Comportamento de Cultivares de Milho no Planalto de Vitória da Conquista no Ano Agrícola de 1999/2000.

XXIV Congresso Nacional de Milho e Sorgo - 01 a 05 de setembro de 2002 - Florianópolis - SC

GIDERVAL V. S.1, HÉLIO WILSON L. de C.2, JAZON S. de O.1, VALFREDOV. D.1, HÉLIO da S. M.1, BENEDITO CARLOS L. de C.1 e MANUEL X. dos S.3

1EBDA, Salvador-BA, E-mail: ebdavcon@clubenet.com.br, 2Embrapa Tabuleiros Costeiros, Caixa Postal 44, Aracaju-SE, 3Embrapa Milho e Sorgo, Caixa Posta 152, Sete Lagoas-MG.

Palavras chave: Zea mays, híbridos, variedade

O Planalto de Vitória da Conquista destaca-se como zona de alto potencial para o desenvolvimento da cultura do milho, no estado da Bahia, conforme se tem constatado em trabalhos de competição de cultivares realizado nessa área (Carvalho et al. 2000), registrando-se produtividades médias de até 7 t/ha, ficando demonstrado também nesses trabalhos a superioridade dos híbridos em relação às variedades. Os solos dessa região se prestam às práticas de agricultura mecanizada, facilitando o emprego de tecnologias modernas de produção. A produtividade do milho ainda é baixa, dada à predominância de sistemas de produção de pequenos e médios produtores rurais, que têm limitação de capital e não podem investir em tecnologias de produção. Nesse contexto, torna-se interessante a execução de um programa de melhoramento voltado para a avaliação de variedades e híbridos visando à seleção de materiais adaptados e portadores de características agronômicas desejáveis, que atendam aos diferentes sistemas de produção vigentes na região. Os ensaios foram realizados no município de Barra do Choça, em solo Podzólico Vermelho-Amarelo, com plantio em novembro de 1999. Esse município está localizado na latitude 14° 5`(S), com altitude de 900 m. Foram realizados dois experimentos, sendo um deles constituído por variedades e híbridos, totalizando 36 materiais. O outro ensaio foi formado por 41 híbridos. O delineamento experimental utilizado foi o de blocos ao acaso, com três repetições. Cada parcela constou de quatro fileiras de 5,0 m de comprimento, espaçadas de 0,90m e 0,50m entre covas, dentro das fileiras. Foram colocadas três sementes por cova, deixando-se após o desbaste, duas plantas por cova. Foram colhidas as duas fileiras centrais de forma integral, correspondendo a uma área útil de 9,0 m². As adubações realizadas em cada ensaio, foram de acordo com os resultados das análises de solo de cada área experimental. Foram medidos os dados referentes ao florescimento feminino e peso dos grãos, os quais, foram submetidos à análise de variância, obedecendo ao modelo em blocos ao acaso. Na tabela 1, referente ao ensaio composto por variedades e híbridos, nota-se que os materiais necessitaram, em média, de 66 dias para atingirem a fase de florescimento feminino, destacando-se as variedades CMS 35 e CMS 47 como mais precoces, seguidas da Cruzeta e Assum Preto. No tocante à produtividade de grãos, os materiais avaliados mostraram diferenças genéticas entre si, detectando-se uma variação de 2825 kg/ha a 8.030 kg/ha, com média geral de 5.660 kg/ha, expressando alto potencial para a produtividade de grãos dos materiais avaliados e o potencial da região para a produção do milho. Os materiais que produziram acima da média geral, evidenciaram melhor adaptação (Mariotti et al., 1976),

destacando-se, entre eles, os híbridos Pioneer 3041, Zeneca 8501, AG 1051, Cargill 444, SHS 8447, Pioneer 3021 e BR 206, apesar de não diferirem, estatisticamente, de muitos outros materiais. Vale ressaltar que diversas variedades mostraram comportamento produtivo semelhantes a alguns híbridos, o que evidencia a importância desses genótipos tanto em sistemas de produção de pequenos e médios produtores rurais, quanto em sistemas de produção que utilizam tecnologias modernas de produção. Na tabela estão os resultados obtidos no ensaio de avaliação de híbridos, verificando-se que esses genótipos necessitaram, em média, de 64 dias para atingirem a fase de florescimento feminino, destacando-se como mais precoces, os híbridos Colorado 32 e AG 1051, seguidos dos AG 9010, BR 3123, Zeneca 8550 e SHS 5050. No que se refere ao rendimento de grãos, os híbridos mostraram diferenças significativas entre si, observando-se uma variação de 4.238 kg/ha a 7.244 kg/ha, com média geral de 6.107 kg/ha, o que expressa o alto potencial para a produtividade dos híbridos. Os híbridos que apresentaram rendimentos superiores à média geral, mostraram melhor adaptação (Mariotti et al. 1976), sobressaindo, entre eles, os Pioneer 30 F 33, Dina 500, Dina 1000, DKB 350, e Cargill 909, com rendimentos de grãos superiores a 7 t/ha, apesar de serem semelhantes estatisticamente a alguns outros. Considerando estes resultados, infere-se que a utilização de variedades melhoradas tem importância expressiva nos sistemas de produção dos pequenos e médios produtores rurais. De modo semelhante, os híbridos de melhor adaptação podem provocar mudanças substanciais no rendimento do milho nos sistemas de produção melhor tecnificados.

Literatura citada

CARVALHO, H. W. L. de.; LEAL. M. de L da S.; SANTOS, M. X.; CARDOSO, M. J.; MONTEIRO, A.A. T. Estabilidade de cultivares de milho em três ecossistemas do Nordeste brasileiro. **Pesquisa Agropecuária brasileira**, Brasília, v. 35, n.9, p.1773-1781, 2000.

MARIOTTI, I.^a; OYARZABAL, E.S.; OSA, J.M.; BULACIO, ^a N. R.; ALMADA, G. H. Analisis de estabilidad y adaptabilidad de genotipos de cana de azucar. Interacciones dentro de una localidexperimental. **Revista Agronomica del Nordeste Argentino,** Tuculman, v. 13, n. 14, p. 105-127, 1976.

TABELA 1. Médias e resumo das análises de variância para o florescimento feminino e rendimento de grãos obtidas no ensaio de competição de variedades e híbridos. Barra do Choça, Planalto de Vitória da Conquista, Bahia, 1999/2000.

Cultivares	Florescimento feminino	Rendimento
Pioneer 3041 ³	65	8030
Zeneca 8501 ²	66	7971
AG 1051 ³	64	7493
Cargill 444 ³	66	7347
SHS 84473	65	7117
Pioneer 3021 ³	67	7103
BR 206 ³	69	7002
Agromen 2003 ³	65	6834
AL 254	66	6831
Pioneer 3027 ³	67	6788
Agromen 3100 ³	64	6603
AG 3010 ²	64	6569
Cargill 929 ¹	65	6472
AL 34 ⁴	66	6464
CMS 59 ⁴	67	6096
AL 30 ⁴	66	5855
A 2288 ¹	64	5723
São Francisco ⁴	64	5695
Asa Branca ⁴	64	5612
São Vicente ⁴	66	5546
BRS 2110 ³	66	5430
AL Manduri ⁴	67	5340
Sintético Duro ⁴	67	5318
Sintético Dentado ⁴	68	5211
Bozm Amarillo ⁴	67	5095
Sertanejo ⁴	66	4641
BR 106 ⁴	68	4597
Cruzeta ⁴	61	4497
BRS 4150 ⁴	63	4263
BR 473 ⁴	65	4170
Saracura ⁴	67	4152
Assum Preto ⁴	60	4142
CMS 354	57	4086
CMS 453 ⁴	64	3821
CMS 47 ⁴	57	2909
Guape 209 ⁴	68	2825
Média	66	5660
C. V (%)	3	12
F (T)	5,9**	11,2**
D. M. S (5 %)	6	2307

^{**} Significativo a 1 % de probabilidade pelo teste F.

TABELA 2. Médias e resumo das análises de variância para o florescimento feminino e rendimento de grãos obtidas no ensaio de competição de híbridos. Barra do Choça, Planalto de Vitória da Conquista, Bahia, 1999/2000.

¹ Híbrido simples, 2 híbrido triplo, 3 híbrido duplo e 4 variedade.

Híbridos	Florescimento feminino	Rendimento
Pioneer 30 F 331	64	7244
Dina 5003	66	7221
Dina 10001	66	7185
DKB 350 ²	64	7145
AG 8080 ²	65	7086
Cargill 9091	63	7017
Zeneca 84201	64	6980
Cargill 7473	63	6940
AG 1051 ³	60	6932
Dk 4401	63	6920
Colorado 95601	64	6822
Cargill 333 B ¹	66	6707
Zeneca 8330 ²	64	6647
AG 9010 ¹	61	6628
AG 9090 ¹	62	6471
Pioneer 30 K 751	63	6465
BR 3123 ²	61	6247
Pioneer 30 F 45 ¹	64	6223
Pioneer 30 F 80 ¹	64	6065
AG 8020 ²	64	6046
BRS 3101 ²	63	6021
Pioneer 30 F 88 ¹	65	5975
SHS 4040 ³	64	5916
Braskalb XL 360 ²	65	5885
Zeneca 84 E 901	64	5867
Agromen 2014 ²	66	5835
HT 10 ²	62	5796
Zeneca 8550 ¹	61	5641
Zeneca 83921	62	5632
HT 12	62	5613
Zeneca 8410 ¹	62	5566
HT 92	62	5563
HT 52	63	5414
Colorado 9743 ²	65	5395
SHS 5050 ²	61	5270
BRS 3060 ²	67	5263
Dina 800 E ¹	65	5223
Colorado 342	63	5211
Colorado 32 ²	59	5155
95 HT 74 ²	65	4948
95 HT 91 ²	64	4238
Média	64 5	6107
C.V. (%)		11
F (T)	0,9 ns	4,0**
D.M.S. (5%)		2162

**Significativo a 1% de probabilidade, pelo teste F.

1 Híbrido simples, 2 híbrido triplo e 3 híbrido duplo.