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RESUMO
Após décadas de desenvolvimento de sensores e técnicas de processamento, a ciência da informação geográfica tem

feito inúmeras contribuições para a geração de dados sobre o uso e cobertura da terra (LULC).  Este trabalho apresenta
o estado da arte dos sensores mais utilizados e das recentes tendências em aplicações sobre LULC, particularmente na
Amazônia. Técnicas de processamento também são discutidas, enfatizando alternativas aos convencionais métodos de

classificação.

ABSTRACT
After decades developing sensors and processing techniques, geographic information science has consistently

contributed to produce data about land-use and land cover (LULC). This paper presents the state of the art of the most
used sensors and recent trends in LULC applications, particularly in the Amazon. Processing techniques are also

discussed, emphasizing alternatives to the conventional methods of digital classification.

1. INTRODUCTION
The most commonly used remote sensing data for development of earth surface feature information in the

Amazon Basin have been AVHRR, Landsat MSS, Landsat TM, SPOT, C-band Radar, L-Band Radar, and aerial
photography. Other sensors, both existing and projected, which land surface focused researchers collectively have
indicated an interest in using include: AVIRIS, airborne multispectral video or airborne multispectral digital camera,
IKONOS, enhanced Landsat TM 7, and MODIS. The first part of this paper identifies common Amazon research
themes associated with data acquired from each of these sensors and indicates why a given sensor is appropriate in
addressing the themes identified. Recent trends are also briefly discussed, such as higher spatial resolution, higher
spectral resolution, higher radiometric resolution, hyperspectral capability, and wavelengths not previously used by a
given research group.

An alternate approach to improve the information content from spectral data is through the enhancement of
original data. A third possibility is to implement different classification/analysis methods. A fourth way to improve the
quality of information extraction using remote sensing is to integrate image classification with a GIS. The second part
of this paper discusses the latter three ways of improving or potentially improving information extraction through
remote sensing (enhancements, alternate analysis techniques, GIS support). The discussion is illustrated with related
research or information from the literature concerning the Amazon.

2. THE STATE OF THE ART OF SOME SENSORS AND THEIR APPLICATIONS
After some decades developing sensors for aircraft and satellites, processing images derived from these sensors,

and using different data analysis techniques for a variety of applications, remote sensing and geographical information
science became a broad part of Earth Science. It is virtually impossible to list all the implications of every potential use
of remote sensors for development of Earth surface feature information, even if we restrict the discussion to a particular
application, such as land-use/land cover (LULC) change in the Amazon Basin.

I will address the subject focusing on two broad topics. First I will highlight the use of some commonly used
sensors. Then I will focus on recent innovations. The discussion will be related to the objectives of the Indiana
University/ACT (IU) research initiative within the LULC component of the Large-Scale Biosphere-Atmosphere
Experiment in Amazônia (LBA).

The LBA experiment is one of the largest research efforts ever made to understand the relationships of human
and environmental dimensions in the Brazilian Amazon (LBA 1996). Five out of seven study areas focused by the IU
initiative are located along the LBA eastern transect. Our contribution is to provide data at local and landscape levels to
inform regional models being built by LBA. The rationale behind this strategy is that our relatively little knowledge
about these processes in Amazônia may be significantly improved by an integrated study at several temporal and spatial
scales (Moran 1998). The following discussion about current and potential applications of remote sensing to the
extraction of Earth surface feature information will focus on LULC applications and possible underlying factors related
to the human dimensions of resource management in the region. The role of current and new sensors for this task is



central as the variety of aerial and orbital data in distinct spatial, temporal, and spectral resolutions allows multiple
applications.

2.1. MOST COMMONLY USED REMOTE SENSING DATA
The following paragraphs provide a brief description about the most commonly used remote sensing data for the

extraction of Earth surface feature information and some of their major applications, particularly for LULC
characterization in the Brazilian Amazon. I do not intend to cover all the characteristics of each sensor but rather give a
general sense of its capabilities for the mentioned research field. Sources for the descriptions include Arnold (1997),
Jensen (1996), Lillesand and Kiefer (1996), Szekielda (1988), and Richards (1986).

NOAA
The Advanced Very High Resolution Radiometer (AVHRR) flies onboard of the National Oceanic and

Atmospheric Administration (NOAA) series of satellites, providing imagery in the visible, near infrared and thermal
infrared wavelength bands. There is normally a pair of NOAA satellites in sun synchronous polar orbits, each orbit
taking about 100 minutes, about 850 km above the planet's surface. The imagery data from a AVHRR sensor can be
recorded or directly transmitted to a receiving station at a resolution of 1.1 km or 4 km. In either case, the across track
swath width is about 3000 km. The along track swath length varies, but can be up to about 6000 km. The NOAA orbits
are set up so that, twice daily, the current active pair of satellites provides coverage of almost the Earth's entire surface
during a morning, afternoon, early evening and night pass.  The series started in 1978 and continues up to date. The
wavelength range of each band is:

• Band 1: 0,58 - 0,68 µm (red)
• Band 2: 0,72 - 1,10 µm (NIR)
• Band 3: 3,55 - 3,93 µm (MIR)
• Band 4: 10,3 - 11,3 µm (thermal)
• Band 5: 11,5 - 12,5 µm (thermal): on even numbered missions (e.g. NOAA 6, 8, 10, 12), channel 4 repeats
AVHRR was previously designed as a ‘meteorological sensor’ dedicated to applications such as cloud surface

mapping, water surface delineation, and sea surface temperature monitoring. However, several researchers started using
these images for a variety of other applications, based primarily on the wide range of wavelengths at the red and
infrared portion of the electromagnetic spectrum. Several vegetation indices were derived, providing information on
vegetation condition and density. The Normalized Difference Vegetation Index, for instance, has been widely used.
This type of data is particularly useful to predict crop yields, to forecast vegetation fire danger zones, and to study
vegetation dynamics. LULC mapping also has been done based on AVHRR data, mainly at global and regional scales
(Malingreau and Belward 1992).

Due to its high sampling frequency and relatively low cost, AVHRR has provided large composite images,
useful in several applications. Many studies have shown the potential of this instrument to study global vegetation,
deforestation, and LULC in large areas (Malingreau and Tucker 1990, Townshend 1990, Roessel 1993). Other
applications include burning monitoring, based on the responses of the thermal bands (Miranda et al. 1994). For the IU
sites in LBA, AVHRR images are being explored for a regional assessment at each site, allowing for a broader
understanding of LULC patterns including the landscapes under investigation.

LANDSAT
The LANDSAT series is the most widely used in remote sensing, particularly for LULC assessment. The series

began in 1972. LANDSAT 1, 2, and 3 were pioneering efforts in remote sensing of Earth resources. All three have been
decommissioned or have failed. They were sun-synchronous polar orbit satellites with an 18-day repeat cycle. The
instruments included a RBV camera (bands 1, 2, 3) and the Multispectral Scanner (MSS), with the following
characteristics:

• 185 x 185 km image extent
• 56 x 79 m pixel size, 6-bit data (0-63, rescaled to 0-127 gray levels)
• Band 1: 0,5 - 0,6 µm (green)
• Band 2: 0,6 - 0,7 µm (red)
• Band 3: 0,7 - 0,8 µm (NIR)
• Band 4: 0,8 - 1,1 µm (NIR)
LANDSAT 4 and 5 are the real ‘work horses’ of the program. They have a 16-day repeat cycle (9:45 local sun

time) and include the same MSS as LANDSAT 1-3 plus the Thematic Mapper (TM), with the following characteristics:
• 185 x 185 km image extent
• 30 x 30 m pixel size, 8-bit data (0-255 gray levels)
• Band 1: 0,45 - 0,52 µm (blue)
• Band 2: 0,52 - 0,60 µm (green)
• Band 3: 0,63 - 0,69 µm (red)



• Band 4: 0,76 - 0,90 µm (NIR)
• Band 5: 1,55 - 1,75 µm (MIR)
• Band 6: 10,4 - 12,5 µm (thermal)
• Band 7: 2,08 - 2,35 µm (MIR)
It is redundant to say that many LULC applications in Amazônia have been done using LANDSAT images,

particularly TM. LULC changes from natural vegetation to agricultural crops and subsequent regrowth may be
quantified and related to both biophysical and socioeconomic causes through the integrative use of these images
(Brondizio et al. 2000, McCracken et al. 1999, Hall et al. 1996, Lucas et al. 1998). Amazônia-wide studies of
deforestation (Alves 1999, INPE, 1996, Skole and Tucker 1993) and forest alteration (Nepstad et al. 1999) have been
conducted using TM data. Case studies have tracked LULC changes (Adams et al. 1995, Brondizio et al. 1994). Early
research has failed to discriminate land cover classes such as some successional vegetation stages using MSS scenes
(Dwivedi and Sankar 1992, Singh 1987). Several other initiatives have improved significantly the accuracy of classified
LULC using TM data and distinct classification techniques, particularly for secondary regrowth mapping in Amazônia
(Steininger 1996, Foody et al., 1996, Moran et al. 1994, Li et al. 1994, Mausel et al. 1993). Ecological studies have
used TM data as a basis for the calculation of landscape metrics (Frohn et al. 1996, Dale et al. 1993, Batistella and
Soares Filho, 1999). LANDSAT images have also improved the quality of fieldwork techniques (Campbell and
Browder 1995). The IU project is assessing the human dimension of LULC in the region, using LANDSAT data to help
the definition of factors and conditions that cause these processes. The support of field data and GIS integration has
improved considerably the understanding and manipulation of LANDSAT images spectral range. A constraint for
LANDSAT applications, as of any optical system when working in Amazônia is the frequent occurrence of clouds and
smoke. Trends for future research include the integration of other sources of data (e.g., radar) to overcome this problem.

SPOT
The SPOT series, developed by the French Centre National d’Etudes Spatiales (CNES), started in 1986. In

general terms, the main innovation of SPOT 1, 2, and 3 was the addition of a 10-meter resolution panchromatic band.
Other more specific characteristics include off-nadir revisit, stereoscopy, and pointable instruments. The satellite is sun-
synchronous, with a 26-day repeat cycle (local time 10-11am). The orbit is 832km high and the two High Resolution
Visible (HRV) scanners are capable of operating in panchromatic mode (10 m resolution, 0,51 - 0,73 µm) and
multispectral mode (20 m resolution):

• Band 1: 0,50 - 0,59 µm (green)
• Band 2: 0,61 - 0, 68 µm (red)
• Band 3: 0,79 - 0,89 µm (NIR)
SPOT 4 presently in operation also carries the Vegetation instrument, which has the same multispectral bands as

SPOT 1, 2, and 3 plus a blue band (0,43 - 0,47 µm) and a mid-infrared band (1,58 - 1,75 µm). Its images are 2,000 x
2,000 km wide with a 1km spatial resolution.

The use of SPOT HRV instrument has not been very common to monitor LULC in the Amazon.  The high
relative cost of its images and the low relative spectral resolution to work with surface feature discrimination are two
potential explanations for this fact. However, the high geometric fidelity and spatial resolution of SPOT panchromatic
data are still very useful for the location of specific features, such as property boundaries of settlements in Amazônia.

The Vegetation instrument, although still little explored, have shown great potential for the global change
community, due to its capability of vegetation monitoring (Klersy and Tempat 1994). Possible applications for the LBA
experiment include surface parameters mapping; agricultural, pastoral and forest production assessment; terrestrial
regional monitoring and modeling.

RADAR
Active remote sensing systems have been used for a variety of applications, particularly to extract information

about surface parameters such as topography, geomorphology, soil moisture, coastal and flooding monitoring, and more
recently LULC (Lillesand and Kiefer 1996). Microwave sensing is a very broad research field in itself. Several
platforms, instruments, wavelengths and polarizations are available. The main general characteristic of these
instruments, from a remote sensing standpoint, is that microwaves are capable of penetrating the atmosphere under
virtually all conditions. When studying a region like the Amazon, where clouds are abundant during the wet season and
smoke during the dry season, radar capability is appealing. Several studies have been done using radar data for LULC
evaluation. I will focus on comparative approaches, with important conclusions for the LBA experiment and our LULC
questions within the IU sites.

JERS (L-band), SIR-C (C- and L-band), and RADARSAT (C-band) have been the core data used for LULC
studies in Amazônia (Ahern 1998). A comparative study on deforestation and secondary regrowth mapping in Rondônia
found the following results (Rignot et al. 1997):

• C-band has limited utility for mapping deforestation
• At L-band, multiple polarizations are required for a reliable classification
• Single polarization, L-band, single date, JERS-1 data underestimate the extent of deforestation



• With multiple polarizations, six classes of land cover are mapped with 90% accuracy, including one level of
regrowth, but intermediate regrowth is not well separated from the forest

• LANDSAT TM identify deforested areas better
• Combining the two classifications, seven classes of LC are mapped with 93% accuracy, including two classes

of regrowth
Saatchi et al. (1997) also achieved high accuracy using SIR-C (L-band HH and HV channels) to separate

secondary succession classes. Thus, low frequency radar systems seem more appropriate for land cover mapping in the
Amazon (Yanasse et al. 1997). Results from SIR-C/X-SAR clearly show the increased value of using multiparameter
and interferometric capabilities to characterize Earth’s surface and vegetation cover and to generate geophysical
products compared with optical sensors or single-channel radar alone (Evans et al. 1997). The integration between
optical data and low frequency microwave data to solve problems of separability between LULC classes in Amazonian
sites is a promising field of research.

AERIAL PHOTOGRAPHY
Airborne aerial cameras are remote sensors used for many decades (Reeves 1975). At the ‘satellite age’ one

could argue why still using aerial photography. The answer is based on several factors, including:
• Improved and scalable vantage point
• Definition of a situation at a point in time, including for the past, when satellite images were not available
• Information can be recorded beyond the visible spectrum, including ultra-violet and infra-red
• Stereoscopy is possible
• Spatial resolution and geometric fidelity may be controlled
As technology develops, some of these characteristics may also be achieved by satellite images but still the aerial

photos from the past will be useful for the study of LULC change. A typical potential use of these data in the Amazon is
to evaluate environmental conditions prior to settlement installation or road construction. Many study areas were
colonized decades ago, when even MSS images were not available. The only data available for that time are aerial
photos and maps. The integration of these data in a GIS environment may provide a way to go deep into the past to
investigate the pristine state of land cover.

2.2. OTHER POTENTIAL SENSORS
After describing the most commonly used sensors for LULC research in Amazônia, I will discuss some other

potential instruments that are likely to be used for such applications.

AVIRIS
The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) is a hyperspectral optical instrument developed

to acquire data with a wide spectral and spatial coverage. The instrument flies onboard the NASA ER-2 aircraft at
approximately 20km above ground level. Possible applications of AVIRIS are broad, including ecology, oceanography,
soils and geology, snow and hydrology, atmosphere, among others.

The sensor has 224 contiguous spectral bands (approximately 9.6nm each) in the 380 to 2500nm range of the
spectrum. The spatial resolution of the produced images is 20m and the ground swath is about 11km wide. When data
from each band is plotted on a graph, it yields a spectrum. Comparing the resulting spectrum with those of known
substances reveals information about the composition of the area being viewed by the instrument. The peaks and valleys
of a spectrum not due to the sun or the atmosphere reveal information about the chemical composition of the pixel being
examined. Every substance has its own spectrum, and one can look for the spectrum of specific features in the AVIRIS
pixel spectra.

 Processing AVIRIS images is not trivial. For LULC studies in the Amazon, I see two potential applications of
this type of data. The first one would be to use AVIRIS bands to identify narrow spectral thresholds related to subtle
changes in ground features, such as specific intervals during secondary succession. Once these portions of the spectrum
are identified, they could be used to ‘calibrate’ the classification of images from different sources. Also, the identified
features could improve the accuracy of some classification procedures (e.g., spectral mixture analysis) informing
specific wavelengths for the subpixel discrimination. Another potential application of AVIRIS is land cover change
detection. If a set of images is acquired through time, changes in their digital number (DN) spectra could inform about
distinct processes such as phenology and agricultural cycles.

AIRBORNE HYPERSPECTRAL VIDEO OR DIGITAL CAMERA
The rationale behind the use of airborne multispectral video or digital camera is the possibility of a user to

develop a instrument for specific purposes. Moran (1998) describes one example of hyperspectral camera developed to
fly in small planes over the vegetation canopy. The camera functions as a ‘flying spectro-radiometer’, providing data at
high spectral resolution and allowing the detection of DNs of very specific features at very narrow bands. Moreover, the
very high spatial resolution of such a camera provides precise measurements.



The potential applications of data generated by airborne hyperspectral cameras are similar to those commented
for AVIRIS. The extra benefit would be the possibility of having control of the whole operation for a specific area,
allowing data generation at required time lags depending on the research needs.

 IKONOS
IKONOS is a commercial satellite with high spatial resolution (1m panchromatic and 4m multispectral). It was

launched recently to a sun-synchronous orbit. The nominal swath width is 13 km wide but mosaics of up to 12,000
sq.km may be produced. The panchromatic band ranges from 0.45 to 0.90 µm. The multispectral bands are the same as
LANDSAT’s first bands:

• Band 1: 0,45 - 0,52 µm (blue)
• Band 2: 0,52 - 0,60 µm (green)
• Band 3: 0,63 - 0,69 µm (red)
• Band 4: 0,76 - 0,90 µm (NIR)
Scientific reports about the use of IKONOS images for LULC assessments are still very recent. But the potential

of these images is vast. They provide very detailed data allowing the analysis of relatively small features on the ground.
Because IKONOS multispectral bands are the same as the first LANDSAT bands, comparisons of features will be
viable at different spatial scales for LULC classification.

The Amazonian areas under investigation by the IU project include mosaics of patches of forest, secondary
vegetation, and agriculture, several of them smaller than 1 ha. Using high spatial resolution images allow a better
analysis of these patches throughout the image. Visual operations such as collecting training samples, interpreting
LULC classes, and defining areas of interest tend to become more accurate. Although of high cost to cover large areas,
IKONOS products will also be very useful during fieldwork, when features have to be recognized on the ground.

LANDSAT TM 7
LANDSAT 7 is the newest version of the LANDSAT series. It has the same characteristics of LANDSAT 4 and

5 plus the addition of a 15-meter resolution panchromatic band (0.522-0.90 µm). Other improvements include a higher
spatial resolution for the thermal band (60m) and the important onboard radiometric calibration capability.

The major benefit generated by LANDSAT 7 for the LBA research groups is to provide timely, high quality
visible and infrared images of Amazônia, continually updating the existing LANDSAT database. As radiometric and
spectral resolutions remain the same, comparisons for global- and regional-change detection and characterization are
possible.

RADAR - Shuttle Radar Topographic Mission (STRM)
As commented above, radar systems provide a wide range of applications for LULC researchers. Besides data

integration to produce higher accuracy for LULC classification, the interferometric measurement capabilities uniquely
provided by Synthetic Aperture Radar (SAR) are required to generate global topographic maps, to monitor surface
topographic change, and to monitor glacier ice velocity and ocean features (Evans et al. 1997).

A very expected mission of the Space Shuttle was concluded recently. After 36 months of preparation and 18
months for data processing, the first Global Digital Elevation Model will be available. Modified SIR-C/X-SAR
instruments (C- and X-band) have acquired topographic data over 80% of Earth's land mass (between 60 degrees North
and 56 degrees South) during an 11-day Shuttle mission (the largest rigid structure flown in space).

The digital topographic map products to be generated will have 30m resolution, 16m absolute vertical height
accuracy, 10m relative vertical height accuracy and 20m absolute horizontal circular accuracy. Numerous applications
are waiting for the outcome of this mission. The entire LBA experiment will be benefited by a 30m resolution DEM. In
several areas of the Amazon, there are not detailed topographic maps available impeding the development of studies
that include this physical variable. With existing DEMs for the whole basin, we will be able to generate slope and
aspect maps, construct models of water circulation, overlay topographical data with other biophysical variables,
integrate DEM with satellite data to improve LULC classification, create 3-D models, and so on.

MODIS
 The Moderate Resolution Imaging Spectroradiometer (MODIS) is the key instrument aboard Terra (EOS AM-1)

satellite launched recently. MODIS sampling frequency is of 1 to 2 days, acquiring data in 36 spectra bands at a
radiometric resolution of 12 bits. Spatial resolution varies among bands: bands 1-2 (250m), bands 3-7 (500m), and
bands 8-36 (1000m). These data will improve our understanding of global dynamics and processes occurring on the
land, in the oceans, and in the lower atmosphere.  The table below shows some characteristics and potential applications
of MODIS bands.

MODIS will play a vital role for the LBA experiment in the development of validated, regional, interactive
system models about the biophysical environment. For the IU project, MODIS may provide a scalable approach using
the bands in different spatial and spectral resolution to monitor LULC (e.g. phenology, agriculture cycles) and



landscape dynamics (e.g. vegetation indices and enhancements for change detection) with a very high temporal
resolution.

Primary Use Band Bandwidth
1 620 - 670Land/Cloud

Boundaries 2 841 - 876
3 459 - 479
4 545 - 565
5 1230 - 1250
6 1628 - 1652

Land/Cloud
Properties

7 2105 - 2155
8 405 - 420
9 438 - 448
10 483 - 493
11 526 - 536
12 546 - 556
13 662 - 672
14 673 - 683
15 743 - 753

Ocean Color/
Phytoplankton/
Biogeochemistry

16 862 - 877
17 890 - 920
18 931 - 941

Atmospheric
Water Vapor

19 915 - 965
20 3.660 - 3.840
21 3.929 - 3.989
22 3.929 - 3.989

Surface/Cloud
Temperature

23 4.020 - 4.080
24 4.433 - 4.498Atmospheric

Temperature 25 4.482 - 4.549
26 1.360 - 1.390
27 6.535 - 6.895
28 7.175 - 7.475

Cirrus Clouds
Water Vapor

29 8.400 - 8.700
Ozone 30 9.580 - 9.880

31 10.780 - 11.280Surface/Cloud
Temperature 32 11.770 - 12.270

33 13.185 - 13.485
34 13.485 - 13.785
35 13.785 - 14.085

Cloud Top
Altitude

36 14.085 - 14.385
OBS: bands 1 to 19 are in nm; bands 20 to 36 are in µm

3. THE ROLE OF SOME PROCESSING TECHNIQUES
A variety of image processing techniques has been described in the literature (among others, Erdas 1998, Arnold

1997, Jensen 1996, Lillesand and Kiefer 1996, Szekielda 1988, and Richards 1986). Although some procedures are
generally recommended to keep control over the accuracy of image processing techniques, there is no general recipe to
achieve good quality results in remote sensing. Depending on the feature being analyzed, the characteristics of the
sensor and the image, facilities available, personnel’s expertise, time and cost constraints, one could use different
approaches when extracting information from the landscape through analysis of spectral data.

I discuss three groups of methods to develop improved quality information during image processing. The first
group is related to the use of data enhancement or transformation. The second group concerns to the implementation of
different classification/analysis techniques. The last group concerns to the integration of remote sensing classifications
with the support of geographical information systems (GIS). For each group, I have discussed different methodological



approaches. By no means I intend to cover all the implications of each enhancement technique, each alternate
classification procedure, or each supportive GIS technique. Examples are particularly related to LULC studies in
Amazônia.

3.1. ENHANCING THE ORIGINAL DATA
Several purposes are claimed for the use of enhancement or transformation techniques (Mausel 1998). Among

others, they include:
• Improvement of the overall quality of classification, e.g. through the merging of principal component or ratio

bands before classification
• Reduction or elimination of noise in the data, e.g. the separation of noise in the last principal components
• Data compression, e.g. a ratio band instead of two bands or a principal component band explaining most part of

the variation of the data set
• Maximization of spectral differences, e.g. through the use of different ratios
Also, some limitations are often recognized. It is always an extra effort to enhance or transform data, sometimes

there is no improvement in the quality of classifications, and enhanced or transformed data are generally difficult to
interpret. This is the reason why the cost/benefit of using these techniques should be always evaluated based on a
theoretical basis about the procedure to be taken and the expected results.

RATIOS
Ratios are generally used in remote sensing to compress data and also to focus on specific subsets of a

multispectral image (Lillesand and Kiefer 1996). Any given ratio tends to enhance a subset of features in a scene and
degrade other subsets. These enhancements result from the division of digital numbers (DN) values in one spectral band
by the corresponding values in another band. Ratioed images represent the variations in the slopes of the spectral
reflectance curves between the two bands involved. Ratios will show better results if the reflectance responses for the
same feature in different bands shows opposite behavior.

Ratios are used in image processing with three main objectives: to minimize spectral differences for similar
features, to maximize spectral differences for different features, and to subtract subfeatures that are a minority in a
feature. Sometimes, even having a reliable reason why to use ratios, the output may be difficult to interpret. This is
probably one reason why many researchers have avoided the use of ratios in their applications. Through an exploratory
search in the journal Photogrammetric Engineering and Remote Sensing since 1994, I found just eleven articles making
use of some kind of ratio (Ramsey III et al. 1998, Kloditz et al. 1998, Lyon et al. 1998, Michener and Houhoulis 1997,
Stoms et al. 1997, Ramsey III et al. 1997, Gaston et al. 1997, Yin and Williams 1997, Niemann 1995, Teng et al. 1995,
and Thenkabail et al. 1994). However, when dealing with LULC classifications, we may want to recognize several
different features (e.g., vegetation, water, soil, infrastructure, and so on). Ratios may be useful to help the discrimination
of some of these features.

Near-infrared/red (NIR/R) is one of the most commonly used ratios to enhance the variance of vegetation.
Healthy vegetation will have higher values in the NIR band and consequently a higher value for the ratio itself.
Typically lower ratios will be found for stressed vegetation, as NIR reflectance decreases when the red reflectance
increases. A more complex ratio using these two bands is the Normalized Difference Vegetation Index (NDVI),
frequently used to identify and differentiate vegetation features in relation of some aspects, such as phenology
(greenness) and biomass estimations. Near-infrared/mid-infrared (NIR/MIR) ratios may also be used to depict
photosynthetic activity. Its general result is very similar to the NIR/R ratio, except for its higher sensitiveness to
moisture in plants (Thenkabail et al. 1994). Vegetated areas are brighter than areas with bare soil (as NIR reflectance
decreases when the MIR reflectance increases). But water features are not well discriminated from other classes because
water and moisture in plants have similar responses both in NIR and MIR bands.

‘Water ratios’ commonly use the visible bands because of their penetration in this feature. Blue wavelength
penetrates deeper than green and green penetrates deeper than red. Thus, a ratio between red and blue, for instance,
might be useful to understand the numerous variations in the composition of water bodies.

Using ratios to investigate soil responses is more complicated because it involves either green or brown biomass,
water as their moisture content, minerals, and so on. Besides that, color is not frequently an appropriate indicator of soil
type or fertility (Nicholaides III and Moran 1995), except for particular parameters, such as organic matter (dark).
Multiple ratios could be used to minimize soil influence in LULC classification, rank the moisture content in different
soils within a landscape, discriminate various minerals and so on. The use of ratios in mineralogy is also possible but
most mineral absorption bands are very narrow. Possible use of narrower bands of hyperspectral sensors may improve
the potential of such ratios.

Finally, cultural features, such as urban areas may be difficult to discriminate when using ratio approaches, as
concrete and asphalt have high reflectance responses in all bands. The partial applicability of many ratios is a good
reason why they are generally integrated with raw data to allow a reliable classification of different land cover features.

Few studies have used vegetation ratios to classify different LULC features Amazon. Steininger (1996)
investigated several indices trying to discriminate distinct ages of secondary succession. Considerable changes in



spectral reflectance were observed over the first 19 years of regrowth, and these can be summarized by indices related
to canopy brightness and greenness. The NIR reflectance, the difference index, Kauth-Thomas greenness, and
percentage leaf cover all increase over the first 4 years after abandonment, peak from 4 to 8 years, and decrease from 8
to 13 years. The Normalized Difference Vegetation Index (NDVI) rapidly rises over the first 4 years, and displays no
apparent relation to stand age thereafter. The brightness of regrowth canopies decreases from 8 to 13 years. According
to these studies, spectral indices of canopy brightness are significantly correlated with regrowth stand age. Based on
field research in several areas of Amazônia, these spectral patterns can be explained in terms of temporal changes in
canopy geometry and leaf area. NDVI was found to be poorly related to the age and biomass, probably due to the dense
leaf cover and strong pigment absorption of many tropical forest successional stages.

PRINCIPAL COMPONENT ANALYSIS
Principal components analysis (PCA) is a linear transformation, which uses image data statistics to define a

rotation of original images in such a way that the new axes are orthogonal to each other and point in the direction of
decreasing order of the variances (Eklundh and Singh 1993). This multivariate statistical technique used in remote
sensing may have several applications, including image encoding and image data compression, reduction of
dimensionality, noise removal, image enhancement, and digital change detection (Dwivedi and Sankar 1992).

The use of PCA in remote sensing has been highly associated with the fact that interband correlation is a
problem frequently found in the analysis of multispectral images (Lillesand and Kiefer 1996). Thus, one of the main
functions of PCA is to determine the extent of this correlation and, through a mathematical transformation, remove it.
The final bands are totally uncorrelated (Crosta 1993). It is beyond the scope of this paper to discuss all implications of
PCA. Instead, I intend to highlight the potential of this technique to extract the information content of spectral data.

There are three main steps to compute a PC transformation: the calculation of covariance or correlation matrix
using input image data sets; the calculation of eigenvalues and eigenvectors; and the calculation of the principal
components (Richards 1996). Unstandardized PCs are calculated using the covariance matrix and standardized PCs are
calculated using the correlation matrix. The final components may be reformatted as PC bands through the use of
eigenvectors statistics and processed as any other band (Landgrebe and Biehl 1995). One approach when using PCA is
to investigate the loading of eigenvalues and eigenvectors to understand how the data variance is been explained by
each component. A second approach is to merge the PC bands with other bands before classifying the image.

Very few studies have been carried out using PC bands to support the discrimination of vegetation features in
Amazônia. Batistella (1999) used standardized and unstandardized PC bands and raw Landsat TM bands to classify
LULC. Results showed that the use of PC bands did not bring a significant improvement in LULC classification
accuracy for features such as mature forest, secondary succession stages, agricultural lands, and water. Further research
in this field, particularly focusing on the use of PC transformation for more specific and narrow wavelengths of
hyperspectral sensors may improve the discrimination of tropical vegetation features.

3.2. IMPLEMENTING DIFFERENT CLASSIFICATION TECHNIQUES
An alternate approach to increase information content from original and enhanced data is to implement improved

classification techniques and methods of analysis. The transformation of spectral data into information through the
extraction of thematic features has been traditionally done in a very standard way. Many textbooks present techniques
for supervised or unsupervised classification, but not always they indicate the need of emphasizing the specific
characteristics of each application. Taking the risk of being simplistic, I will mention some of the most used techniques
during standard classification procedures, before indicating two important techniques to classify features composed of
highly mixed pixels.

The main difference between supervised and unsupervised classification is that the former requires the identity
and location of some of the land cover to be known (Mausel et al. 1990), while the latter is based on automatic
clustering of pixels with similar spectral characteristics according to some statistically determined criteria (Jensen
1996). Hybrid classification systems are also frequently appropriate.

The unsupervised classification requires only a minimal amount of initial input from the analyst. However,
knowledge about the spectral characteristics of the terrain is necessary to label certain clusters as representing land
cover classes. Two algorithms are widely used. In the chain method, clusters are built and a mean vector is associated
with each cluster. Then, a minimum distance to means classification algorithm is applied to assign each pixel to one of
the created mean vectors (Landgrebe and Biehl 1995). In the ISODATA method (Iterative Self-Organizing Data
Analysis Technique), the analyst specifies the maximum number of clusters, the maximum percentage of pixels whose
class values are allowed to be unchanged between iterations, and the maximum number of times ISODATA is to
classify pixels and recalculate cluster mean vectors (iterations) (Erdas 1998).

The supervised classification requires much more input from the analyst, including the collection of training
samples, the generation of graphic methods for feature selection, and the selection of appropriate classification
algorithms. Three algorithms are widely used. The minimum distance to means algorithm assigns the pixel class based
on its distance to the mean center of a given cloud of points. The parallelepiped algorithm assigns the pixel class based
on multi-dimensional rectangular shapes. The Gaussian maximum likelihood algorithm assigns the pixel class assuming



a Gaussian distribution of the clouds of points (Lillesand and Kiefer 1996). The following paragraphs discuss two
different techniques to improve the information content during the classification process.

SPATIAL-SPECTRAL CLASSIFIERS
The classifiers mentioned above do not take in account the spatial relationships among pixels. They rely solely

on spectral data and each pixel is processed independently of its neighbors. Accuracy and errors can vary to a
considerable degree depending on the formation of statistical classes from training data (Ince 1987).

After examining the variance of several images in a wide range of spatial resolutions, Woodcock and Strahler
(1987) found that spectral classifiers are appropriate just for combinations of environments and spatial resolutions with
low local variance. However, certain environmental features show a high variance, which affects the performance of the
classification. When separating classes that are spectrally different in a simple classification system such as forest/non-
forest, several approaches have shown adequate results (Alves et al. 1999). But when willing to generate a more
detailed LULC classification, the use of these algorithms is not always recommended. A typical example of this
problem is the classification of distinct stages of secondary growth in areas of the Brazilian Amazon. Using just spectral
classifiers, some land cover classes cannot be reliably separated in a spectrally complex tropical forest environment.
Because of the presence of mixed groups of pixels, other classification techniques should be tested. One of these
techniques is a group of algorithms so called spatial-spectral classifiers.

Spatial-spectral classifiers assume spatially homogeneous objects that are larger than the resolution cells in the
image. The basic strategy of these classifiers is to combine neighboring pixels into larger units as part of the
classification process. The algorithms are based on the idea that using information from surrounding pixels enhances the
classification (Gonzáles-Alonso and Soria 1991, Landgrebe 1980). This type of classifier is useful for the case in which
some statistical distances between spectral classes are not sufficiently large, but spatial-spectral variability for the
ground cover classes are different from each other (Arai 1993). One of these classifiers is called ECHO (Extraction and
Classification of Homogeneous Objects). It first segments the scene into statistically homogeneous regions, and then
classifies the data using a maximum likelihood algorithm (Landgrebe and Biehl 1995). If the parameter values during
the segmentation process are chosen properly, ECHO usually provides higher accuracy than a pixel classifier. Several
works willing to classify land cover in the Brazilian Amazon have confirmed this. Li et al. (1994) achieved accuracy
higher than 93% when discriminating between advanced secondary succession and mature forest. Moran et al. (1994),
Mausel et al. (1993), and Batistella (1999) also attained accuracy higher than 85% for several land cover classes using
the same spatial-spectral classifier. Using another algorithm, Foody et al. (1996) and Kartikeyan et al. (1994) confirmed
the important role of using contextual information when classifying intermixing features.

SPECTRAL MIXTURE ANALYSIS
A different approach to classify intermixing features is based on spectral mixture analysis. Its rationale is that

each pixel in a scene commonly consists of a mixture of materials that all contribute to its spectral identity. Its objective
is to isolate the main spectral contributions in each pixel. The primary difference between this technique and traditional
classifiers refers to how signatures are derived and applied during classification. It derives a specific signature for a
component that is common to the training set pixels. The signature is a specific material shared by training pixels and is
used to identify pixels in the scene that contain the signature as a fractional component of the overall pixel spectrum
(Schroeder 1998).

In other terms, the rationale behind spectral mixture analysis is to transform encoded-radiances (DNs) in all
bands into fractions of reference endmembers, which are reflectance spectra of well-characterized materials that mix to
produce spectra equivalent to those of pixels of interest in an image (Adams et al. 1995). Radiometric corrected images
are needed in order to control atmospheric and sun angle effects during signature derivation. This process can be done
through the calculation of combined gains and offsets for each band willing to calibrate the scene to reflectance values.

Then, some operational steps are required. The first of them is a preprocessing technique, when the image is
surveyed for possible backgrounds that will be removed during signature derivation and classification of the materials
of interest. The process of signature derivation develops a signature file for materials of interest that occupy either a
whole pixel or a set fraction of a pixel. Inputs are the material input fraction and the confidence level required. Finally,
the classification is carried out.

Spectral mixture analysis applied to multispectral images is a relatively new technique. Adams et al. (1995)
obtained good results when detecting land cover change in the Brazilian Amazon. Further research is needed to assess
the potential of this technique for the discrimination of mixed features such as different stages of secondary succession
of tropical ecosystems.

Both techniques mentioned above (i.e., spatial-spectral classifiers and spectral mixture analysis) are appropriate
for image conditions where there is high local variance. But they have pretty much opposite rationale. While spatial-
spectral classifiers take in account the neighborhood effect to carry out a cartographic generalization, the spectral
mixture analysis goes deeper into the pixel data to detect possible fractions affecting the spectral response.  But both
methods show great potential to achieve a better sense of land cover when intermixing features are present. The use of



these techniques should be done with caution, considering factors such as the scale of the study, spatial and spectral
resolution, features of interest, and possible shortcomings of each procedure.

3.3. SUPPORTIVE GIS METHODS
Results obtained from the single use of image processing systems are not always sufficient, mainly in studies

involving integrated analyses of higher number of variables within the landscape and their spatial relations (Myers et al.
1989). For those, data are generally integrated in a GIS (Lioubimtseva 1999, Ball 1994, Flamm and Turner 1994,
Mladenoff and Host 1994, Coulson et al. 1991). Qualified as a potent set of algorithms for digital manipulations of
spatial attributes (Burrough 1986), these information systems have stored an amount always crescent of geographic data
(Burrough and McDonnel 1998, DeMers 1997). Worldwide, multiple applications of GIS have been performed in
diverse fields, integrating primary data acquired through remote sensing techniques (Townshend 1990, Goodchild and
Brusegard 1989).

It has been demonstrated that remotely sensed digital data can be geocoded in a GIS and integrated with numeric
data collected in the ground not only to track past deforestation, but also to see future trends of new agroecological
processes (Brondizio et al. 2000, Marble et al. 1983, Domon et al. 1989, Mladenoff and Host 1994, Lillesand and
Kiefer 1996). These trends represent a major potential for research programs such as the Large-Scale Biosphere-
Atmosphere Experiment in Amazônia (LBA), due to the immense area of study and the myriad of variables involved.

Some applications use GIS as a tool for remotely sensed image processing. Others use remotely sensed data as
an information source to GIS (Lunetta et al. 1991). These applications include line extraction from images to form
boundaries; per-polygon classification; use of Digital Elevation Models (DEM) to correct image illumination/aspect or
to geometrically correct radar images; use of image, DEM or shading information as the basis of vector search and
query; and multiple modeling studies (Hinton 1996).

Landscape ecology and ecosystem management needs new methods to derive detailed spatial environmental data
(Sample 1994). Lioubimtseva (1999) suggests a method of validation for broad-scale maps using ‘maplets’ generated
from high-resolution remote sensing data. In this case, remote sensing techniques are been used to inform GIS
manipulations at broader scales.

The opposite approach is to use field ancillary data to inform the extraction of information from spectral data. He
et al. (1998) provided an interesting method to map temperate forests age classes and dominant canopy species at the
landscape scale associating field data with preliminary Landsat TM classifications. Studies in the Brazilian Amazon
have attempted to discriminate stages of secondary regrowth using vegetation and structure data integrated in a GIS
(McCracken et al. 1999, Lucas et al. 1998). Topographic features (DEM), soil maps and other layers of information
could also be tested to improve the accuracy of remotely sensed data classification. For the LBA sites under
investigation by the IU project, vegetation structure and soil data could be used to inform the selection of features and
training samples, if they are accurately mapped through Differential Global Positioning Systems (DGPS) and integrated
in a GIS/remote sensing environment. Finally, accuracy assessment also may be improved if reliable ancillary data is
used as test fields in an integrative remote sensing/GIS-based approach (Richards 1996, Janssen and Wel 1994). For all
these applications it is important to monitor the quality of data used and results produced, always taking in account the
research question underlying the choice of methodological tools.

4. CONCLUSION
The generation of global-, regional- and local-scale data sets, the reworking of historical data sets, new data

initiatives, and some programmatic aspects of land data base development are fundamental themes to the remote
sensing/GIS community (Justice et al. 1995). Similarly, the constant development and test of new processing techniques
are central to achieve good results during the extraction of Earth surface feature information. LBA scientists are aware
of these trends, making the discussion above just a small sample of the variety of current and potential applications for
the large ongoing experiment in Amazônia.

These enhanced capabilities in terms of data and methods generate positive possibilities for the IU team. From
the application standpoint, the new approaches discussed have allowed a more integrative study about LULC change
within and across research sites.

The use of multi-temporal and multi-resolution datasets together with adequate processing techniques may
provide a better understanding about the dynamics of deforestation, abandonment, and secondary regrowth in
Amazônia. The study of LULC change and its human dimensions through these tools may contribute to a more
sustainable development of the Amazonian communities under investigation.
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