Rendimento de Grãos de Variedades e Híbridos de Milho no Meio-Norte Brasileiro na Safra 2004/2005

Milton J. Cardoso¹, Hélio W. L. de Carvalho², Cleso A. P. Pacheco³, Sandra S. Ribeiro², Flavio F. Blanco¹ e Diolino Henriques Neto¹

¹Embrapa Meio-Norte, Caixa Postal 01, CEP 64.006-220, Teresina, PI.E-mail: milton@cpamn.embrapa.br, ² Embrapa Tabuleiros Costeiros, Caixa Postal 44, CEP 49.025-040, Aracaju, SE, ³ Embrapa Milho e Sorgo, Caixa Postal 151, CEP 35.701-970, Sete Lagoas, MG.

Palavras-chave: Híbridos, interação genótipo x ambiente, variedade

A melhoria do rendimento depende entre outros fatores, da utilização de cultivares adaptada e portadora de atributos agronômicos desejáveis. A substituição dos materiais tradicionais por melhorados apresenta-se como uma estratégia a ser usada na melhoria do rendimento de cultura em nível de agricultor. Os trabalhos realizados por Carvalho et al. (1999 e 2000), Cardoso et al. (2004) e Souza et al (2004), em vários estados do Nordeste brasileiro, possibilitaram identificar variedades e híbridos de melhor adaptabilidade e estabilidade de produção, para exploração comercial nessas áreas. Dado ao grande avanço do cultivo do milho no Meio-Norte brasileiro diversas variedades e híbridos vêm sendo comercializados nas principais áreas produtoras dessa região, tornando necessário o desenvolvimento de um programa intensivo de variedade e híbrido visando selecionar materiais para atender os diferentes sistemas de produção. Assim, conduziu-se o presente trabalho objetivando conhecer o comportamento produtivo desses genótipos para fins de recomendações. Os experimentos foram instalados em cinco ambientes do Piauí e quatro ambientes do Maranhão. na safra de 2004/2005. Avaliaram-se 36 cultivares (25 variedades e 11 híbridos) em blocos ao acaso, com três repetições. As parcelas constaram de quatro fileiras de 5,0 m de comprimento, espaçadas 0,80 m, com 0,25 m entre covas, dentro das fileiras. Foi deixada uma planta/cova, após o desbaste aos quinze dias após a emergência. As adubações realizadas nos experimentos seguiram os resultados das análises de solo. Os pesos de grãos foram submetidos a análise de variância, em nível de ambiente, utilizando-se o modelo em blocos ao acaso. Realizou-se, a seguir, a análise de variância conjunta, considerando aleatórios os efeitos de blocos e ambientes e, fixo, o efeito de cultivares. Ficaram evidenciadas, nas análises de variância, em nível de ambientes, diferenças significativas (p<0,01) entre as cultivares avaliadas (Tabela 1). Nesses ensaios, os coeficientes de variação obtidos oscilaram entre 5 % a 13%, conferindo boa precisão aos ensaios, segundo critérios adotados por Scapim et al (1995). Os rendimentos médios de grãos, ao nível de experimento, oscilaram de 4.753 kg ha⁻¹ a 5.979 kg ha⁻¹, evidenciando a potencialidade dessas áreas para a produtividade de grãos. Vale ressaltar que os rendimentos médios obtidos nesses ambientes colocam essas áreas em condições de competir com a exploração do milho em áreas tradicionais de cultivo de milho de outras partes do país. A análise de variância conjunta revelou efeitos significativos (p<0,01) para ambiente, cultivar e interação cultivar x ambiente (Tabela 2). O rendimento médio de grãs das cultivares nos ambientes variou de 4.240 kg ha⁻¹ a 6.652 kg ha⁻¹, com média geral de 5.348 kg ha⁻¹, indicando o alto potencial para o rendimento do conjunto avaliado. Os híbridos mostraram superioridade, nos seus rendimentos médios, de 21% em relação às variedades, evidenciando melhor adaptação às condições edafoclimáticas da região. Resultados semelhantes têm sido constatados em outros trabalhos realizados na região (Cardoso et al. 2004 e Souza et al. 2004). As cultivares e híbridos com rendimentos médios de grãos superiores à média geral expressaram melhor adaptação (Vencovsky & Barriga, 1992), destacando-se o híbrido BRS 1010, com melhor rendimento, seguido dos híbridos BRS 1001, BRS 1030, BRS 3150, BRS 3003 e AS 3466, dentre outros. Tais materiais constituem-se em alternativas importantes para os sistemas de produção de melhor tecnificação, comuns nas áreas de cerrados do Meio-Norte do Brasil. As variedades SHS 3031, CPATC 3, AL Piratininga, UFVM 100, AL Manduri, AL Bandeirante, AL Ipiranga e Sertanejo, dentre outras, de rendimentos médios de grãos superiores à média das variedades (5.021 kg ha⁻¹), têm larga importância nos sistemas de produção de menor tecnificação, comum nos sistemas agrícolas familiares.

Literatura Citada

CARDOSO, M. J.; CARVALHO, H. W. L. de.; OLIVEIRA, A. C.; SOUZA, E. M. de. Adaptabilidade e estabilidade de cultivares de milho em diferentes ambientes do Meio-Norte brasileiro. **Revista Ciência Agronômica**, Fortaleza, v.35, n.1, p.68-75, 2004.

CARVALHO, H. W. L. de; SANTOS, M. X. dos.; LEAL, M. de L. da S.; PACHECO, C. A. P; CARDOSO, M. J.; MONTEIRO A. A. T. Adaptabilidade e estabilidade de produção de cultivares de milho no Nordeste brasileiro. **Pesquisa Agropecuária Brasileira**, Brasília, v.34, n.9, p.1581-1591, 1999.

CARVALHO, H. W. L. de; LEAL, M. de L da S.; SANTOS, M. X. dos; MONTEIRO, A.A.T.; CARDOSO, M. J.; CARVALHO, B. C. L. de. Estabilidade de cultivares de milho em três ecossistemas do Nordeste brasileiro. **Pesquisa Agropecuária Brasileira**, Brasília, v.35, n.9, p.1773-1781, 2000.

SOUZA, E. M. de. CARVALHO. H. W. L. de; LEAL, M. de L. da S.; Adaptabilidade e estabilidade de variedades e híbridos de milho no Estado de Sergipe no ano agrícola de 2002.. **Revista Ciência Agronômica,** Fortaleza, v. 35, n. 1 p. 52-60, 2004.

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.

Tabela 1. Resumo das análises de variância para o rendimento de grãos (kg ha⁻¹), em nível de ambientes. Região Meio-Norte do Brasil, safra 2004/2005.

Ambientes	Quadrados	Média	C.V (%)	
-	Cultivares Erro			()
Uruçuí/PI	1298749,9**	359744,4	5169	12
Nova Santa Rosa/PI	1144984,7**	78547,7	5142	5
Bom Principio /PI	1308015,4**	234190,2	5368	9
Baixa Grande do Ribeiro	3564188,4**	280075,1	5949	9
Teresina/PI	2473123,9**	342211,5	5803	10
Paraibano/MA	1652058,6**	219577,9	5001	9
Santa Rosa Mangabeiras/MA	1062892,2**	112930,0	5390	6
Colinas/MA	886171,6**	363618,4	4753	13
Anapurus/MA	1852291,4**	219618,3	5550	8

^{**}Significativo a 1% de probabilidade pelo teste F.

Tabela 2. Rendimentos médios de grãos (kg ha⁻¹) de cultivares de milho obtidos nos experimentos de competição de cultivares. Região Meio-Norte do Brasil, safra 2004/2005.

	Maranhão				Piauí				Análise conjunta	
Cultivares ¹	São R das	Colinas	Anapurus	Paraibano	Teresina	Nossa	Bom	Baixa	Uruçuí	1
	Mangabeiras		•			Santa	Principio	Grande	,	
						Rosa	•	Ribeiro		
BRS 1010 ^H	6448 a	5904 a	6624 a	6321 a	7563 a	6309 a	6681 a	7071 b	6943 a	6652 a
BRS 1001 ^H	6797 a	4776 b	6558 a	5419 b	7304 a	6161 a	5975 a	8250 a	5738 b	6331 b
BRS 1030 ^H	6452 a	5600 a	6734 a	6661 a	6900 a	5911 a	5750 a	6105 c	6761 a	6319 b
BRS 3150 ^H	6447 a	4888 a	6448 a	6092 a	6275 b	6041 a	5688 a	7967 a	5871 b	6191 c
BRS 3003 ^H	5989 a	5027 a	6216 a	5821 b	7604 a	6011 a	5900 a	6763 b	5968 b	6144 c
AS 3466 ^H	5974 a	5615 a	6451 a	5000 c	6450 b	5841 a	6264 a	7605 a	5406 b	6067 c
BRS 2110^{H}	6254 a	5567 a	5483 b	5346 b	6821 a	5678 a	5229 b	8063 a	5513 b	5995 с
BRS 2020^{H}	5723 b	5034 a	6143 a	5420 b	6613 b	5813 a	5442 a	6921 b	5763 b	5874 c
BRS 2114 ^H	5305 b	4850 a	6185 a	5877 b	6448 b	5311 b	6437 a	6938 b	5523 b	5874 c
BRS 2223 ^H	5580 b	5417 a	6417 a	5625 b	6784 a	5230 b	5831 a	5621 c	5438 b	5771 d
PL 6880 ^H	5474 b	5814 a	6040 a	6604 a	5768 b	5573 b	4539 c	6663 b	5446 b	5769 d
SHS 3031 ^H	5560 b	4917 a	6134 a	5017 c	6155 b	5456 b	4938 b	7513 a	4956 c	5627 d
CPATC 3	5471 b	4960 a	6586 a	5342 b	6367 b	5249 b	6442 a	5747 c	4160 c	5591 d
AL Piratininga	5348 b	4971 a	5409 b	4754 c	5538 c	5804 a	5920 a	6742 b	5313 b	5533 d
UFVM 100	5353 b	4402 b	5713 a	4973 с	6167 b	5106 b	6109 a	6117 c	5467 b	5489 e
AL Manduri	5459 b	4721 b	5547 a	5000 c	5875 b	5288 b	5688 a	6250 c	5199 b	5447 e
CPATC 4	5158 b	4990 a	5721 a	4888 c	6029 b	5485 b	5787 a	5569 c	5386 b	5446 e
AL	5387 b	4362 b	6064 a	5478 b	6012 b	5187 b	5529 a	5505 c	5134 c	5406 e
Bandeirante										
AL Ipiranga	5283 b	4462 b	6042 a	4563 c	5983 b	5141 b	5725 a	6026 c	5317 b	5394 e
Sertanejo	5465 b	4947 a	4964 b	4930 c	6263 b	5143 b	5090 b	6146 c	5074 c	5336 e
AL Bianco	5353 b	4550 b	5300 b	4758 c	5804 b	5124 b	5642 a	5563 c	5482 b	5286 e
Asa Branca	5475 b	4585 b	5871 a	4910 c	5675 c	4967 c	5619 a	5280 c	5064 c	5272 e
São Vicente	5463 b	4755 b	5048 b	4660 c	5410 c	5017 c	4776 b	5643 c	4879 c	5072 f
Cruzeta	5441 b	4423 b	5800 a	4184 d	5414 c	4486 d	5275 b	5386 c	4800 c	5023 f
AL 34	4942 c	4406 b	5208 b	5014 c	4949 c	4842 c	5055 b	5789 c	4941 c	5016 f
São Francisco	4877 c	4548 b	5146 b	4442 d	5622 c	4908 c	4951 b	5489 c	4964 c	4994 f
Bozn Amarilo	5070 c	4028 b	5346 b	5006c	5009 c	4781 c	5009 b	5086 d	4865 c	4911 f
Sintético 5x	5159 b	4584 b	4863 b	3794 d	5065 c	4655 c	5342 b	4755 d	4823 c	4782 g
Sintético 105	5015 c	4510 b	4817 b	5032 c	4921 c	4152 d	5109 b	4921 d	4150 c	4736 g
BRS 4150	4783 c	3828 b	5021 b	4677 c	4747 d	4377 d	4863 b	5084 d	4391 c	4641 h
BR 106	5042 c	4189 b	4716 b	4334 d	4670 d	4295 d	4579 c	5010 d	4522 c	4595 h
Cativerde 2	4445 d	3952 b	4571 c	4247 d	5262 c	4442 d	4559 c	5016 d	4415 c	4545 h
Potiguar	4544 d	3892 b	4531 c	4065 d	4502 d	4764 c	4562 c	4389 d	4574 c	4425 i
Caatiguriro	4796 c	4057 b	3930 c	3876 d	4738 d	4367 d	4133 c	4830 d	4505 c	4359 I
CMS 47	4465 d	5333 a	3800 c	3844 d	3944 d	4173 d	3879 с	4264 d	5526 b	4359 I
Sintético Elite	4273 d	4266 b	4361 c	4062 d	4273 d	4037 d	4944 b	4105 d	3837 c	4240 i
Flint										

As cultivares cujos nomes são seguidos da letra H são híbridos e as demais são variedades. As médias, na coluna, seguidas pela mesma letra não diferem entre si pelo teste de Scot-Nott, ao nível de 5 % de probabilidade.