Estabilidade de Híbridos de Milho no Estado do Piauí. I Ano Agrícola de 1999/2000.

XXIV Congresso Nacional de Milho e Sorgo - 01 a 05 de setembro de 2002 - Florianópolis - SC

M. J. Cardoso₁, H. W. L. de Carvalho₂, M. X. dos Santos₃ e A. C. de Oliveira₃.

¹ Embrapa Meio-Norte, Caixa Postal 01, Teresina-PI, E-mail|: milton@cpamn.embrapa.br, ² Embrapa Tabuleiros Costeiros, Caixa Postal 44, Aracaju-SE, ³ Embrapa Milho e Sorgo, Caixa Postal 151, Sete Lagoas-MG.

Palavras chaves: Zea mays, adaptabilidade, produtividade de grãos, interação genótipo x ambiente.

A estimativa da área colhida com milho no Estado do Piauí no ano de 2000 foi de 311.806 ha, com um volume de produção de 349.783 toneladas e produtividade de 1.122 kg ha-1 (Agrianual, 2001). Essa baixa produtividade advém de frequentes problemas de irregularidade pluviométrica e por ser o milho cultivado predominantemente por pequenos e médios produtores rurais, em consórcio com o feijão caupi, arroz e algodão, onde é quase ausente o uso de tecnologias de produção. O volume produzido é insuficiente para atender a demanda estadual, a qual, está estimada em 808.148 toneladas para o ano de 2001 (Sugai et al., 1998). Todavia, o Estado do Piauí possui áreas favoráveis ao desenvolvimento da cultura do milho, localizadas no sudoeste piauiense, centro norte piauiense e norte piauiense, onde o uso de tecnologias de produção é uma constante, com significativo consumo de sementes de milho híbrido, o que poderá provocar aumentos de produtividades de grãos. Diversos trabalhos de competição de cultivares realizados nessa região têm demonstrado bom desempenho produtivo de variedades e híbridos (Cardoso et al., 1997; Cardoso et al., 2000). Nesse contexto, torna-se necessário a avaliação de híbridos de milho na região, visando conhecer a estabilidade de produção desses materiais a fim de subsidiar aos agricultores na escolha daqueles superiores, para fins de recomendação nas diferentes áreas produtoras do Estado. Os ensaios foram instalados no ano agrícola de 1999/2000, nos municípios de Palmeiras do Piauí, Teresina (condições de sequeiro e de irrigação), Rio Grande do Piauí, Guadalupe, Bom Jesus, Baixa Grande do Ribeiro e Parnaíba. Utilizou-se o delineamento experimental em blocos ao acaso, com três repetições dos quarenta e um híbridos. Cada parcela foi constituída de quatro fileiras de 5,0 m de comprimento, espaçadas de 0,90 m e 0,40 m entre covas, dentro das fileiras. Foram colocadas três sementes por cova, deixando-se, após o desbate, duas plantas por cova. As adubações realizadas em cada ensaio foram de acordo com os resultados das análises de solo de cada área experimental e da exigência da cultura. Os pesos de grãos de cada tratamento foram ajustados para 15 % de umidade e submetidos a análise de variância, por local. Após as análises, realizou-se a análise de variância conjunta, considerando os critérios de homogeneidade dos quadrados médios residuais. Os parâmetros de adaptabilidade e estabilidade foram estimados pelo método proposto de Lin & Binns (1988). Á exceção do ensaio realizado no município de Rio Grande do Piauí, onde os híbridos mostraram comportamento semelhante entre si, nos demais locais,

foram observadas diferenças significativas, entre eles, no tocante à produtividade de grãos (Tabela 1). Os coeficientes de variação obtidos oscilaram de 6,7 % a 14,2 % conferindo boa precisão aos ensaios (Scapim et al., 1995). As produtividades médias de grãos nos locais variaram de 5.014 kg ha-1, no município de Bom Jesus, a 10.498 kg ha-1, em Baixa Grande do Ribeiro, com média geral de 8.443 kg ha-1, evidenciando potencialidade para o desenvolvimento da cultura do milho. Foram detectadas também comportamento diferenciado entre os híbridos e comportamento inconsistente desses híbridos ante às variações ambientais (Tabela 1). As produtividades médias nos híbridos oscilou de 7.134 kg ha-1 (96 HT 91) a 9.340 kg ha-1 (AG 1051), destacando-se com melhor adaptação aqueles híbridos de rendimentos médios superiores à media geral, sobressaindo, entre eles, os Dina 800 E, AG 9090, Zeneca 8550, Dina 1000, DK 440, Cargill 333 B e AG 1051, apesar de não diferirem, estatísticamente, de alguns outros. Detectada a presença da interação híbridos x ambientes, procurou-se averiguar a respostas de cada um dos híbridos nos ambientes considerados. A posição relativa desses híbridos com base nas estimativas dos Prs consta na Tabela 2. Nota-se que houve uma maior correspondência entre a classificação com base na média e no Pi geral, comparativamente, às outras posições. Para os ambientes favoráveis, destacaram-se os híbridos Zeneca 8550, Dina 500, DK 440, Dina 1000, Dina 800 E, Zeneca 84 E 90, AG 1051 e Cargill 333 B. Para os ambientes desfavoráveis, sobressairam os AG 1051, DKB 350, Zeneca 8550, Zeneca 8420, AG 8080, Dina 1000, DK 440 e AG9090. A utilização desses híbridos de acordo com os diferentes tipos de ambientes poderá melhorar substancialmente a produtividade do milho na região.

Literatura citadas

AGRIANUAL. FNP Consultoria & Comércio. São Paulo, 2001. 432 p.

CARDOSO, M. J.; CARVALHO, H. W. L de.; LEAL, M. de L da S.;SANTOS, M. X. dos. Estabilidade de cultivares de milho no Estado do Piauí. **Revista Científica Rural**, Bagé, v. 5, n. 1, p. 62-67, 2000.

CARDOSO, M. J.; CARVALHO, H. W. L de.; PACHECO, C. ^a P.; SANTOS, M. X. dos.; LEAL, M. de L da S. Adaptabilidade e estabilidade de milho no Estado do Piauí no biênio 1993/94. **Revista Científica Rural**, Bagé, v. 2, n. 1, p. 35-44, 1997.

LIN, C. S.; BINNS, M. R. A superiority measure of cultivar performance for cultivar x location data. **Canadian Journal of Plant Science**, Ottawa, v. 68, n. 1, p. 193-198, 1988.

SCAPIM, C. A.; CARVALHO, C. G. P. de.; CRUZ, C. D. Uma proposta de classificação dos coeficientes de variação para a cultura do milho. **Pesquisa Agropecuária Brasileira**, Brasília, v. 30, n. 5, p. 683-686, 1995.

SUGAI, Y.; TEIXEIRA FILHO, A. R.; VIEIRA, R. de C. M.; OLIVEIRA, A. J. Projeção da Demanda Regional de Grãos no Brasil – 1996 a 2005. Brasília: Embrapa – SPI/Embrapa – SEA, 1998. 39 p. (Texto para discussão; 2).

Tabela 1. Médias e resumo das análises de variância por local e conjunta para a produtividade de grãos (kg ha-1) obtidas nos ensaios de competição de híbridos. Piauí, 1999/2000.

Hibridos	Palmeiras	Teresina	Teresina	Rio G.	Guada-	Bom Jesus	Baixa G.	Pamaiba	Análise
	do Pianí	Segueiro	imigado	do Pianí	lupe		do Ribeiro		Conjunta
AG 1051°	10979	11354	9942	8454	4500	8541	11312	8414	9340
Cargill 333 B'	10633	11958	8598	8125	5021	8342	11583	8129	9238
DK 440'	9354	10654	8521	8666	6333	8484	12229	8579	9231
Dina 1000'	10079	11083	8824	8312	5126	8842	10896	9306	9170
Zeneca 8550'	8583	12437	8469	9312	5333	8627	11229	7883	9139
AG 9090'	9021	9667	8639	9167	5083	8675	12033	9171	9061
Dina 800 E'	10208	11229	9394	7708	4937	8103	10771	8175	9007
Zeneca 84 E 90'	9312	11541	8998	7563	5708	7722	11333	7437	7964
Zeneca 8420'	8333	9521	9716	8896	4625	7936	11812	8379	8882
AG 8080 '	10417	10229	9598	8250	5687	8508	10833	7721	8819
Dina 500°	9104	11708	7936	8416	5292	7102	10625	8634	8818
DKB 350'	10166	9187	9231	8333	5604	7507	11500	8271	8794
Pioneer 30 F 45'	9729	9062	8917	8008	5646	7746	11250	8316	8718
AG 8020'	9062	9479	8935	8250	5354	8437	10291	7352	8646
Pioneer 30 F 33'	9104	9146	7636	8396	4958	8327	11395	8556	8632
SH2 2020,	9146	9542	8432	8292	5458	8294	1033	7979	8623
BR 3123°	10266	9283	9194	8804	5496	8217	9562	7458	8619
Braskal XL 360°	8833	10458	8917	8291	4687	7289	9854	7673	8581
Zeneca 8330°	9708	9646	7918	8229	5250	8198	10729	7704	8581
Zeneca 8392'	8875	9646	7566	9146	5708	8341	10500	8169	8574
Cargill 909'	8104	9416	8639	8000	5000	7694	11271	7715	8572
Pioneer 30 K75'	8645	8542	8343	9354	4792	7722	11500	8691	8526
BRS 3101'	8917	10742	8029	8167	5500	7526	9604	8552	8493
Colorado 34°	9374	9562	8687	7729	4292	7292	11021	6712	8477
Agromen 2014	10079	7718	8562	8375	5479	8079	10833	7608	8445
Colorado 32°	9646	9625	8073	7604	5104	8127	11039	8571	8388
HT '	8145	11042	8606	8396	4750	7489	9208	7025	8274
HT 10'	8875	9875	8025	7375	4854	7526	10872	7000	8236
Colorado 9560'	9479	6979	8251	7437	5283	8675	10833	7277	8234
Cargill 747°	10304	9156	7478	8083	5291	7460	10104	7158	8225
Colorado 9743°	9020	8729	9342	7150	4666	8094	9625	7250	8170
Zeneca 8410'	8396	10958	7192	8708	4812	6602	8479	7899	8020
Pioneer 30 F 88'	8312	9125	8251	7479	5646	6649	9917	7496	7986
BRS 3060°	8779	9679	8266	8437	4352	7478	9292	6096	7955
Pioneer 30 F 80'	8146	8854	7074	8687	4062	6721	9375	7769	7801
HT9'	7812	9896	7193	8062	4562	7493	9500	6417	7776
AG 9010'	7479	7979	7381	8000	4771	7630	10521	7404	7744
HT 5'	8875	7547	7540	6846	3833	6840	9500	7375	7502
SHS 4040°	8667	9504	6034	7358	4562	7312	8204	7021	7420
95 HT 74°	7896	8041	8276	7250	3896	5743	9625	6427	7380
96 HT 91'	6646	8458	6975	7730	4271	6888	8479	6803	7134
Média	9085	9714	8332	8167	5014	7762	10498	7741	8443
C.V. (%)	8,7	14,2	7,5	9,8	10,6	8,1	6,7	8,5	9,4
F(H)	4,0**	2,4*	5,2**	1,6ns	3,2***	3,6**	5,6**	39**	12,5**
F(A)	+ ′	+ -	+ -	+ ′	+ ′	† ´	+ -		493,1**
F(HxA)					1				2,2**
D.M.S(5%)	2624	4577	2071		1756	2070	2342	2194	1296

Tabela 2. Posição relativa dos híbridos de milho avaliados no Piauí no ano agrícola de 1999/2000, conforme modelo de Lin & Binns (1988), com decomposição do estimador Pi.

¹ Híbrido simples,2 híbrido triplo e 4 híbrido duplo. ** e * Significativos a 5 % e a 1 % de probabilidade, pelo teste F, respectivamente.

Hibridos	P, geral	P, favorável	P, desfavorável	
AG 1051°	AG 1051°	Cargill 333 B'	AG 9090'	
Cargill 333 B'	Cargill 333 B'	AG 1051°	DK 440'	
DK 440'	DK 440'	Zeneca 84 E 90'	Dina 1000'	
Dina 1000'	Dina 1000'	Dina 800 E'	AG 8080°	
Zeneca 8550'	Dina 800 E'	Dina 1000'	Zeneca 8420'	
AG 9090'	Zeneca 8550'	DK 440'	Zeneca 8550'	
Dina 800 E'	Zeneca 84 E 90'	Dina 500°	DKB 350'	
Zeneca 84 E 90'	AG 9090'	Zeneca 8550'	AG 1051,	
Zeneca 8420'	Dina 500°	Colorado 34°	BR 3123°	
AG 8080'	Zeneca 8420'	AG 9090'	Pioneer 30 F 45'	
Dina 500°	DKB 350'	Braskal XL 360°	Pioneer 30 K75'	
DKB 350'	Pioneer 30 F 45'	Zeneca 8330°	2H2 2020,	
Pioneer 30 F 45'	AG 8080°	HT 10°	Cargill 333 B'	
AG 8020'	SHS 2020°	Zeneca 8420'	Agromen 2014	
Pioneer 30 F 33'	AG 8020'	DKB 350'	Zeneca 8392'	
SH2 2020,	Braskal XL 360°	AG 8020'	Dina 800 E'	
BR 3123°	Zeneca 8330°	Pioneer 30 F 45'	AG 8020'	
Braskalb XL 360°	BRS 3101 °	SHS 5050°	BRS 3101'	
Zeneca 8330°	Pioneer 30 F 33'	Pioneer 30 F 33'	Pioneer 30 F 33'	
Zeneca 8392'	BR 3123°	Cargill 909'	Cargill 909'	
Cargill 909'	Cargill 909'	BRS 3101'	Zeneca 8330°	
Pioneer 30 K75'	Zeneca 8392'	AG 8080°	Colorado 32°	
BRS 3101'	Colorado 34°	Zeneca 8392'	Zeneca 84 E 90'	
Colorado 34°	Pioneer 30 K75'	BR 3123°	Braskalb XL 360°	
Agromen 2014	HT 10'	HT1 '	Dina 500°	
Colorado 32°	HT1 '	Cargill 747°	HT1 '	
HT1 '	Colorado 32°	Colorado 32°	Colorado 9560'	
HT 10'	Agromen 2014°	BRS 3060°	Colorado 9743°	
Colorado 9560'	Cargill 747°	Pioneer 30 K75'	Cargill 747°	
Cargill 747°	Colorado 9743	Colorado 9743°	Pioneer 30 F 88'	
Colorado 9743	Zeneca 8410'	Zeneca 8410'	Zeneca 8410'	
Zeneca 8410'	Pioneer 30 F 88'	Pioneer 30 F 88'	AG 9010'	
Pioneer 30 F88'	BRS 3060°	Agromen 2014	HT 10'	
BRS 3060°	Colorado 9560'	HT 9'	Colorado 34°	
Pioneer 30 F 80'	HT9°	Pioneer 30 F 80'	BRS 3060°	
HT9'	BRS 3101°	Colorado 9560'	Pioneer 30 F 80'	
AG 9010'	AG 9010'	95 HT 74°	HT 9'	
HT 5'	HT 5'	HT 5°	HT 5'	
SHS 4040°	95 HT 74°	SHS 4040°	SHS 4040°	
95 HT 74°	SHS 4040°	AG 9010'	96 HT 91°	
96 HT 91'	96 HT 91°	96 HT 91'	95 HT 74'	

XXIV Congresso Nacional de Milho e Sorgo - 01 a 05 de setembro de 2002 - Florianópolis - SC