

XXV Congresso Nacional de Milho e Sorgo - 29/08 a 02/09 de 2004 - Cuiabá - Mato C

Coelho, A. M.; Cruz J.C.; Pereira Filho, I. A.2/

1-Introdução

Em uma economia globalizada e de alta competitividade, a busca por maior eficiência na produção agrícola, tem sido uma constante dos setores envolvidos na cadeia produtiva. Procura-se mostrar nesse artigo os limites e as potencialidades da produção nacional de milho, a partir dos padrões tecnológicos utilizados atualmente e pela melhoria dos sistemas de produção. Assim, uma análise geral da cultura do milho no Brasil, identificando os principais fatores agronômicos envolvidos nos sistemas de produção é apresentada.

2-Potencial Teórico e Recordes de Produtividades

Estudos teóricos, com simulações feitas com o uso de computadores, mostram que o potencial de produtividade de milho nas condições do cinturão do milho nos EUA ("Corn Belt") é da ordem de 31400 kg/ha (Yamada, 1997). Entretanto, poucos dados são disponíveis relatando produtividades recordes de milho à nível de campo. O primeiro relato foi o de Richard (1947) citado por Lowenberg-DeBoer (1998) o qual mencionou que o primeiro híbrido de milho testado na estação experimental em Connecticut, EUA, em 1908, produziu 12600 kg/ha, época em que a produtividade média de milho era de 2500 a 3700 kg/ha. Posteriormente, de acordo com Vyn (2001) há relatos do agricultor Herman Warsaw do Estado de Illinois, EUA, que em 1985 obteve 23.200 kg/ha e do agricultor Francis Child do Estado de Iwoa, EUA, que em 1999 obteve o recorde de 24.700 kg/ha. De acordo com Vyn (2001), na maioria dos experimentos conduzidos nas Universidades Americanas, as produtividades de milho, normalmente, estavam abaixo de 12500 kg/ha.

No Brasil, a partir da década de 1970, foi instituído o concurso de produtividade de milho, coordenado pelas instituições oficiais de assistência técnica, pesquisa e firmas produtoras de sementes. Além do caracter educacional e transferência de tecnologias aos agricultores, buscava-se também, com base nas tecnologias disponíveis, a obtenção de altas produtividades de milho. Na tabela 1, são sumariados os resultados do campeões de produtividade de milho. Com base nesses resultados, o recorde de produtividade de milho no Brasil, é de 16800 kg/ha, obtida pelo agricultor, Geraldo N. Lacerda, no município de Virginópolis, MG, em 1994.

¹/Palestra a ser apresentada no XXV Congresso Nacional de Milho e Sorgo a ser realizado em Cuiabá, MT, no período de 29 de Agosto a 02 de Setembro de 2004.

2 Pesquisadores da Embrapa − Milho e Sorgo, CP 151, Sete Lagoas, MG. e-mail: amcoelho@cnpms.embrapa.br

Tabela 1. Campeões de produtividade de milho no Brasil, no período de 1977 a 1999.

Ano agrícola	Agricultor	Município	Rendimento (kg/ha)	
1977/78 ¹ /	Salézio Weber	Salto da Lontra, PR	7.812	
1978/791/	Nilton L. P. Braga	Ribeirão Bonito, SP	12.970	
1979/801/	Estanislau Meurer	Dois Vizinhos, PR	10.685	
1980/811/	Carmelino V. Silva	Itanhomi, MG	10.797	
1981/82 ^{1/}	Walter Bernades	Alegre, ES	14.677	
1982/831/	Ailton Novais	Pratápolis, MG	13.436	
1983/841/	José A.B. Cardoso	Batatais, SP	15.138	
1984/85 ¹ /	José G. Cerqueira	Codisburgo, MG	14.110	
1985/86 ^{1/}	Marcelo C. Madeira	Divinolândia, MG	15.563	
1986/871/	Bauke D. Dijkstra	Ponta Grossa, PR.	15.077	
1987/881/	Lister F. Fernandes	Ituverava, SP	16.058	
1988/891/	Sebastião A. Silva	Coromandel, MG	14.666	
1989/901/	Nercy S. Santos	Bonito, MS	15.665	
1990/912/	Sebastião G. Souza	Mateus Leme, MG	15.738	
1991/922/	Romildo F. Dias	Capinopolis, MG	15.740	
1992/932/	Antônio P. Marques	Sabinópolis, MG	15.990	
1993/942/	Geraldo N. Lacerda	Virginópolis, MG	16.828	
1994/952/	David G. Nascimento	P. do Rio Grande, MG	15.389	
1995/962/	Ademar B. Melo	Carmo do Cajuru, MG	15.786	
1996/972/	Geniplo F. Silva	Carmo do Cajuru, MG	13.898	
1997/982/	Lázaro E. Rabelo	Coromel, MG	12.750	
1998/992/	Paulo C. Cabral	Alterosa, MG	13.369	

Fonte: adaptada de L'Agroceres, 199...? e ≥ Emater - MG, 199...?

Apesar do grande número de agricultores envolvidos nos concursos de produtividade, representando diferentes condições edafoclimáticas, muitas informações relevantes não foram monitoradas. Seria importante conhecer as condições em que esses agricultores obtiveram essas altas produtividades. Normalmente, os agricultores que obtêm altas produtividades de milho, dão muita ênfase as altas doses de fertilizantes (N, P, K) aplicadas, geralmente acima dos níveis recomendados em suas regiões. Entretanto, devido ao fato que muitos fatores da cultura, solo e condições climáticas devem estar sincronizados para se ter um ambiente ótimo, não se pode concluir que altas doses de fertilizantes foram os ingredientes essenciais para os agricultores campeões em produtividade.

O histórico de área; a escolha do híbrido; a população de plantas; as condições químicas e físicas do solo; o manejo de pragas, doenças e plantas daninhas; as condições climáticas como: quantidade e distribuição de chuvas, temperatura, radiação solar e luminosidade; e a aplicação espacial e temporal dos insumos (administração); podem ser fatores mais importantes na obtenção de altas produtividades do que doses de aplicação de nutrientes isoladamente.

Do ponto de vista das características de solo, é importante conhecer quais de suas propriedades (físicas, químicas e biológicas) poderiam melhor explicar a variabilidade e o potencial de produção de milho. Mais pesquisas, de caráter multidisciplinar, envolvendo pesquisadores especialistas das diferentes áreas, são necessárias, para determinar os elementos chaves do sucesso na obtenção de altas produtividades de milho.

3- Milho no Brasil: Área Plantada, Produção e Rendimento

O milho no Brasil, é cultivado em 3,6 milhões de propriedades rurais, abrangendo na safra 2000/2001, uma área de 13 milhões de hectares, e apresentou, respectivamente, produção e produtividade de 41500 milhões de toneladas e 3272 kg/ha (IBGE, 2001).

Nos últimos 31 anos a área plantada aumentou em 2,38 milhões de hectares, a produtividade em 1619 kg/ha e produção total em 23,61 milhões de toneladas (Figura 1). Estimativa da CONAB (2002) para a safra de 2001/2002 é uma redução de 13,3 % na produção de milho em relação a safra anterior, o que representa 5,5 milhões de toneladas.

O milho é praticamente cultivado em todo o território nacional (Figura 2), sendo que na safra 2000/2001, 77 % da área plantada e 92 % da produção concentrou-se nas regiões Sul (42,32 % área e 53,70 % produção), Sudeste (19,01 % área e 19,62% produção) e Centro - Oeste (15,77 % área e 19,22% produção). Conforme ilustrado na Tabela 3, a contribuição dessas regiões em área plantada e produção ao longo dos últimos 31 anos, tem-se alterado. A região Nordeste tem apresentado grandes variações na área plantada e produção o que dificulta estimar se sua participação tem aumentado ou diminuído. Na região Sul a participação na área plantada e produção tem-se mantido praticamente constante, enquanto que a região Sudeste reduziu em 10 % a área plantada e produção. As regiões Norte e Centro - Oeste, apresentaram no mesmo período, aumentos na participação da área plantada e produção (Tabela 2). Enquanto que a região Norte aumentou sua participação em 5,3 % em área plantada e 2,8 % em produção, a região Centro – Oeste aumentou sua participação em 9,6 % na área plantada e 14,6 % em produção.

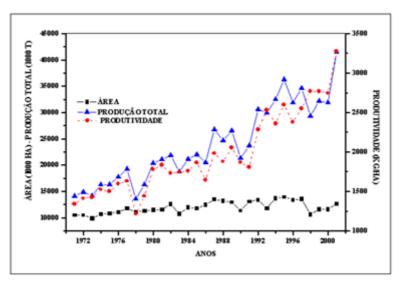


Figura 1. Área plantada, produção e rendimento de milho no Brasil no período de 1971 a 2001. Fonte: elaborada dos dados do IBGE, 2001

Há uma enorme diversidade nas condições de cultivo que vão desde a agricultura tipicamente de subsistência sem o emprego de insumos, e cuja produção visa o consumo próprio sendo o excedente comercializado. No outro extremo, há agricultores que utilizam o máximo de tecnologia disponível e têm produtividade equivalente à obtida em países de agricultura mais avançada. De acordo com levantamento realizado pela Cargill Agrícola S.A. (1995), a estratificação da cultura por níveis tecnológicos, foi assim distribuída: a) nível tecnológico marginal = 43 %; b) nível tecnológico baixo = 24 %; c) nível tecnológico médio = 22 %; d) nível tecnológico alto = 11 % da área cultivada.

Tabela 2. Estimativas¹/₂ do aumento ou redução anual da participação, área plantada, produção e rendimento de milho por regiões do Brasil, no período de 1971 a 2001

Regiões	Partic	Participação 2/		Produção	Rendimento
	Årea (%)	Produção (%)	(1000 ha)	(1000 t)	(kg ha ⁻¹)
Sul	ns	ns	18,71	346,58	63
Sudeste	-0,32	-0,33	-18,46	125,22	59
Centro- Oeste	0,31	0,47	44,67	221,12	81
Norte	0,17	0,09	22,28	36,49	23
Nordeste	ns	ns	ns	32,38	11
Brasil			76,79	761,80	52
³² Taxa anual de	cresciment	nos EUA de	1960 a 2000		112

½ Coeficientes da regressão linear, significativos ao nável de 5 %, obtidos com base nos dados do IBGE (2001).
½ Participação em relação ao total do Brasil. ns = não significativo.
¾ De acordo com Alley & Roygard (2001).

Recentemente, ocorreram importantes mudanças nos sistemas de produção de sequeiro, destacando-se o aumento da área do milho "safrinha" definido como o milho de sequeiro cultivado extemporaneamente, de janeiro a abril, quase sempre depois da soja precoce, na região Centro - Sul e, a expansão do sistema de plantio direto. No decorrer da década de 1990, o processo de deslocamento de cultura do milho da safra normal pela soja se intensificou, passando parte do cereal a ser cultivado em sucessão a oleaginosa, como uma cultura de segunda safra (milho safrinha). Essa mudança se acentuou nos últimos anos, de modo que em 1999 a área da cultura do milho safrinha nos estados de Mato Grosso e Mato Grosso do Sul foi maior do que a safra normal (Tsunechiro & Freitas, 2001).

A baixa produtividade média de milho no Brasil (Figura 1) não reflete o bom nível tecnológico alcançado por parte dos produtores, já que as médias são obtidas nas mais diferentes regiões, em lavouras com diferentes sistemas de cultivos e finalidade da produção. Como pode ser observado na Tabela 3, enquanto o rendimento médio para a Região Nordeste, onde predomina a cultura de subsistência, apresentou um aumento de 11 kg/ha/ano, a região Centro – Oeste, com características de exploração comercial apresentou um aumento de 81 kg/ha/ano. A produtividade média dos estados localizados nessa região é superior a 4500 kg/ha (Figura 3). Assim, para aumento da produtividade é necessário que em parte das propriedades sejam adotadas técnicas básicas, incluindo cultivares melhoradas, práticas de manejo, calagem e adubação, etc., e noutras, o aprimoramento integrado de todas as técnicas culturais para suplantar os atuais tetos de 6000 a 8000 kg/ha.

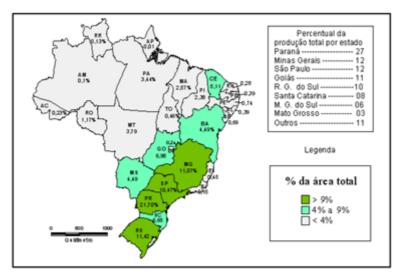


Figura 2. Percentual do total da área plantada (ha) da cultura do milho, por unidade da federação, Brasil, 1999. Fonte: IBGE (1999). Edição: Geoprocessamento Embrapa — Milho e Sorgo, 2002

Dentro desse enfoque, e de acordo com os dados do Censo Agropecuário de 1995/96, verifica-se que há uma relação direta entre o tamanho da área cultivada pelos agricultores e a produtividade de milho (primeira e segunda colunas da Tabela 3); isto é, a medida que há um aumento no tamanho da lavoura há um incremento no rendimento. Isto pode estar relacionado com o efeito de escala de capitalização do agricultor, uso de mecanização, etc., resultando em maior uso de tecnologias. Observa-se ainda na 3 que as lavouras menores do que 5 ha, coincidentemente, apresentam produtividade média (963 kg/ha) equivalente a média das lavouras incluídas na classe com até 2000 kg/ha no trabalho apresentado por Alves et al. (1999). Essa classe de representa a agricultura tradicional, que usa somente terra e trabalho, num ambiente inadequado para a agricultura moderna. Por outro lado, as taxas de crescimento da produtividade, aumentam proporcionalmente com o aumento do rendimento médio (Tabela 3), apontando para uma concentração da lavoura de milho em alguns pontos do caminhando – se dessa forma para o surgimento de um cinturão de território nacional, milho, não tão concentrado como o "corn belt" americano, mas localizado em alguns pólos.

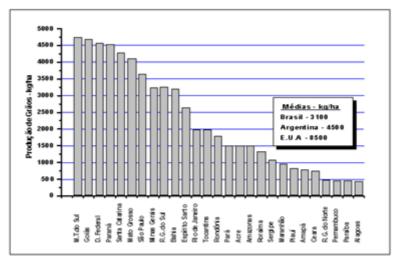


Figura 3. Produtividades médias de milho por unidades da federação. Brasil, médias de 3 anos (1998 - 2001). Fonte: CONAB/DIPLA, 2001.

È importante ressaltar, que nos últimos anos, a cultura do milho no Brasil, vem passando por importantes mudanças tecnológicas, resultando em aumentos significativos da produtividade e produção (Tabelas 2 & 3). Entre essas tecnologias destaca-se a adoção de sementes de cultivares melhoradas (variedades e híbridos), alterações no espaçamento e densidade de semeadura de acordo com as características das cultivares e, a conscientização dos produtores da necessidade da melhoria na qualidade dos solos, visando uma produção sustentada. Essa melhoria na qualidade dos solos está geralmente relacionada ao manejo adequado, o qual inclui entre outras práticas, a rotação de culturas, plantio direto, manejo da fertilidade através da calagem, gessagem e adubação equilibrada com macro e micronutrientes, utilizando fertilizantes químicos e/ou orgânicos (estercos, compostos, adubação verde, etc.).

4-Fatores Envolvidos nos Sistemas de Produção

Os principais fatores afetando os sistemas de produção da cultura do milho, são os de aspecto econômico, ambiental, tecnológico (Figura 4) e qualidade do produto. O aspecto econômico baseia-se no fato de que há um decréscimo relativo do valor da produto comparado ao custo de produção e custo final ao consumidor. Considerações ambientais estão relacionadas com a poluição causada pelo insumos utilizados na produção, controle de erosão, e sustentabilidade. As mudanças tecnológicas são rapidamente difundidas aos agricultores pelos modernos meios de comunicação, como por exemplo o lançamento constante de novos materiais genéticos. Sistema de posicionamento global (GPS) e sistema de informações geográficas (SIG) possibilita a localização de área específicas dentro do campo e a aplicação variada de insumos. Computadores para armazenar e analisar dados e controlar as máquinas para aplicações diferenciadas de insumos, possibilita aos agricultores e consultores tomar decisões com base em melhores informações. Finalmente, o público consumidor em geral deve ver o produto como sendo de boa qualidade e saudável ou corre-se o risco de perda do mercado com sérias conseqüências econômicas.

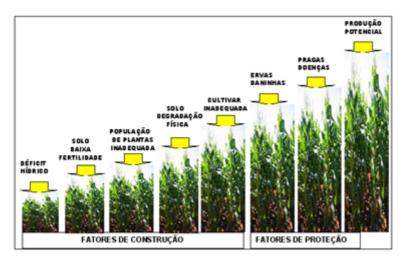


Figura 4. Fatores tecnológicos que afetam o potencial de produtividade da cultura do milho.

Tabela 3. Rendimento médio e taxa de crescimento da produtividade de milho de acordo com o tamanho das lavouras dos agricultores.

Àrea 1/ (ha)	Rendimento L' (kg/ha)	Classe de rendimento (kg/ha)-2/	Rendimento médio≧ (kg/ha)	Taxa de crescimento (%)2/
(0 - 5]	963	(0 - 2000)	963	0,93
(5 - 10]	1599	(2000 - 3000)	2573	2,00
(10 - 20]	1982	(3000 - 3500]	3308	2,37
(20 - 50]	2126	(3500 - 4000]	3717	3,47
(50 - 100]	2274	(4000 - 4500]	4312	4,43
(100 - 200]	2514	> 4500	5164	7,09
(200 - 500)	2997			
(500 - 1000]	3248			
> 1000	3637			

Fonte: MCenso Agropecuário 1995/96 e MAlves et al. (1999).

Nos sistemas de produção os fatores tecnológicos podem ser divididos em "construção da produtividade" e "proteção de produtividade (Figura 4). Os fatores de construção da produtividade são: a) genético - cultivares; b) manejo cultural - precisão na semeadura; c) fertilidade do solo, nutrição e adubação; d) clima (disponibilidade espacial e temporal de água e temperatura). Os fatores de proteção da produtividade, possibilitam a colheita da produção que tem sido construída: a) controle de ervas daninhas; b) controle de pragas; c) controle de doenças; d) manejo da colheita.

Ênfase será dado ao "fatores de construção da produtividade" pois são esses fatores que aumentam a produção em termos de quilogramas por hectare. Os fatores de proteção aumentam a produção que se é possível colher, mas não se pode colher uma produção que não tem sido construída. Acredita-se que na maioria dos casos os agricultores e consultores não estão dedicando aos seus sistemas de produção atenção suficiente aos fatores de construção da produtividade. A intensificação dos esforços para analisar e implementar as mudanças nas áreas de construção da produtividade, é o caminho para significativamente melhorar as condições econômicas e ambientais, associadas com muitos sistemas agrícolas.

4.1 – Melhoramento Genético – Cultivares

Conforme discutido anteriormente, o melhoramento genético tem contribuído significativamente para o aumento da produção do milho. Por exemplo, no Brasil, o aumento no últimos 31 anos foi de 1619 kg/ha (Tabela 2). Embora não se disponha de informações sobre a participação dos fatores responsáveis pelo aumento da produtividade, pode-se inferir, a exemplo do que ocorreu nos EUA, que o melhoramento genético, associado as melhorias no manejo dos solos e da cultura, como fundamentais no aumento dessa produtividade.

Alguns trabalhos tem sido realizados no Brasil para quantificar o progresso genético obtido por meio do melhoramento (Vencovsk et al., 1986; Ramalho, 1999). Araujo (1995) comparou em 10 locais da região Centro - Sul, a performance de híbridos e variedades desenvolvidas em diferentes décadas, obtendo um ganho médio de 51 kg/ha/ano para os híbridos e de 31 kg/ha/ano para as variedades.

Deve ser enfatizado que no Brasil são oferecidos anualmente, sementes melhoradas, suficientes para o plantio de cerca de 8 milhões de hectares, sendo provavelmente o insumo moderno de uso mais generalizado na cultura do milho. Entretanto, mais de 4 milhões de hectares continuam sendo plantados com materiais de baixo potencial de produção, como variedades locais não melhoradas (milho de paiol) e segunda geração de híbridos comerciais (Embrapa, 1993).

Atualmente, os agricultores, dispõe de mais de uma centena de cultivares de milho para implantação das lavouras com ampla diversidade genética. Por exemplo, na safra 2001/02, foram disponibilizadas cerca de 180 cultivares de milho, sendo que os híbridos triplos e simples, modificados ou não, representaram 63 % das cultivares. Esses dados enfatizam a necessidade de se aprimorar os sistemas de produção utilizados, para melhor explorar o potencial genético dessas sementes (Cruz et al., 2001). Em termos de quantidade de sementes vendidas, os híbridos duplos ainda predominam no mercado (Tabela 4), mas a melhoria do nível tecnológico em regiões específicas e a maior competitividade do mercado nacional de sementes, tem aumentado a oferta de híbridos triplos e simples que somados já dominam uma maior fatia de mercado (Tabela 4).

Tabela 4. Percentagem dos diferentes tipos de sementes de cultivares de milho vendidas no Brasil.

Tipo de cultivar	Anos agrícolas				
	1998/99	1999/00	2000/01	2001/02	
Hibrido simples	20,39	27,94	30,16	33,70	28,05
Hibrido triplo	27,62	25,00	27,20	24,62	26,11
Hibrido duplo	42,81	38,66	34,20	34,21	37,47
Variedade	9,18	8,40	8,44	7,47	8,37

Fonte: Associação Paulista dos Produtores de Sementes - APPS, Circular 005/1999 e 004/2000.

Aumentou a introdução de germoplasmas de clima temperado de porte baixo, geralmente mais precoce e maior índice de colheita, permitindo o uso de maior densidade populacional e flexibilidade nos sistemas de rotações e sucessões de culturas. Esses modernos materiais genéticos apresentam também características específicas para resistência as doenças, pragas (alguns para resistência a herbicidas), capacidade de manter as folhas verdes até próximo a maturidade dos grãos ("stay green"), qualidade para mercado específicos, e variações no potencial de produção.

A escolha da cultivar mais adequada é um aspecto fundamental para o estabelecimento de um sistema de produção mais eficiente. A eficiência na escolha de materiais genéticos pode ser implementada pela observação de um conjunto de informações para a cultura dentro de cada região. Dentre essas informações, as seguintes características devem ser observadas: a) adaptação à região; b) potencial produtivo; c) estabilidade de produção; c) tolerância a doenças (principalmente em plantio direto), inclusive quanto a sanidade dos grãos; d) resistência ao acamamento de colmo e de raiz; e) ciclo; f) características dos grãos - textura e coloração.

Outras características são também mencionadas como: velocidade de emergência e sistema radicular vigoroso (importante para o plantio direto), perda de umidade após maturação fisiológica ("dry down"), empalhamento, prolificidade, peso de 1000 grãos e densidade (g/l), tolerância a algum herbicida e, adaptação a espaçamentos mais estreitos. Com base nessas informações, as quais devem ser atualizadas periodicamente, e de acordo com as necessidades do agricultor é possível selecionar o mais apropriado híbrido ou variedade para um específico sistema de produção.

4.2 – Manejo Cultural – Precisão na Semeadura

O manejo cultural deve ser adequado para explorar ao máximo o potencial genético de uma cultivar em uma determinada condição edafoclimática, levando em consideração aspectos econômicos e a sustentabilidade do sistema de produção. Dessa forma o manejo correto do solo, a época de semeadura, o espaçamento e densidade, o controle de plantas daninhas, pragas e doenças e aspectos relacionados a fertilidade do solo, nutrição e adubação são essenciais para o sucesso de uma lavoura.

É importante usar corretamente os métodos de preparo do solo para evitar a progressiva degradação física, química e biológica do solo. A utilização constante do mesmo equipamento, como a grade aradora, muito comum no Brasil Central, provoca compactação abaixo da camada preparada (pé-de-grade). Essa camada compactada diminui a infiltração da água no solo, com o conseqüente aumento no escorrimento superficial causando erosão. Os sistemas radiculares das culturas ficam mais superficiais, explorando menor volume de solo e tornando as plantas mais suscetíveis ao veranico, comum em várias regiões.

Nos últimos anos tem aumentado substancialmente o uso do plantio direto, sendo que atualmente, mais de 12 milhões de hectares, já são cultivados com este sistema e, cerca de 3 milhões de hectares ocupado com a cultura do milho. Nas regiões onde se cultiva a soja e o milho, o plantio direto se beneficia desta rotação que é benéfica para ambas as culturas. O mesmo ocorre no plantio do milho "safrinha" plantado após a soja precoce. Para o sucesso do plantio direto, um fator muito importante é o aporte de material orgânico e cobertura vegetal. Neste caso, o milho apresenta papel de destaque por sua grande produção de biomassa e por ser esta de relação C/N alta, o que colabora para uma maior cobertura do solo, tanto em quantidade como em tempo de permanência na superfície.

A semeadura do milho na época certa, embora não tenha nenhum efeito no custo de produção, seguramente afetará o rendimento e, consequentemente, o lucro do agricultor. Trabalhos de pesquisas, realizados no Brasil Central, mostram que, dependendo da cultivar, o atraso na semeadura a partir da época mais adequada (geralmente em outubro) pode resultar em redução no rendimento de até 30 kg/ha por dia. Obviamente, por razões diversas, este atraso muitas vezes não depende do produtor. Entretanto, se o produtor atrasar a semeadura por negligência ou por desconhecimento, estará perdendo dinheiro e comprometendo seu negócio. Atualmente, já se dispõe do zoneamento agroclimático para a cultura do milho nos principais estados produtores (Zoneamento Agrícola, 2000), em que são estabelecidas as épocas de semeadura com menor probabilidade de expor a cultura as geadas e ao déficit hídrico (Figura 6).

Outro importante componente do sistema de produção é a densidade de semeadura, a qual é função da cultivar, da disponibilidade hídrica e de nutrientes. Assim, qualquer fator que afetar a disponibilidade de água e nutrientes para o milho também afetará a escolha da densidade de semeadura. Em relação a cultivar, a densidade poderá variar em função do porte, da arquitetura da planta, da resistência ao acamamento e da finalidade a que se destina o plantio. Normalmente, cultivares mais precoces, de menor porte e mais eretas, permitem o uso de densidades mais elevadas e espaçamentos mais estreitos. Quanto à disponibilidade de nutrientes e hídrica, a relação com a densidade de plantio é direta, isto é, quanto maior a disponibilidade destes fatores maior será a densidade recomendada. A Tabela 5 mostra faixas de densidades de semeadura para diferentes tipos de cultivares de milho.

Visando o aumento da produtividade, existe uma tendência de reduzir o espaçamento e aumentar a população de plantas por área para a maioria dos modernos híbridos. Entre as vantagens potenciais da utilização de espaçamentos menores (0,50 a 0,70 m), podem ser citados o aumento na eficiência de utilização da luz solar, água, nutrientes e, controle de plantas daninhas. Devido a uma melhor distribuição espacial das plantas na área, há um fechamento mais rápido dos espaços disponíveis, diminuindo a duração do período crítico de competição das ervas daninhas e a erosão, em conseqüência do efeito da cobertura antecipada da superfície do solo.

Com desenvolvimento das tecnologias de agricultura de precisão, é possível manejar a variabilidade das áreas de produção a níveis de escala muito menor que a empregada no passado. As modernas semeadoras podem ser equipadas para variar a quantidade de sementes, e assim a população de plantas pode ser alterada no campo de acordo com as necessidades, como tipo de solo, cultivares, etc. Colheitadeiras equipadas com monitores de colheita e GPS, possibilitam a obtenção de mapas de variabilidade na produção e consequentemente o delineamento de zonas de manejo.

Tabela 5. Densidade de plantas recomendadas para os diferentes tipos de cultivares comercializadas na safra 2001/02.

Tipo de cultivares	Frequência de cultivares	Densidades de planta: recomendadas (número/ha)
Hibrido simples	53	50000 a 70000
Hibrido triplo	50	45000 a 60000
Hibrido duplo	40	40000 a 55000
Variedade	18	40000 a 50000

Fonte: adaptado de Cruz et al. (2001).

Para evitar perdas no rendimento, a lavoura deve ser mantida no limpo até a 6ª ou 7ª semana após a emergência do milho. Um bom controle do mato pode ser obtido tanto com a utilização de métodos mecânico e/ou químico. Embora o controle químico de plantas daninhas na cultura do milho no Brasil tem sido cada vez mais freqüente, a taxa de adoção dessa tecnologia ainda é relativamente pequena. Segundo Kissmann (2000), enquanto que no Brasil, somente 28% da área cultivada com milho é tratada com herbicidas, no Paraguai esse valor atinge a 30%, no Uruguai, 65% e na Argentina, 98%. Atualmente, são 4 milhões de hectares, mas estima-se que poderá chegar a 6 milhões num prazo de 8 anos (Ramos, 2001). Assim, o baixo consumo de herbicidas na cultura do milho no Brasil, pode ser um indicativo da predominância de pequenas lavouras, onde o uso de tecnologias é menor.

Por outro lado, pesquisas tem demonstrado a eficiência do uso de práticas integradas de manejo no controle de plantas daninhas. Vários autores tem demonstrado que essa estratégia pode reduzir o uso de agroquímicos (Anderson. 1997). Redução entre 30 e 40 % foi obtida por McMaster et al. (1987) e Anderson (1997), na cultura do trigo de inverno. A combinação de espaçamento, densidade de semeadura, cultivares com diferenças nos ciclos e arquiteturas mais eretas e, níveis de fertilizantes, especialmente o nitrogênio, pode constituir um sistema, em que o milho seja mais competitivo com as plantas daninhas (Swanton & Murphy,1996; Teasdale, 1995).

A rotação de culturas, tem também, demonstrado sua importância no controle das plantas daninhas (Lorenzi 1986). A razão disso, é que a rotação interrompe o ciclo biológico das plantas daninhas mais comuns, ou seja, aquelas mais competitivas e que exigem outras técnicas de manejo cultural adequadas. O sistema de rotação milho e soja tem evidenciado este propósito, principalmente, quando utiliza-se para o milho o mesmo espaçamento adotado para soja (0,50 m), o que pode inibir o desenvolvimento das plantas daninhas, minimizando ou até mesmo eliminando o uso de herbicidas pós – emergentes. Nos últimos anos, tem-se verificado um aumento acentuado de ocorrência de pragas e doenças na cultura do milho. Desde que o controle químico de doenças geralmente não é econômico, o produtor deve utilizar cultivares mais resistentes associado à outras práticas de manejo como: rotação de culturas e épocas de semeaduras mais adequadas. No controle de pragas, o método químico é normalmente utilizado. Entretanto, a aplicação incorreta pode propiciar o desenvolvimento de raças de pragas resistente ao inseticida aplicado. Além disso, o uso indiscriminado de inseticidas tem levado a eliminação de inimigos naturais. Uma boa estratégia tem sido a utilização de inseticidas químicos via tratamento de sementes. O custo do inseticida para o tratamento de sementes é apenas 4,8 % do custo total dos insumos, considerando, além do inseticida, a semente, o adubo e o herbicida (Cruz et al.,1999). Deve-se ressaltar que na venda de inseticidas para o tratamento de sementes, o milho foi a cultura que representou maior valor de faturamento do segmento, representando em 2000, cerca de 57 %, seguido do algodão (19,3%), arroz (6,6%), feijão (6,5%), soja (6,4%) e trigo (4,0%) (Ferreira et. al.,2002).

Dentre as pragas foliares, a lagarta do cartucho (*Spodoptera frugiperda*) é a mais importante praga da cultura do milho no Brasil. Tem sido relatado que as reduções no rendimento do milho provocada por essa lagarta chegam a 34 %. As perdas econômicas causadas por essa praga na cultura do milho são estimadas em 400 milhões de dólares (Cruz et al., 1999). A má regulagem dos equipamentos e a escolha incorreta de inseticidas tem aumentado o número médio de aplicações na cultura do milho, sem no entanto, atingir os objetivos de controle dessa praga (Cruz, 1995). Além da escolha dos produtos químicos adequados e equipamentos de aplicação, métodos alternativos, como o controle com a identificação dos inimigos naturais devem ser considerados (Cruz et al., 1999).

4.3 – Fertilidade do Solo, Nutrição e Adubação

A fertilidade dos solos, a nutrição e adubação são componentes essenciais para a construção de um sistema de produção eficiente. A disponibilidade de nutrientes deve estar sincronizada com o requerimento da cultura, em quantidade, forma e tempo. Um programa racional de adubação envolve as seguintes considerações: a) diagnose da fertilidade do solo; b) requerimento nutricional do milho de acordo com a finalidade de exploração, grãos ou forragem; c) os padrões de absorção e acumulação do nutrientes, principalmente N e K; d) fontes dos nutrientes; e) métodos e épocas de aplicação. Nos últimos 4 anos, o consumo de fertilizantes na cultura do milho, aumentou de 2,03 para 2,62 milhões de toneladas, representando um aumento de 30 % (Anuário..., 1999). Acredita-se, que o milho, com cerca de 13 milhões de hectares cultivados e, um consumo médio de 95 kg/ha de N, P₂O₅ e K₂O (Figura 5), será em futuro próximo, a principal cultura consumidora de fertilizantes.

4.3.1 – Diagnose da fertilidade do solo

Para que o objetivo do manejo racional da fertilidade do solo seja atingido é imprescindível a utilização de uma série de instrumentos de diagnose de possíveis problemas nutricionais que, uma vez corrigidos, aumentarão as probabilidades de sucesso na agricultura.

Assim, o agricultor ao planejar o cultivo do milho deve levar em consideração os seguintes aspectos: a) diagnose adequada dos problemas – análise de solo e histórico de calagem e adubação das glebas; b) quais nutrientes devem ser considerados neste particular caso? (muitos solos tem adequado suprimento de Ca, Mg, Fe, etc.); c) quais nutrientes não necessitam ser considerados a cada ano? (Ca e Mg suprido pela calagem; Zn e Cu residual no solo e, maior ou menor exigência da cultura); d) quantidades de P e K necessários na semeadura? - determinado pela análise de solo e removido pela cultura; e) qual a fonte, quantidade e, quando aplicar N? (baseado na análise de solo e produtividade desejada); f) quais nutrientes podem ter problemas neste solo? (lixiviação de nitrogênio em solos arenosos, ou são necessários em grandes quantidades); g) outros fatores agronômicos (híbridos, espaçamento, densidade de plantas, sanidade, disponibilidade de água, etc.), são satisfatórios?

Figura 5. Consumo aparente de fertilizantes pelas culturas produtoras de alimentos básicos (mandioca, feijão, arroz e milho) e de exportação (citrus, soja, cana e café), no Brasil, em 1998. Fonte: elaborada com base em Lopes, A. S., comunicação pessoal.

4.3.2 – Requerimento nutricional

O requerimento nutricional varia diretamente com o potencial de produção. Por exemplo, dados médios de nossos experimentos conduzidos em Sete Lagoas e Janaúba, MG, dão uma idéia da extração de nutrientes pelo milho, cultivado para produção de grãos e silagem (Tabela 5). Observa-se que a extração de nitrogênio, fósforo, potássio, cálcio e magnésio aumenta linearmente com o aumento na produtividade, e que a maior exigência do milho refere-se ao nitrogênio e potássio, seguindo-se cálcio, magnésio e fósforo.

Devido ao fato de que culturas com maiores rendimento extraírem e exportarem maiores quantidades de nutrientes (Tabela 4) e, portanto, necessitarem de doses diferentes de fertilizantes, nas recomendações oficiais de adubação para a cultura do milho no Brasil, as doses dos nutrientes são segmentadas conforme a produtividade esperada. Isso se aplica mais apropriadamente, a nutrientes como nitrogênio e o potássio, extraídos em grandes quantidades, mas também é valido para o fósforo e, de certo modo para o enxofre. O conceito é menos importante para o cálcio e o magnésio, cujos teores nos solos, com a acidez adequadamente corrigida, devem se suficientes para culturas de milho com altas produtividades

No que se refere à exportação dos nutrientes (Tabela 5), o fósforo e o nitrogênio é quase todo translocado para os grãos, seguindo-se o magnésio, o potássio e o cálcio. Isso implica que a incorporação dos restos culturais do milho devolve ao solo parte dos nutrientes, principalmente potássio e cálcio, contidos na palhada. Entretanto, mesmo com a manutenção da palhada na área de produção e, em decorrência da grandes quantidades que são exportadas pelos grãos, faz-se necessária a reposição desses nutrientes em cultivos seguintes. O milho destinado a produção de forragem, tem recomendações especiais porque todo material é cortado e removido do campo antes que a cultura complete seu ciclo. Com isso, a remoção de nutrientes é muito maior do que aquela para a produção de grãos (Tabela 5).

Tabela 5. Extração média de nutrientes pela cultura do milho destinada á produção de grãos e silagem em diferentes níveis de produtividades.

Tipo de exploração	Produção	Nutrientes extraídos				
		N	P	K	Ca	Mg
	t/ha			kg/ha		
Grãos	3,65	77	9	83	10	10
	5,80	100	19	95	17	17
	7,87	167	33	113	27	25
	9,17	187	34	143	30	28
	10,15	217	42	157	32	33
Exportação nos grãos (%)	70-77	77-86	26-43	3-7	47-69
Silagem	11,60	115	15	69	35	26
(matéria seca)	15,31	181	21	213	41	28
	17,13	230	23	271	52	31
	18,65	231	26	259	58	32

Fonte: Coelho & França, 1995.

4.3.3 – Padrões de absorção e acumulação de nutrientes

Definida a necessidade de aplicação de fertilizantes para a cultura do milho, o passo seguinte, e de grande importância no manejo da adubação, visando a máxima eficiência, é o conhecimento da absorção e acumulação de nutrientes nas diferentes fases de desenvolvimento da planta, identificando as épocas em que os elementos são exigidos em maiores quantidades. Esta informação, associada ao potencial de perdas por lixiviação de nutrientes nos diferentes tipos de solos, são fatores importantes a considerar na aplicação parcelada de fertilizantes, principalmente nitrogenados e potássicos.

O milho apresenta períodos diferentes de intensa absorção, com o primeiro ocorrendo durante a fase de desenvolvimento vegetativo (V12 – V18), quando o número potencial de grãos está sendo definido, e o segundo, durante a fase reprodutiva ou formação da espiga, quando o potencial produtivo é atingido (Karlen et al., 1987). Isto enfatiza que para altas produções, mínimas condições de estresses devem ocorrer durante todos os estádios de desenvolvimento da planta.

A absorção de potássio apresenta um padrão diferente em relação ao nitrogênio e ao fósforo, com a máxima absorção ocorrendo no período de desenvolvimento vegetativo, com elevada taxa de acúmulo nos primeiros 30 a 40 dias de desenvolvimento, com taxa de absorção superior ao de nitrogênio e fósforo, sugerindo maior necessidade de potássio na fase inicial como um elemento de "arranque'. Para o nitrogênio e o fósforo, o milho apresenta dois períodos de máxima absorção durante as fases de desenvolvimento vegetativo e reprodutivo ou formação da espiga, e menores taxas de absorção no período compreendido entre a emissão do pendão e o inicio da formação da espiga. Com o desenvolvimento de novas cultivares e melhoria nas práticas de manejo, tem-se questionado se esses fatores afetam a acumulação de matéria seca e nutrientes. Mullins & Burmester (1996), compararam a variação da absorção de N, P e K pelo milho entre os trabalhos reportados por Sayre (1948) e Karlen et al. (1987). Embora estes estudos foram conduzidos com diferenças de 42 anos, isto é, quatro décadas de melhoramento genético e melhoria das tecnologias de manejo e adubação, eles apresentaram padrão similar de acumulação de matéria seca e absorção de nutrientes. A produção de grãos e nutrientes absorvido no estudo de Karlen et al. (1987) foram 1,7 e 2,6 vezes maiores, respectivamente, do que os obtidos por Sayre (1948). O aumento do acúmulo de matéria seca e nutrientes dos novos híbridos, em relação aos antigos, pode ser atribuído, em parte, ao aumento da tolerância às altas densidades de semeadura e maiores doses de fertilizantes aplicadas.

4.3.4 – Fontes dos nutrientes

A indústria de fertilizantes coloca no mercado uma enorme quantidade de adubos simples e formulados, em pó, mistura de grânulos e granulados. Esta diversidade de opções possibilita uma adequação das adubações de base e cobertura de acordo com as necessidades da cultura.

4.3.5 – Métodos e épocas de aplicação de fertilizantes.

Com a introdução do conceito de adubação dos sistema de produção e não por culturas específicas, pode-se dizer que o manejo dos corretivos da acidez do solo (calcário e gesso), fertilizantes fostados, potássicos e micronutrientes, são bem definidos. De acordo com as necessidades dos solos e culturas estes podem ser manejados através da aplicação a lanço, na pré - semeadura como adubação corretiva; no sulco de semeadura, como adubação de manutenção e, combinação desses métodos. Para os micronutrientes a aplicação pode também ser via foliar e nas sementes. Para a cultura do milho o potássio e principalmente o nitrogênio merecem algumas considerações especiais com respeito as épocas de aplicação.

4.3.5.1 – Manejo do potássio

O parcelamento da adubação potássica na cultura do milho, com aplicação de parte da dose na semeadura e parte em cobertura, tem-se tornado prática rotineira, como alternativa as tradicionais recomendações da aplicação de toda a dose no sulco de semeadura ou a lanço na pré semeadura. Isto tem sido sugerido para evitar redução na população de plantas devido ao efeito salino dos adubos potássicos ou para evitar perdas por lixiviação devido a alta concentração de K+ na solução do solo, ocasionada pela aplicação de uma alta dose em um reduzido volume de solo no sulco de semeadura. Para evitar o problema, recomenda-se aplicar parte dela em cobertura para doses superiores a 60 kg/ha. Entretanto, ao contrário do nitrogênio, em que é possível maior flexibilidade na época de aplicação, sem prejuízos na produção, o potássio deve ser aplicado no máximo até 30 dias após o plantio. Assim, a aplicação parcelada do potássio pode ser feita nas seguintes situações: a) solos altamente deficientes nesse nutriente, em que são necessárias altas doses de fertilizante e b) quando o milho for cultivado para produção de forragem, em que normalmente são necessárias doses mais altas de potássio devido à maior exportação desse nutriente.

4.3.5.2 – Manejo do nitrogênio

No Brasil, aplicação de N em milho tem sido, tradicionalmente, feita de forma parcelada, com uma pequena dose na semeadura, geralmente de 10 a 30 kg/ha, e o restante em cobertura no estágio de 6 a 8 folhas. As razões para o parcelamento incluem evitar o excesso de sais no sulco de semeadura mas, principalmente, perdas de N por lixiviação de nitrato. Existia o conceito generalizado, de que em solos tropicais, a intensidade de nitrificação era rápida e as perdas de N atribuídas principalmente a lixiviação de N-NO₃.

Experimentos conduzidos a partir da década de 1980, usando a metodologia do ¹⁵N (Libardi et al., 1981; Reichardt et al., 1982; Urquiaga, 1982; Coelho et al., 1991; França et al., 1994), possibilitaram um melhor entendimento da dinâmica do nitrogênio em solos tropicais e o destino do N-fertilizante aplicado as culturas. Os resultados dessas pesquisas mostraram que: a) o N - fertilizante recuperado pelas culturas, variou de 53 a 64 %, com média de 56 %, com aplicação de 60 a 100 kg de N/ha; b) a maior parte do N fertilizante medido no solo após a colheita, estava na camada superficial do solo (0 – 30 cm); c) não houve indicação de movimentação de N-NO3 no perfil do solo; d) das perdas por lixiviação de 10 a 20 kg de N/ha, apenas 20 % eram derivadas do fertilizante; e) do N - fertilizante encontrado na camada superficial do solo, após a colheita, 70 a 90 % estava na forma orgânica, contribuindo para redução nas perdas por lixiviação; f) em média, 85 % do N - fertilizante aplicado foi recuperado no sistema solo - planta. Verificou-se também que em solos de cerrado, o processo de nitrificação não é tão rápido, prolongando a permanência do N na forma amoniacal, o que contribui para a redução das perdas por lixiviação de nitrato (Mello Jr. et al., 1994, Coelho, 1995) As pesquisas mencionadas acima demonstraram grande estabilidade do N no solo durante o período de desenvolvimento das culturas, sem evidências de alto potencial de perdas por lixiviação no perfil do solo. Essas informações, vislumbraram a possibilidade de se antecipar a aplicação de nitrogênio no milho. A idéia se deveu ao fato de que sendo a adubação de cobertura uma prática a mais a ser realizada, muitos agricultores, por algum motivo, deixavam de executá-la com grandes reflexos na produtividade. Assim, se fosse comprovada que o aumento da dose de nitrogênio aplicada em pré ou na semeadura, apresentasse a mesma eficiência em relação ao método convencional, haveria um aumento substancial no consumo desse fertilizante e consequentemente aumentos significativos na produtividade da cultura do milho.

Um dos primeiros trabalhos sobre aplicação antecipada de nitrogênio em milho, utilizando a metodologia do ¹⁵N, foi realizado por Neptune (1977), em Monte Azul Paulista, SP, em sistema de preparo convencional do solo. Os dados apresentados na Tabela 6 mostram que a antecipação da aplicação do N não resultou em diminuição dos rendimentos de grãos em relação à aplicação convencional (na semeadura do milho e em cobertura, 40 dias após a semeadura). Entretanto, verifica-se que na antecipação da adubação nitrogenada, o método de aplicação do N afetou o rendimento de grãos. A aplicação do N em faixas, produziu a mais, 22 % (1300 kg/ha), em relação a aplicação a lanço. Outro aspecto relevante, é o efeito dos métodos e épocas de aplicação do N – fertilizante, no aumento da absorção pela planta do N do solo, sugerindo uma maior intensidade de mineralização da matéria orgânica com a aplicação a lanço do fertilizante (Tabela 6).

Na década de 1990, com a expansão em larga escala do sistema de plantio direto, 12 milhões de hectares dos quais 40 % em áreas de cerrado, associado a rotação (principalmente milho e soja) e sucessão de culturas, verificou-se a necessidade de ajustar e ou desenvolver estratégias de manejo de nitrogênio para o milho, diferente daquela recomendada para o sistema de manejo convencional dos solos. Assim a idéia de antecipar a adubação nitrogenada de cobertura do milho em plantio direto, foi sugerida.

Os primeiro estudos visando à antecipação da aplicação de N em milho em plantio direto estabelecido foram conduzidos por Sá (1996) na região dos Campos Gerais, PR, e, por Pöttker & Wiethölter (2000), na região de Passo Fundo, RGS.

Os resultados obtido por Sá (1996), mostraram que a antecipação da aplicação do N não resultou em diminuição dos rendimentos de grãos em relação à aplicação convencional (na semeadura do milho e em cobertura, com as plantas com 6 a 8 folhas) e, em alguns casos, observou –se até um pequeno acréscimo de rendimento com antecipação da adubação nitrogenada.

Tabela 6. Nitrogênio absorvido e produção de milho, em função do manejo do ¹⁵N - fertilizante, na dose de 100 kg ha⁻¹, na forma de sulfato de amônio.

Método e época de aplicação	N - absorvi (kg/ha)		INSF ⁽³⁾ (%)	Produção de grãos	
	Fertilizante	Solo		(kg/ha)	
Lanço ⁽¹⁾ (100 kg/ha)	43,00	69,20	48,18	5843	
Faixa ⁽²⁾ (100)	57,80	62,00	32,76	7155	
Cobertura(3) (100)	39,50	54,20	16,06	7154	
Lanço + faixa (50 + 50)	42,50	62,20	33,19	7019	
Lanço + cobert. (50 + 50)	44,70	58,50	25,26	6789	
Faixa + cobert. (50 + 50)	53,10	59,90	28,26	7087	
Lanco + f + c (34+33+33)	50,50	47,00	0,64	7128	
Testemunha	0,00	46,70	0,00	3746	

(1) Lanço — aplicação na pré-semeadura e incorporada no soto; Olyaixa — aplicação em sulcos na pré-semeadura; Olyaixa — aplicação aos 40 dias após semeadura; Olyaixa — aplicação aos 40 dias após semeadura; Olyaixa — aplicação de N do soto. Fonte: adaptada de Neptune (1977).

Por outro lado, Pöttker & Wiethölter (2000), observaram em um dos anos de condução dos experimentos, substancial redução da produção quando a maior parte do N foi aplicado em pré – semeadura, após a rolagem da aveia preta ou na semeadura do milho, em comparação com a obtida com a aplicação do N em cobertura (Tabela 7). Isso ocorreu em um ano com excesso de chuvas em outubro e novembro. Nos dois outros anos, não houve efeito da época de aplicação do N, ou seja não houve vantagem na antecipação da adubação sobre o rendimento de grãos (Tabela 7).

A alternativa de aplicar todo o N a lanço ou em sulcos, na pré – semeadura do milho, tem despertado grande interesse porque apresenta algumas vantagens operacionais, como maior flexibilidade no período de execução da adubação, racionalização do uso de máquinas e mão-de-obra. Entretanto, devido à extrema complexidade da dinâmica do nitrogênio no solo, a qual é fortemente influenciada pelas variáveis ambientais, os resultados de experimentos de campo não são consistentes o bastante para que se possa generalizar a recomendação dessa prática. Por outro lado, a aplicação de N em cobertura quase sempre assegura incrementos significativos no rendimento de milho, independente de a precipitação pluvial ser normal ou excessiva, principalmente no período inicial de desenvolvimento da cultura.

4.4 – Fatores Climáticos: Condições Hídricas e Zoneamento

O objetivo da construção da produtividade com relação a disponibilidade de água no solo, é maximizar a eficiência da água usada para a produção de grãos. Os fatores que devem ser considerados para o manejo da disponibilidade de água são: a) disponibilidade de água da precipitação e para irrigação e épocas de sua disponibilidade; b) retenção da precipitação; c) capacidade de armazenamento de água nos diferentes tipos de solo; e) requerimento de água pelo milho.

Tabela 7. Efeito dos métodos e épocas de aplicação de nitrogênio sobre a produção de milho em sistema de plantio direto.

Métodos épocas e de aplicação	Produç	odução de grãos (kg/ha)		
	1997/98	1998/99	1999/00	
Pré + Sem + Cob (100 + 0 + 0)(1)	6404	8604	7320	
$Pré + Sem + Cob (100 + 0 + 0)^{(2)}$	6897	9148	7383	
Pré + Sem + Cob (70 +30 + 0)(1)	6170	9087	7464	
Pré + Sem + Cob (70 + 30 + 0) (2)	6653	9313	7708	
Pré + Sem + Cob (0 + 100 + 0) (1)	6538	9106	****	
Pré + Sem + Cob (0 + 30 + 70) (3)	8128	8880	7872	
Pré + Sem + Cob (0 + 30 + 70) (4)	8534	9133	7192	
Testemunha	*****	6556	4736	

(1)aplicação a lanço; (2)aplicação em linhas espaçadas de 45 cm; (3) adubação de cobertura a lanço; (8)adubação de cobertura incorporada a 20 cm ao lado das linhas. Fonte: adaptada de Pottker & Wiethölter (2000).

Com base na análise dos dados de precipitação (no mínimo de 30 anos) de um específico município ou região, aspectos relevantes sobre os seguintes questões podem ser levantadas: a) qual é o padrão de distribuição da precipitação e as probabilidades de ocorrência de déficit hídricos; b) qual o tipo de cultivar, de clico precoce ou normal, que pode ter sucesso nessas condições; c) qual o tipo de solo que não deveria ser utilizado para a cultura nestas condições.

O padrão de distribuição da precipitação, sistema de manejo (preparo convencional, plantio direto) e textura dos solos, interagem, afetando a disponibilidade de água. A tabela 8, ilustra a variabilidade na produção de milho de uma área de 25 ha, com diferentes tipos de solos com relação a capacidade armazenamento da água disponível e seu efeito na produção de milho, em anos com e sem déficit hídrico.

Tabela 8. Capacidade de armazenamento de água disponível em diferentes tipos de solos e seu efeito na produção de milho.

Tipo de solo	Água disponível	Produção de grãos – kg/ha		
	(mm)(1)	1999 (2)	2000(3)	
A	180	7776	14172	
В	130	2508	12354	
C	90	2132	9595	

(1)Agua disponível até a profundidade de 120 cm; (2)ano com acentuado déficit hídrico; (3)ano sem déficit hídrico. A daptado de Alley & Roygard (2001).

Com o aumento da competitividade nos diversos setores da economia, o desenvolvimento de cinturões de produção de uma determinada cultura, em regiões mais favoráveis, onde ela possa mais facilmente expressar o seu potencial produtivo é extremamente importante. Dentro deste enfoque, tem-se verificado que a cultura do milho na safra normal é muito mais produtiva quando plantada em locais com altitudes igual ou acima de 700 m. Dados dos Ensaios Nacionais de Milho (Tabela 9) mostram que nos experimentos instalados em locais com altitudes acima de 700 m, produziram cerca de 18% a mais do aqueles instalados em locais com altitudes abaixo de desse valor. Acredita-se que a menor temperatura noturna, associada a um aumento no ciclo das culturas são fatores preponderantes para explicar essas diferenças no rendimento. Deve-se também ressaltar que a maioria dos materiais de divulgação de cultivares de milho das Empresas que comercializam sementes de milho, separam estas duas situações de altitudes (acima e abaixo de 700m) nas suas recomendações técnicas.

Tabela 9. Produtividade média de grãos, em kg/ha, de cultivares de milho dos ensaios nacionais, em função da altitude dos locais onde foram conduzidos.

Ano	Tipo de	Número	Alti	tude
	ensaio	de locais	> 700 m	< 700 m
1997/98	S. precoce	15/23 (1)	7975	6545
	Precoce	12/27	8159	6663
	Normal	9/27	8140	6361
1998/99	S. precoce	16/21	8186	6023
	Precoce	17/24	8225	6286
	Normal	14/25	7544	6016
1999/00	S. precoce	13/15	7645	6831
	Precoce	13/20	7568	6616
	Normal	15/19	7421	6739
2000/01	S. precoce	10/22	5615	5748
	Precoce	8/25	6286	5848
	Normal	10/25	6536	5998
Aédia (kg/ha)			7471 (118 %)	6306 (100 %)
loresc. masc	ulino –(dag)		67	63

(1) Referem-se ao número de experimentos instalados acima e abaixo de 700 m de altitude, respectivamente. Fonte: adaptada de relatórios da EMBRAPA.

Muitos sistemas de produção tem evoluído ao longo dos anos, sem um claro entendimento da disponibilidade de água. Entretanto, para um futuro refinamento dos sistemas e/ou necessidades de mudanças para se obter um sistema sustentável, há necessidade de se obter as seguintes informações: a) requerimento de água pela cultura; b) capacidade de armazenamento de água em profundidade dos diferentes tipos de solos; c) profundidade do sistema radicular; d) histórico da precipitação e padrão de distribuição. O objetivo dessa análise é otimizar a disponibilidade de água para a produção de grãos.

Com os avanços nos trabalhos na área de climatologia, já se dispões para as diferentes regiões do Brasil do zoneamento agrícola para as algumas culturas, entre elas o milho, que fornece informações importantes sobre as épocas de plantio de milho com menores riscos (Figura 6).

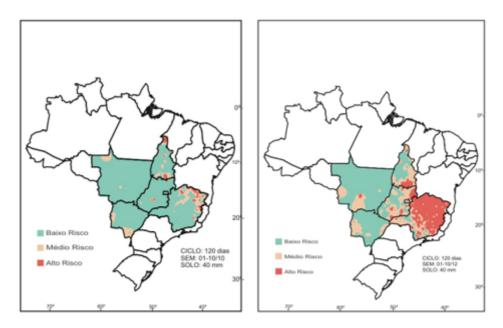


Figura 6. Espacial distribuição de riscos climáticos para a semeadura do milho (cultivar de ciclo de 120 dias) no período de 01 a 10 de outubro (Esquerda) e, 01 a 10 de dezembro (Direita), considerando-se um solo com capacidade de armazenamento de água disponível de 40 mm a uma profundidade de 60 cm. Edição: Geoprocessamento Embrapa - Milho e Sorgo, 2001.

5 – Considerações Finais

A análise geral da cultura do milho no Brasil, nos últimos 31 anos, revela que embora tenha-se verificado incrementos de mais de 100 % na produtividade e produção total do país, a produtividade média é ainda muito baixa. Por outro lado, existe uma grande amplitude de variação desse valores entre as diferentes regiões e estados. Por exemplo, a região Sul apresentou aumentos anuais da ordem de 346,58 mil toneladas na produção total e 63 kg/ha no rendimento, enquanto que na região Nordeste, os aumentos foram de 32,38 mil toneladas e 11 kg/ha. Embora tenha-se informação de que é possível produzir 16000 kg de grãos/ha, são restritas as indicações sobre como, e em que condições isto seria possível.

Em um país de dimensão continental e com uma extrema diversidade de clima e solo, não parece correto, discutir e comparar níveis de produtividade em termos médios, principalmente para uma cultura como o milho, cultivada praticamente em todo território nacional. Os aumentos de produtividade verificados ao longo dos últimos 31 anos, variando de 11 a 81 kg/ha/ano, entre as diferentes regiões onde se cultiva o milho, reflete muito bem esta situação.

É evidente que as diferenças culturais, sócio - econômicas e ambientais, exercem grande influência na atividade agrícola resultando em diferenças no objetivo da produção e na adoção de tecnologias, o que sem dúvida ira resultar em diferentes níveis de produtividade. Nessas condições, a difusão e adoção de tecnologias terão, logicamente, impactos diferentes no aumento da produção e renda do agricultor.

Com a introdução dos conceitos de agricultura de precisão, o objetivo principal é a amplitude de variação na produtividade e não o valor médio. Do mesmo modo, poderíamos utilizar esse conceito para delinear a variabilidade da produção de milho no Brasil o que possibilitaria a separação por zonas de produtividade. De posse dessas informações é possível identificar uma série de parâmetros de caracter social, cultural, edafoclimática e tecnológico os quais possibilitariam definir estratégias para incrementar a produção de milho no Brasil.

6 – Referências Bibliográficas

AGROCERES. Concurso Agroceres de produtividade de milho. São Paulo, [199?]. Não publicado.

Alley, M.M. & Roygard, J.K.F. Intensifying agronomic crop production systems. InfoAg 2001 Conference Proceedings, August 7-9, Indianapolis, CD Room.

Alves, E.; Souza, G.S. & Garagorry, F.L. A evolução de produtividade do milho. Revista de Economia e Sociologia Rural, Brasília, v.37, n.1, p.77-96, 1999.

Anderson, R.L. Cultural systems can reduce reprodutive potencial of winter annual grasses. **Weed Tecnology**. v. 11:608-613. 1997.

Araújo, J.S. de. Ganhos genéticos obtidos em híbridos e variedades de milho representativos de três décadas de melhoramento no Brasil. UFLA, Lavras, 1995. 64p. (Tese de Mestrado).

- Coelho, A.M. & França, G.E. de. Nutrição e adubação. In: Potafós (Piracicaba, SP.) **Seja doutor do seu milho**. 2 ed. Aum. Piracicaba, 1995. p. 1-9 (Potafos, Arquivo do Agrônomo,2)
- Coelho, A.M. Efeito de níveis de N-uréia na dinâmica de amônio e nitrato em latossolo cultivado com milho irrigado. In: Congresso Nacional De La Ciencia Del Solo, Temuco, Chile. 1995. Resumos... Temuco, 1995. p. 6.
- Coelho, A.M.; França, G.E.de.; Bahia Filho, A.F.C. & Guedes, G.A.A. Balanço de nitrogênio (15N) em um latossolo vermelho escuro fase cerrado, cultivado com milho. R. Bras. Ci. Solo, Campinas: v.15, n.2, p. 187-193, 1991.
- Cruz, J.C.; Correa, L.A.; Pereira Filho, I.A.; Gama, E.E.G. & Pereira, F.T.F. Variedades de milho para esta safra. **Cultivar**, Pelotas, v.3, n.33, out. 2001. Caderno Técnico.
- Cruz, I. **A lagarta-do-cartucho na cultura do milho**. Sete Lagoas: EMBRAPA. CNPMS, 1995.45p. (EMBRAPA, CNPMS. Circular Técnica, 21)
- Cruz, I.; Figueiredo, M. de L. C.; Matoso, M. J. Controle biológico de *Spodoptera frugiperda* utilizando o parazitóide de ovos Trichogramma. Sete Lagoas: EMBRAPA-CNPMS, 1999. 40p. (EMBRAPA-CNPMS. Circular Técnica, 30)
- Cruz, I.; Viana, P.A.; Waquil, J.M. Manejo das pragas iniciais de milho mediante o tratamento de sementes com inseticidas sistêmicos. Sete Lagoas: EMBRAPA-CNPMS, 1999. 39p. (EMBRAPA-CNPMS.Circular Tecnica, 31)
- EMATER MG. Concurso estadual de produtividade de milho safra 98/99 : resultados. Belo Horizonte, [199?]. Não paginado.
- Ferreira, C.R.R.P.T.; Silva, J.R. da; Nogueira Jr., S. Utilização e vendas de defensivos agrícolas para tratamento de sementes no Brasil, 1991-2000. **Informações Econômicas**, São Paulo, v.31, n.1, p.38-44, jan.2002.
- França, G.E. de.; Coelho, A.M. & Bahia Filho, A.F.C. Balanço de nitrogênio (15N) em dois latossolos cultivados com milho sob irrigação. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, 21, 1994. Petrolina, PE. Soc. Bras. Ci. Solo, 1994, p.93-95.
- Karlen, D.L.; Sadler, E.J. & Camp, C.R. Dry matter, nitrogen, phosphurus, and potassium accumulation rates by corn on Norfolk Loamy Sand. Agron. J., 79:649-656, 1987.
- Kissmann, K.G. Uso de herbicidas no contexto do Mercosul. In: CONGRESSO BRASILEIRO DA CIENCIA DAS PLANTAS DANINHAS, 22., 2000, Foz do Iguacu. Palestras... Londrina: SBCPD, 2000. p.92-116.
- Libard, P.L.; Victoria, R.L.; Reichardt, K. & Cevelini, A. The fate of uréia applied to tropical bean (Phaseolus vulgaris, L) crops. In: Workshop on nitrogen cycling in ecosystems of American and Caribbean, Cali, 1981. Workshop...Cali, 1981. p.55-63.

Lorenzi, H. Manual de identificação e controle de plantas daninhas: plantio direto e convencional. Nova Odessa: [s.n], 1986. 220p.

Lowenberg-Deboer, J. Adoption patterns for precision agriculture. SAE Technical Paper Series No. 982041. Milwauke, WI. The Engineering Society for Advance Mobility Land Sea Air and Space.1998.

Mcmaster, G. S.; Morgan, J. A. & Willis, W. O. Effects of shading on winter wheat yield spike characteriscts, and carbhydrate allocation Crop Science. 967-973.1987.

Mello, A.V.Jr.; Coelho, A.M. & Albuquerque, P.E. Níveis de água e nitrogênio na movimentação e recuperação do N em latossolo cultivado com trigo. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, 21, 1994. Petrolina, PE. Soc. Bras. Ci. Solo, 1994, p. 275-277.

Mullins, G.L., & Burmester, C.H. Potassium uptake by crops during the season. In SYMPOSIUM ON POTASSIUM NUTRITION IN PLANTAS, 1996, Indianapolis, IN. **Frontier in potassium nutrition**: new perspectives on the effect of potassium on crop plant physiology – proceedings. (S.L.): Potash & Phosphate Institute, 1996. Cap. 15, p. 123-141. Edited by D.M. Oosterhuis and G.A. Berkowitz.

Neptune, A.M.L. Efeito de diferentes épocas e modos de aplicação do nitrogênio na produção do milho, na quantidade de proteína e na eficiência do fertilizante e na diagnose foliar utilizando sulfato de amônio –15N. **Anais da Escola Superior de Agricultura** "**Luiz de Queiroz**", Piracicaba: v.34, n.1, p.515-539, 1977.

Pöttker, D. & Wiethölter, S. Antecipação da aplicação de nitrogênio em milho. Fertbio 2000, Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, 22, out, 2000. Santa Maria, RS. Soc. Bras. Ci. Solo, 2000, CD Rom.

Ramos, A.A. Campo limpo. **Cultivar**, Pelotas, v.3,n.31, p.8-9, agosto. 2001. Caderno Técnico.

Ramalho, M.A.P. O impacto da tecnologia transgênica em países em desenvolvimento. In: REUNIÓN LATINOAMERICAN DEL MAIZ,18, 1999, Sete Lagoas. **Memórias**... Sete Lagoas: EMBRAPA-CNPMS/México: CIMMYT, 1999. P.73-77.

Richardt, K.; Libardi, P.L. & Urquiaga, S.C. Fate of fertilizar nitrogen in soil-plant systems with emphasis on the tropics. In: International Atomic Energy Agency. Agrochemicals: fate in food environment. Vienna, 1982. p. 277-290.

Sá, J.C.M. Manejo do nitrogênio na cultura do milho no sistema de plantio direto. Passo Fundo, RS. Aldeia Norte Editora. 1996. 24p.

Swanton, C.J. & Murphy S. D. Weed science beyond weeds: The mole of integrated weed

management in agroecosystem health, Weed Sci. 44:437-445 1996.

Teasdale, J.R. Influence of narrow row/ligh population corn on weed control and light transmitance. **Weed Techonol**. 9:113-118. 1995.

Tsunechiro, A. & Freitas, B. B. de. Os cinqüenta municípios brasileiros maiores produtores de milho e soja. Informações Econômicas, SP, v.31, n.7, jul. 2001.

Urquiaga, S.C. Dinâmica do nitrogênio no sistema solo-planta na cultura do feijão (*Phaseolus vulgaris*, L), cultivar carioca. Piracicaba, ESALQ, 1982. 118p. (Tese de Doutorado.

Vencovsky, R.; Moraes, A.R.; Garcia, J.C. & Teixeira, N.M. Progresso genético em vinte cinco anos de melhoramento de milho no Brasil. In: Congresso Nacional de Milho e Sorgo. 6, Belo Horizonte. p. 300-307. 1986

Vyn, T.J. Nutriente placement and high yield management in corn. InfoAg 2001 Conference Proceedings, August 7-9, Indianapolis, CD Room.

ZONEAMENTO AGRICOLA. Safra 1999/2000. Brasil; culturas: algodão, arroz, feijão, maçã, milho, soja e trigo. Estados: RS, SC, PR, MG, RJ, SP, DF, GO, MT, MS, TO, AL, BA, CE, MA, PB, PI, RN, SE. Brasília: MA/CER/Coordenação Nacional do Zoneamento Agrícola, 1999. 1ª ed., jan 2000.

Yamada, T. O nitrogênio e o potássio na adubação da cultura do milho. **Informações Agronômicas**. Piracicaba, n.78, p.1-4, jun 1997.

XXV Congresso Nacional de Milho e Sorgo - 29/08 a 02/09 de 2004 - Cuiabá - Mato C