12th NUCLEAR MAGNETIC RESONANCE USERS MEETING 3" IBEROAMERICAN NMR MEETING

MAY 4th - 08th, 2009 - HOTEL DO FRADE, ANGRA DOS REIS, RJ, BRAZIL

EXTENDED Abstracts Book

12th NUCLEAR MAGNETIC RESONANCE USERS MEETING 3rd IBEROAMERICAN NMR MEETING

MAY 4th - 08th, 2009 - HOTEL DO FRADE, ANGRA DOS REIS, RJ, BRAZIL

EXTENDED ABSTRACTS BOOK

Tr 89

THEORETICAL ANALYSIS OF CPMG DECAY MEASUREMENT WITH LOW REFOCUSING FLIP ANGLES

Fabiana Diuk de Andrade^a*, Antonio Marchi Netto^b, Luiz Alberto Colnago^c ^aInstitute of Chemistry of São Carlos – USP, ^bInstitute of Physics of São Carlos – USP, ^cEMBRAPA Agricultural Instrumentation *fabianadiuk@igsc.usp.br

Keywords: CPMG; low refocusing flip angles; Bloch Equation

The Carr-Purcell-Meiboom-Gill (CPMG) sequence has used in many scientific and technological applications. Recently it has been used in *on-line* measurements^[1]. In this application, the CPMG pulse train has been applied for very long periods. In this case, 180° refocusing pulse can cause undesirable sample heating and equipment overload, mainly on probe and power amplifier, which can reduce their durability.

Some measurements showed that 90° refocusing pulse can produce echoes and provide relaxation time T₂ with accuracy. By using low refocusing flip angle (90°) it is possible to reduce the RMS power up to 75%. Thus, the purpose of this work was the theoretical study of refocusing pulse with angles lower than 180° and the inhomogeneous field effects of B₀ and B₁ to measure T₂.

The theoretical signals were calculated by the Bloch equations^[2] and were compared to experimental measurements. The experimental CPMG data was obtained for deionizated water at $22 \pm 1^{\circ}$ C on SLK-100 Spin Lock spectrometer, model SL.IM.01 with 0.23T permanent magnet. The sequence used $\pi/2$ and π pulses of 5.8 µs and 10.28 µs, respectively; echo time of 928µs and 6000 echoes, acquisition time of 10.6µs and four scan with repetition time of 15s. The parameters used in the simulations were: echo time of 928 µs, relaxation time T₁ of 2.74s and relaxation time T₂ of 2.52s.

The B₀ inhomogeneous was simulated by assuming a Lorentzian distribution with full width at half maximum (FWHM) of 250 and 10 Hz to offset frequency discrete values. To the B₁ inhomogeneous was assuming a Gaussian distribution centered at the refocusing flip angle (45°, 90°, 135° or 180°) \pm 10° with a full width of 5°.

Figure 1 compares the simulated signals of CPMG with 90° refocusing pulse (CPMG₉₀) at FWHM of 250 Hz (A) and at FWHM of 10 Hz (B). It shows that inhomogeneity at FWHM of 250 Hz leads to a large oscillation in contrast with the signal at 10 Hz. T_2 value is also affected in less homogeneous field (2.57s) than in more homogeneous field (2.53s), which is closer to the experimental value (2.52s).

Figure 1. Simulated CPMG₉₀ signal, A) at FWHM of 250 Hz and B) at FWHM of 10 Hz.

AUREMN MAY 4th - 08th, 2009, HOTEL DO FRADE, ANGRA DOS REIS, RJ, BRAZIL

Figure 2A shows simulated CPMG₉₀ signal for the same condition of figure 1A, considering B₁ inhomogeneity and assuming a Gaussian distribution centered at 90 $\pm 10^{\circ}$. In this Figure is demonstrated that B₁ inhomogeneity does not affect T₂ comparing with the signal simulated without B₁ inhomogeneity (Figure 1A) despite the reduction in signal oscillation.

Figure 2B shows the experimental signal acquired from $CPMG_{90}$ sequence, indicating also a higher T₂ value than the measured by conventional $CPMG_{180}$, in the same magnet (FWHM of 250 Hz).

Figure 2. A) Simulated CPMG₉₀ signal under effect of B₁ inhomogeneity, B) Experimental CPMG₉₀ signal.

These results show that T_2 value, with refocusing flip angles lower than 180°, is affected by B_0 inhomogeneity, but not by B_1 inhomogeneity. Through this information it is possible determine a limit to use different flip angles depending on conditions of B_0 inhomogeneous field used, which it can reduce power by more than 75%.

REFERENCE

- 1. Prestes, R.A.; Colnago, L.A.; Forato, L.A.; Vizzotto, L.; Novotny, E.H.; Carrilho E. Analytica Chimica Acta. 2007, 596, 325-329.
- 2. Bloch, F. Physical Review. 1946, 70, 460-474.

FAPESP, EMBRAPA Agricultural Instrumentation