ADAPTABILIDADE E ESTABILIDADE DE HÍBRIDOS DE MILHO NA REGIÃO MEIO-NORTE DO BRASIL NO ANO AGRÍCOLA DE 1999/2000

*Pesquisa financiada pela Embrapa e Banco do Nordeste

Milton José Cardoso¹, Hélio Wilson Lemos de Carvalho², Maria de Lourdes da Silva Leal², Manoel Xavier dos Santos³ e Antonio Carlos de Oliveira³

¹Embrapa Meio-Norte, Caixa Postal 01, 64.006-220, Teresina, Piauí, Brasil, e-mail: milton@cpamn.embrapa.br. ²Embrapa Tabuleiros Costeiros, Caixa Postal 44, 49.025-040, Aracaju, Sergipe, Brasil, e-mail: helio@cpatc.embrapa.br. ³Embrapa Milho e Sorgo, Caixa Postal 151, 35701-970, Sete Lagoas, Minas Gerais, Brasil, e-mail: xavier@cnpms.embrapa.br. oliveira@cnpms.embrapa.br.

No ano agrícola de 1999/2000, foram avaliados 41 híbridos de milho em treze ambientes da Região Meio- Norte do Brasil, visando conhecer a adaptabilidade e a estabilidade de comportamento destes genótipos para fins de recomendação. Foi utilizado o delineamento experimental em blocos ao acaso, com três repetições. Na análise de variância conjunta foram encontradas diferenças entre os ambientes e os híbridos e detectado comportamento inconsistente dos híbridos frente as oscilações ambientais. A produtividade média alcançada (8.056 kg.ha⁻¹) evidencia tanto a potencialidade da região para o desenvolvimento da cultura do milho, quanto o potencial dos híbridos avaliados, colocando a região em condições de competir com as áreas tradicionais de cultivo do milho no país. Não foi encontrado o híbrido ideal preconizado pelo modelo, nem qualquer híbrido que atendesse todos os requisitos para adaptação nos ambientes desfavoráveis. Para os ambientes favoráveis, destacou-se o híbrido Cargill 333 B.

Palavras-chave: interação genótipos x ambientes, Nordeste brasileiro, Zea mays.

Adaptability and stability of corn hybrids in the Middle-North of Brazil in the agricultural year of 1999/2000. In the 1999/2000 cropping year, 41 hybrid corn materials were evaluated under thirteen different environmental conditions of the Middle-North Region of Brazil, to test their adaptability and stability, aiming their recommendation as cropping materials. A randomized blocks experimental design, with three replications was used. In the jointed analysis of variance differences among environments and hybrids were found, as well as an inconsistent hybrid behavior under the environmental condictions. The average productivity (8,056 kg.ha⁻¹) indicates the good potential of the tested hybrids and the suitability of the tested region for the corn culture, being as good as the traditional areas of corn cultivation in the country. The ideal hybrid searched in the model, was not found, nor any hybrid with all the requirements for adaptation to the unfavorable environments. For the favorable environments Cargill 333 B hybrid stood out

Key words: genotype x environment interaction, Brazil Northeast, Zea mays.

Introdução

O milho é cultivado em toda a extensão do Meio-Norte do Brasil, predominando, os sistemas de cultivos dos pequenos e médios produtores rurais, onde a produtividade média é baixa (700 kg.ha-1). Entretranto, a Região apresenta grande potencial para o desenvolvimento da cultura do milho, conforme se tem constatado em trabalhos de competição de cultivares executados nas messoregiões do Norte Piauiense, Centro Norte Piauiense e Sudoeste Piauiense nos municípios de Teresina, Parnaíba, Itaueira, Rio Grande do Piauí e Uruçuí no Estado do Piauí (Cardoso et al.,1997 e 2000 a), bem como o potencial da cultura verificado nas regiões Sul e Leste do Maranhão (Pioneer, 1999). Nessas áreas foram registradas produtividades médias acima de 8.000 kg.ha-1, ficando também registrada a superioridade dos híbridos em relação às variedades.

O desenvolvimento, nessa Região, de um programa de melhoramento voltado para a avaliação de híbridos visando à seleção de materiais adaptados e dotados de atributos agronômicos consistentes frente às variações ambientais, torna-se de extrema importância para subsidiar os produtores na escolha de melhores híbridos. Por essa razão, anualmente, vem-se desenvolvendo uma rede de avaliação de híbridos procedentes de diversas empresas e de órgãos oficiais produtoras de sementes híbridas, incluindo genótipos disponíveis no mercado e em fase de pré-lançamento, com o propósito de avaliar o desempenho destes no que tange a adaptação e a atributos agronômicos desejáveis.

Carneiro (1998) ressalta que a recomendação generalizada de cultivares, sem considerar a ocorrência de ambientes favoráveis e desfavoráveis, pode beneficiar ou prejudicar os materiais com adaptações específicas a estes dois tipos de ambientes. O mesmo autor salienta ainda que é possível que a melhor cultivar em um determinado ambiente, não seja em outro, gerando uma inconsistência de comportamento das cultivares nos diversos ambientes. Essa inconsistência no comportamento de materiais em face das variações ambientais denomina-se interação cultivar x ambientes e, exerce importância expressiva na recomendação de cultivares. Diversos trabalhos na literatura ressaltam a importância e a influência dessa interação conforme reportado por Arias (1995). Diversos autores têm registrado no Nordeste brasileiro a presença dessa interação (Lira et al., 1993; Cardoso et al., 1997, 2000 a e 2000 b; Carvalho et al., 1999 a, 2000 a e 2000 b), sendo que em todos esses casos, tem-se procurado amenizar o efeito dessa interação através da recomendação de material de melhor estabilidade fenotípica.

Considerando esses aspectos, desenvolveu-se este trabalho visando conhecer a adaptabilidade e a estabilidade de comportamento de híbridos de milho para posterior recomendação e exploração na Região Meio-Norte do Brasil.

Material e Métodos

Na Tabela 1 constam os índices pluviométricos (mm) registrados no decorrer do período experimental, com uma variação de 1.010,1 mm (Teresina – PI) a 1.661,7 mm (São Raimundo Mangabeira – MA). As coordenadas geográficas de cada município, os quais estão compreendidos entre os paralelos 2º 53' e 9º 04' S são apresentadas na Tabela 2.

As instalações dos ensaios, sob regime de sequeiro, ocorreram, em novembro de 1999, nos municípios de Palmeiras do Piauí e Bom Jesus, no Piauí, em dezembro de 1999, nos municípios de Baixa Grande do Ribeiro, no Piauí e, São Raimundo Mangabeira, Sambaíba e Barra do Corda, no Maranhão, em janeiro de 2000, em Teresina, Parnaíba, Guadalupe e Rio Grande do Piauí, no Piauí e, Anapurus, no Maranhão. Em junho de 2000 foram instalados os ensaios, sob regime de irrigação, nos municípios de Teresina e Parnaíba.

O delineamento experimental utilizado foi o de blocos ao acaso, com três repetições. Os tratamentos constaram de 41 híbridos. Cada parcela constou de quatro fileiras de 5,00 m de comprimento, espaçadas de 0,90 m e 0,50 m entre covas. Foram colocadas três sementes por cova, deixando-se após desbaste, duas plantas por cova. Foram colhidas as duas fileiras centrais de forma integral, correspondendo a uma área útil de 9,0 m². As adubações de fundações e coberturas foram feitas de acordo com a recomendação das análises químicas do solo e da exigência da cultura.

Os pesos dos grãos, após serem ajustados para 15 % de umidade, foram submetidos a análise de variância, obedecendo ao modelo em blocos ao acaso. Após a análise de cada ensaio, efetuou-se a análise de variância conjunta, obedecendo ao critério de homogeneidade dos quadrados médios residuais. As referidas análises foram efetuadas utilizando-se o Statistical Analysis System (SAS Institute, 1996) para dados balanceados (PROC ANOVA).

Os parâmetros de adaptabilidade e estabilidade foram estimados utilizando-se o método de Cruz et al. (1989), o qual baseia-se na análise de regressão bissegmentada, tendo como parâmetros de adaptabilidade a média (b_0) , e a resposta linear aos ambientes desfavoráveis (b_1) , e aos

ambientes favoráveis (b_1+b_2). A estabilidade dos materiais é avaliada pelos desvios da regressão s_{ij}^2 de cada material , de acordo com as variações ambientais.

Foi utilizado o seguinte modelo:

$$Y_{ii} = b_{0i} + b_{1i}I_i + b_{2i}T(I_i) + \delta_{ii} + \overline{\epsilon}_{iik} \ tal \ que \ :$$

 Y_{ij} : média da cultivar i no ambiente j; I_j : índice ambiental; $T(I_j)=0$ se $I_j<0$; $T(I_j)=I_j-\overline{I}_+$ se $I_j>0$, sendo \overline{I}_+ , a média dos ambientes (I_j) positivos; b_{0i} : média geral da cultivar i; b_{ij} : coeficiente de regressão linear associado à variável I_j ; b_{2i} : coeficiente da regressão linear associado à variável $T(I_j)$; d_{ij} : desvio da regressão linear; e_{ijk} : erro experimental médio.

Resultados e Discussão

As produtividades médias de grãos e os resultados das análises de variância de cada local estão relacionados na Tabela 3, onde se constatam efeitos significativos entre os híbridos em doze dos treze ensaios, o que evidencia variações entre os híbridos em vários ambientes. Os coeficientes de variação obtidos oscilaram de 7 % a 14 %, conferindo boa precisão aos ensaios (Scapim et al., 1995). A média de produtividade nos ensaios variou de 5.014 kg.ha-1 (Guadalupe - PI) a 10.498 kg.ha-1 (Baixa Grande do Ribeiro – PI) o que expressa uma ampla faixa de variação nas condições ambientais em que foram realizados os ensaios, indispensável para o estudo da

Tabela 1. Índices pluviométricos (mm), registrados nas áreas experimetais, durante o período de novembro de 1999 a maio de 2000. Região Meio-Norte do Brasil, ano agrícola de 1999/2000.

Locais		199	9	H A M	2000			Total
	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	
Teresina		4 B.	306,8*	329,8	298,4	68,4	6,7	1010,1
Parnaíba	-	48 5 3	166,5*	233,9	157,5	391,5	201,1	1150,1
Guadalupe	-	-	173,0*	312,0	369,5	147,0	64,6	1066,1
R. G. do Piauí	-	_	185,0*	310,0	390,4	128,2	50,1	1063,7
Palmeiras	345,0*	236,5	224,0	265,0	135,5	102,0	31,2	1339,2
Bom Jesus	266,0*	365,0	149,5	172,0	179,0	200,0	35,0	1366,5
B. G. do Ribeiro	-	277,5	173,0	364,5	367,0	91,5	9,0	1282,5
S. R. Mangabeira	-	351,3*	366,4	401,6	364,5	159,8	18,1	1661,7
Sambaíba	-	347,0*	231,0	399,0	245,0	93,0	18,0	1333,0
Barra do Corda	200	235,8*	139,0	212,6	266,0	214,4	89,7	1157,5
Anapurus	-	-	207,0*	254,0	321,0	426,0	245,0	1453,0

^{*} Mês de plantio.

Tabela 2. Coordenadas geográficas dos municípios. Região Meio- Norte do Brasil, 1999/2000.

Estados	Municípios	Latitutude (S)	Longitude (W)	Altitude (m)
Piauí	Teresina	5° 05'	42° 49'	72
Flaui		2°41'	42 49 41°41'	
	Parnaíba			15
	Guadalupe	6° 56'	43°50'	180
	Rio Grande do Piauí	7° 56'	43° 13'	270
	Palmeiras do Piauí	8° 43'	44° 14'	270
	Bom Jesus	9° 04'	44° 21'	277
	Baixa G. do Ribeiro	7°21'	45° 14'	325
Maranhão	S. R. Mangabeira	7° 32'	45° 36'	225
	Sambaíba	7° 08'	45°20'	212
	Barra do Corda	5° 43'	45°18'	84
	Anapurus	3° 55'	43° 30	83

Fonte: IBGE, Cadastro de cidades e vilas do Brasil 1999 e malha municipal digital do Brasil. (www.ibge.gov.br)

Tabela 3. Produtividade média de grãos (kg.ha⁻¹) dos híbridos nos treze ambientes e resumo das análises de variância por local. Região Meio- Norte do Brasil, ano agrícola de 1999/2000.

Híbridos		Maranhão				Piauí							
	Sambaíba	Anapurus	S. Raimundo Mangabeira	Barra do Corda	Palmeiras do Piauí	Teresina Sequeiro	Teresina irrigado	BaixaGrande do Ribeiro	Bom Jesus	Guadalupe	Rio Grande do Piauí	Parnaíba Sequeiro	Parnaíb irrigad
AG 1051 ³	9583	8729	9504	5667	10979	11354	9942	11312	8541	4500	8454	8414	10566
Dina 1000 ¹	9250	7396	8916	6165	10079	11083	8824	10856	8842	5126	8312	9306	10058
DK 440 ¹	9000	7437	8083	5896	9354	10564	8521	12229	8484	6333	8666	8579	10258
Cargill 333 B ¹	7792	7333	8604	5673	10633	11958	8598	11583	8342	5021	8125	8129	10758
Zeneca 85501	8625	6271	9062	6104	8583	12437	8469	11229	8627	5333	9312	7883	10379
Dina 800 E ¹	8667	7729	8916	5375	10208	11229	9394	10771	8103	4937	7708	8175	10537
Zeneca 84201	8843	6958	9896	5479	8333	9529	9716	11812	7936	4625	8896	8379	10717
AG 9090 ¹	8104	7979	8396	4979	9021	9667	8639	12033	8675	5083	9167	9171	10092
Pioneer 30 F 331	9000	7166	9437	5958	9104	9146	7636	11935	8327	4958	8396	8556	9633
OK 350 ²	8583	7312	8562	5625	10166	9187	9231	11500	7507	5604	8333	8271	9346
Zeneca 84 E 901	7583	7458	7980	5479	9312	11541	8998	11333	7722	5708	7562	7437	11058
AG8080 ²	7812	7512	8146	5958	10417	10229	9598	10833	8508	5687	8250	7721	8129
Pioneer 30 F 45 ¹	8475	6417	8250	7187	9729	9062	8917	11250	7746	5646	8008	8316	9792
Zeneca 83921	8167	7854	9270	6190	8875	9646	7566	10500	8341	5708	9146	8169	9216
Dina 500 ³	8225	7771	8500	4792	9104	11708	7636	10625	7102	5292	8416	8634	10542
AG 8020 ¹	8959	7771	8750	4812	9062	9479	8935	10291	8437	5354	8250	7352	10654
Pioneer 30 k 75 ¹	8042	7041	9291	5521	8645	8542	8343	11500	7722	4792	9354	8691	9141
Zeneca 8330 ²	8025	6858	8437	5479	9708	9646	7918	10729	8198	5250	8229	7704	9846
BRS 3101 ²	6854	8521	8375	5425	8917	10742	8029	9604	7526	5500	8167	8552	9400
3R 3123 ²	8083	6725	7962	4979	10266	9283	9194	9562	8217	5496	8604	7458	9487
Braskalb XL 360 ²	6667	8021	7604	5529	8833	10458	8917	9854	7269	4687	8291	7673	11246
SHS 5050 ²	8125	6958	7000	5187	9146	9542	8432	10333	8294	5458	8292	7979	10129
Colorado 95601	8250	8687	7979	5187	9479	6979	8251	108333	8675	5283	7437	7277	9896
Colorado 32 ²	7979	7479	7625	5541	9646	9625	8073	11039	8187	5104	7602	8571	7704
Cargill 909 ¹	7800	6729	7646	4637	8104	9416	8639	11271	7674	5000	8000	7715	11325
Agromen 2014 ²	7867	7437	7062	5562	10079	7718	8562	10833	8079	5479	8375	7608	9271
Colorado 34 ²	7479	6575	7437	5958	9374	9562	8687	11021	7293	4292	7729	6712	11621
Cargill747 ³	8417	6854	8166	5483	10304	9156	7478	10104	7460	5291	8083	7158	8996
Zeneca 8410 ¹	8417	7396	9896	4750	8396	10958	7192	9479	6602	4812	8708	7898	8133
3RS 3060 ²	8667	7896	8208	4937	8779	9679	8266	9292	7478	4352	8437	6096	9217
HT 1 ²	7625	6487	6896	5137	8145	11042	8606	9208	7469	4750	8396	7025	9829
Pioneer 30 F 881	7229	7125	8854	4958	8312	9125	8251	9917	6649	5646	7479	7496	90004
Colorado 9743 ²	7417	6416	7729	4729	9021	8729	9342	9625	8094	4666	7150	7250	9654
Pioneer 30 F80 ¹	8396	7021	8039	5312	8146	8854	7074	9375	6721	4062	8687	7769	9525
HT 10 ²	7542	5875	6250	4550	8875	9875	8025	10872	7526	4854	7375	7000	9725
TT 92	6979	6708	7916	4312	7812	9896	7193	9500	7493	4562	8062	6417	9040
G 9010 ¹	7708	6250	7416	4246	7479	7979	7381	10521	7650	4771	8000	7404	8512
IT 5 ²	8187	6833	7408	5000	8875	7547	7540	9500	6840	3833	6846	7374	9162
HS 4040 ³	7542	6125	6958	5146	8667	9504	6034	8208	7317	4562	7583	7021	7883
95 HT 74 ²	7354	6479	7333	4521	7896	8041	8276	9625	5744	3896	7250	6427	9262
06 HT 91 ²	7896	5729	7004	5300	6646	8458	6975	8479	6888	4271	7730	6606	8158
	8078	7156	8164	5335	9085	9714	8332	10498	7762	5014	8167	7741	9681
Média	10	9	8	9	9083	14	7	7	8	11	10	9	8
C. V. (%)	*	**	**	**	**	*	**	**	**	**	ns	**	**
	2639	2245	2290	1674	2624	4577	2071	2342	2070	1756	113	2194	2548
O. M. S. (%)	2039	2243	2290	10/4	2024	43//	2071	4344	2070	1/30		2174	2340

^{***} significativo a 5 % e 1% de probalidade pelo teste f, ns= não significativo

¹ Híbrido simples; ² híbrido triplo e ³ híbrido duplo.

performance dos materiais. A média geral detectada nos treze ambientes foi de 8.056 kg.ha⁻¹, mostrando a potencialidade da região para o desenvolvimento da cultura do milho, sobressaindo os municípios de Sambaíba e São Raimundo Mangabeira, no Maranhão e, Palmeiras do Piauí, Teresina, Baixa Grande do Ribeiro, Rio Grande do Piauí e Parnaíba, no Piauí, com produtividades médias acima da média geral, destacandose como os ambientes mais favoráveis para a exploração do milho. Vale ressaltar, que as produtividades médias obtidas nessas localidades, colocam essa região em condições de competir com a exploração do milho com as áreas dos Estados da Bahia, Goiás e Mato Grosso, com a vantagem de estar próximo aos centros consumidores (capitais dos estados).

As análises referentes aos híbridos, ambientes e interação híbridos x ambientes foram significativas pelo teste F, o que evidencia diferenças entre eles e comportamento diferenciado frente aos ambientes (Tabela 4). Interações significativas têm sido detectadas em trabalhos de competição de cultivares realizados na Região Nordeste do Brasil (Cardoso et al., 2000a e 2000b; Carvalho et al., 1999a e 2000b), onde minimizou-se o seu efeito, selecionando-se cultivares com maior estabilidade fenotípica (Ramalho et al., 1993).

Em razão, portanto, da significância da interação híbridos x ambientes, foram verificadas as respostas de cada um dos híbridos, pelo método de Cruz et al., (1989), o qual busca como cultivar ideal aquela que apresenta alta produtividade (b₀ alto), adaptabilidade a ambientes desfavoráveis (b₁ o menor possível), e é capaz de responder às melhorias do ambiente (b₁+b₂ o maior possível), além de apresentar a variância dos desvios da regressão próxima ou igual a zero.

A produtividade média de grãos obtida nos treze ambientes foi de 8.056 kg.ha⁻¹, com variação de 6.934 kg.ha⁻¹ (96 HT 91) a 9.042 kg.ha⁻¹ (AG 1051), constatandose que os híbridos melhor adaptados à Região Meio- Norte do Brasil apresentaram rendimentos médios superiores à média geral.

Entre os híbridos de melhor adaptação, apenas os Pioneer 30 F 45, Dina 500 e BR 3123 apresentaram estimativas de b_1 < 1, caracterizando-se como menos exigentes nas condições desfavoráveis. Por outro lado, os híbridos AG 1051, Dina 800 E, Cargill 333 B e Zeneca 8420, de produtividades médias superiores à media geral, mostraram ser muito exigentes , em virtude de apresentarem estimativas de b_1 superiores a unidade, tendo, portanto, recomendação para os ambientes favorá-veis. Os demais híbridos, que apresentaram estimativas de b_1 =1 e, associaram essa característica a produtividades médias

superiores à média geral, expressando boa adaptação, justificaram as suas recomendações para a região.

Os valores de $b_1 + b_2$, que avaliam as respostas dos materiais nos ambientes favoráveis, mostraram que, entre os híbridos de produtividades médias, apenas os DK 440, Cargill 333 B e Zeneca 84 E 90, responderam à melhoria ambiental ($b_1 + b_2 > 1$).

Com relação à estabilidade (Tabela 5), nota-se que entre os híbridos de melhor adaptação, dez deles mostraram os desvios da regressão significativamente diferentes de zero, o que evidencia baixa estabilidade nos ambientes considerados, apesar de esses híbridos, à exceção do AG 8080, apresentarem estimativas de R² acima de 80 %, indicando um bom ajuntamento das retas de regressão, o que mostra que o grau de imprevisibilidade desses híbridos não deve ser prejudicado (Cruz et al., 1989). Os híbridos DK 440, Cargill 333 B, AG 1051, Dina 800 E, Dina 1000, Zeneca 84 E 90 e Zeneca 8330 tiveram estimativas de R² oscilando entre 93 % e 97 %, expressando melhor estabilidade nos ambientes considerados.

Considerando esses resultados, depreende-se que o material ideal preconizado pelo modelo (Cruz et al., 1989), ou seja, aquele que expressa uma média de produtividade alta, o b, menor possível (menos exigente nos ambientes desfavoráveis), o b₁ + b₂ o maior possível (responsivo à melhoria do ambiente), e variância dos desvios da regressão próxima ou igual a zero (alta estabilidade nos ambientes considerados), não foi encontrado entre os híbridos avaliados (Tabela 5). Trabalhos realizados no Nordeste brasileiro, avaliando híbridos em vários ambientes não detectaram a existência de qualquer híbrido que atendesse a todos os requisitos necessários para ser caracterizado como genótipo ideal preconizado pelo modelo supracitado, conforme ressaltam Cardoso et al., (1997, 2000 a); Monteiro et al. (1998) e Carvalho et al. (1999 b, 2000 a e 2000 b). Trabalhos relatados por Arias (1995) e Carneiro (1998) avaliando diversas safras de milho nos Estados do Mato Grosso e Paraná, respectivamente, corroboram essas informações. Em se

Tabela 4. Análise de variância conjunta para produtividade de grãos de 41 híbridos de milho em treze ambientes da Região Meio-Norte do Brasil. Ano agrícola 1999/2000.

Fonte de variação	Graus de liberdade	Quadrado médio
Ambientes (A)	12	309170187,5**
Híbridos (H)	40	9600324,5**
Interação (AxH)	480	1347862,2**
Resíduo	1040	589974,4

^{**} Significativo a 1 % de probabilidade pelo teste F.

Tabela 5. Estimativas das produtividades médiasde grãos e dos parâmetros de adaptabilidade e estabilidade de 41 híbridos de milho em treze ambientes na Região Meio- Norte do Brasil. Ano agrícola de 1999/2000.

Híbridos	Médias (k.ha ⁻¹)			b ₁	b_2	$b_1 + b_2$	σ_{ij}	R ²
	Média	Favorável	Desfavorável	5.056	ne Maun	stindagosi	čelnemoši sa	2
AG 1051 ³	9042	7170	10211	1,32**	-0,38ns	0,94ns	950405,6ns	94
Dina 10001	8789	7367	9677	1,06ns	-0,07ns	0,99ns	800873,6ns	93
DK 440 ¹	8730	7346	9596	0,93ns	0,50*	1,43*	502814,0ns	95
Cargill 333 B ¹	8658	6900	9756	1,17*	0,50*	1,68**	744290,4ns	95
Zeneca 85501	8640	6840	9762	1,13ns	0,10ns	1,23ns	2463035,9**	83
Dina 800 E ¹	8596	6864	9679	1,18*	-0,04ns	1,14ns	743316,6ns	94
Zeneca 84201	8547	6675	9716	1,25**	-0,42*	0,83ns	1558321,7**	89
AG 90901	8539	7172	9390	1,09ns	0,13ns	1,23ns	1125394,6*	9
Pioneer 30 F 33 ¹	8404	6993	9286	1,01ns	0,01ns	1,02ns	1553223,6**	80
DK 350 ²	8402	6864	9363	1,00ns	-0,07ns	0,92ns	909946,4ns	9
Zeneca 84 E 901	8398	6761	9421	1,02ns	0,70**	1,72**	927020,6ns	93
AG8080 ²	8369	7077	9177	0,88ns	-0,01ns	0,88ns	1839180,9**	79
Pioneer 30 F 45 ¹	8369	7062	9185	0,79ns	0,22ns	1,02ns	1320243,8*	83
Zeneca 8392 ¹	8358	6718	9382	1,12ns	0,22ns	1,33ns	1467341,0**	89
Dina 500 ³	8357	7252	9048	0,80ns	-0,08ns	0,71ns	803916,9ns	8
AG 8020 ¹	8316	6745	9297	1,08ns	-0,34ns	0,75ns	729651,6ns	93
Pioneer 30 k 75 ¹	8202	6753	9107	1,04ns	-0,31ns	0,72ns	1735962,0**	83
Zeneca 8330 ²	8164	6718	9067	0,98ns	0,10ns	1,09ns	246165,4ns	9
BRS 3101 ²	8124	6565	9100	1,04ns	-0,41*	0,62*	1011307,9ns	89
BR 3123 ²	8103	7105	8727	0,80*	0,21ns	1,01ns	1483836,0**	8
SHS 5050 ²	8090	6835	8875	0,80°	0,2111s	1,32ns	723934,3ns	92
Braskalb XL 360 ²		6636	8984	0,92ns	0,18hs	1,32ns	1997628,8**	83
Colorado 9560 ¹	8016	7022	8638	0,82*	0,32ns	0,88ns		6
Colorado 32 ²	8009	6964	8661	0,84ns	0,00ns 0,24ns	1,08ns	3291696,3** 1671184,7**	8
Cargill 909 ¹	7997	6351	9025		0,24ns 0,33ns	1,44*	1176934,4*	9
Agromen 2014 ²		6833	8721	1,11ns 0,83ns	0,33ns 0,10ns	0,93ns		7
-	7995 7980				0,10hs 0,46*	1,57**	1883524,6**	88
Colorado 34 ²	7919	6166 6449	9113	1,10ns			1676069,8**	
Cargill747³	7895	6292	8838	0,93ns	-0,11ns	0,82ns	1006571,2ns	88
Zeneca 8410 ¹			8901	1,07ns	-0,61**	0,45** 0,50**	2966440,4**	74
BRS 3060 ²	7792	6152	8818	1,08ns	-0,58**		1068757,5ns	89
HT 1 ²	7740	6174	8718	1,01ns	-0,01ns	1,01ns	1839855,1**	8.
Pioneer 30 F 881	7696	6375	8521	0,84ns	-0,03ns	0,81ns	843630,6ns	88
Colorado 9743 ²	7679	6231	8583	1,02ns	-0,19ns	0,83ns	1124169,4*	89
Pioneer 30 F80 ¹	7614	6177	8512	1,00ns	-0,40*	0,59*	1014122,3ns	89
HT 10 ²	7565	5961	8567	1,04ns	0,55**	1.60**	739061,8ns	94
HT 9 ²	7377	5898	8300	1,00ns	-0,01ns	0,99ns	872345,5ns	9
AG 9010 ¹	7332	6064	8124	0,94ns	-0,04ns	0,89ns	1138934,0*	8
HT 5 ²	7304	5976	8133	0,96ns	-0,21ns	0,75ns	1133637,2*	8
SHS 4040 ³	7119	6034	7797	0,78*	-0,06ns	0,71ns	1518119,7**	78
95 HT 74 ²	7085		8129	1,04ns	-0,20ns	0,84ns	873738,6ns	9
96 HT 91 ²	6934	5759	7668	0,78*	-0,31ns	0,47**	856088,4ns	8:
Média	8056							
D.M.S.	1032							

^{**} e * Significativamente diferente da unidade para b₁ e b₁ + b₂ e de zero para b₂ pelo teste "t" de Student a 1% e 5% de probabilidade, respectivamente. ** e * Significativamente diferente de zero a 1 % e 5 % de probabilidade, pelo teste F, para o o_{ii}

65

tratando dos ambientes desfavoráveis, percebe-se também (Tabela 5), que não foi encontrado qualquer híbrido que atendesse a todos os requisitos necessários para adaptação a essa classe de ambientes. Neste caso, o híbrido teria que expressar uma produtividade média alta, o $b_1 < 1$, $b_1 + b_2 < 1$ e variância dos desvios da regressão próxima ou igual a zero. Apesar disso, infere-se que os híbridos Dina 500, Pioneer 30 F 45 e BR 3123, podem ser recomendados para essa classe de ambientes, por apresentarem produtividades médias altas (b₀), serem pouco exigentes nas condições desfavoráveis (b₁<1) e apresentar estimativas de $(b_1 + b_2)$ semelhantes a unidade. Para os ambientes favoráveis, merece destaque o híbrido Cargill 333 B, por apresentar todos os requisitos necessários para adaptação nesse tipo de ambiente, ou seja, $(b_0$ alto, b_1 e b_1 + b_2 > 1). Considerando os demais híbridos que apresentaram produtividades médias superiores à media geral e b₁=1, justificaram suas recomendações para a região, por expressarem boa adaptação e estabilidade de produção, principalmente, os Dina 1000, DK 440, Zeneca 8550, dentre outros. O AG 1051, de melhor produtividade, apesar de ser semelhante estatisticamente a alguns outros, mostrou ser exigente nas condições desfavoráveis (b,>1), justificando sua recomendação para ambientes favoráveis, apesar de não atender a todos os requisitos para essa situação.

Conclusões

A Região Meio-Norte do Brasil apresenta potencialidade para o desenvolvimento da cultura do milho, fundamentada nas altas produtividades alcançadas pelos híbridos de milho, colocando essa Região em condições de competir com a exploração do milho com as áreas tradicionais de produção de milho no país.

O modelo utilizado permite efetuar uma recomendação de híbridos de acordo com os tipos de ambiente, favorável e desfavorável.

No conjunto de híbridos avaliados, não foi encontrado aquele ideal preconizado pelo modelo.

Literatura Citada

- ARIAS, E.R.A. 1995. Adaptabilidade e estabilidade de cultivares de milho no Estado do Mato Grosso do Sul e avanço genético obtido no período de 1986/87 e 1993/94. Tese de Doutorado. Lavras, ESAL. 118p.
- CARDOSO, M.J. et al. 2000 a. Estabilidade de cultivares

- de milho no Estado do Piauí. Revista Científica Rural (Brasil), 5(1): p.62-67.
- CARDOSO, M.J. et al. 2000 b. Comportamento, adaptabilidade e estabilidade de híbridos de milho no Estado do Piauí no ano agrícola de 1998. Revista Científica Rural (Brasil), 5(1):146-15.
- CARDOSO, M.J. et al. 1997. Adaptabilidade e estabilidade de cultivares de milho no Estado do Piauí no biênio 1993/94. 3. Revista Científica Rural (Brasil), 2(1): 35-44.
- CARNEIRO, P.C.S.1998. Novas metodologias de análises de adaptabilidade e estabilidade de comportamento. Tese de Doutorado. Viçosa, UFV. 168p.
- CARVALHO, H.W.L. de. et al. 2000 a. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro. Pesquisa Agropecuária Brasileira 35(6):1115-1123.
- CARVALHO, H.W.L. de. et al. 2000b. Estabilidade de cultivares de milho em três ecossistemas do Nordeste brasileiro. Pesquisa Agropecuária Brasileira 35(9):1773-1781.
- CARVALHO, H.W.L. de. et al. 1999a. Adaptabilidade e estabilidade de produção de cultivares de milho no Nordeste brasileiro. Pesquisa Agropecuária Brasileira 34(9):1581-1591.
- CARVALHO, H..W.L. de. et al. 1999b. Adaptabilidade e estabilidade de comportamento de cultivares de milho em treze ambientes nos Tabuleiros Costeiros do Nordeste brasileiro. Pesquisa Agropecuária Brasileira 34(12):2225-2234
- CRUZ, C.D.; TORRES, R.A.; VENCOVSKY, R. 1989. An alternative approach to the stability .analisys by Silva and Barreto. Revista Brasileira de Genética 12:567-580
- LIRA, M. A. et al.. 1993. Adaptabilidade de cultivares de milho no rio Grande do Norte. Natal, Emparn. 22 p. (Emparn. Boletim de Pesquisa, 23).
- MONTEIRO A.A.T. et al. 1998. Adaptabilidade e estabilidade de cultivares de milho no Estado do Ceará. Revista Científica Rural (Brasil) 3(2):1-10.
- PIONEER. 1999. Resultados safra 1998/1999. São Paulo, Pioneer. 47 p.
- RAMALHO, M.A.P.; SANTOS, J.B. dos; ZIMMERMANN, M. J. de O. 1993. Interação dos genótipos x ambientes. In: Ramalho, M.A.P.; Santos, J.B. dos. e Zimmermann, M.J. de O. Genética quantitativa em plantas autógamas: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG.pp.131-169.

(Publicação, 120).

SAS INSTITUTE . 1996. SAS/STAT user's guide: version 6.4 ed. Cary, v.1. 789p.

SCAPIM, C.A.; CARVALHO, C.G.P. de; CRUZ, C.D.

1995. Uma proposta de classificação dos coeficientes de variação para a cultura do milho . Pesquisa Agropecuária Brasileira 30(5):683-686.