10ns	344453,72ns	80
A 20051	6035	5078	7231	0,90ns	-0,96ns	-0,06ns	1854053,12**	71

E **Significativamente diferentes da unidade, para b₁ e b₁ + b₂ e zero, para b₂ a 5 % e 1% de probabilidade pelo teste t, respectivamente. * e ** Significativamente diferentes de zero a 5 % e 1 % de probabilidade pelo teste F, para os quadrados médios dos desvios (s)

'Hibdido simples, ² hibrido triplo e ³ hibrido duplo