Hélio W. L. de Carvalho¹, Milton J. Cardoso², Manuel. A. G. Cuenca¹, Marcelo A. Lira³, Ana R. de M. B. Brito⁴, Sandra M. F. Amin⁵, Cleso A. P. Pacheco⁶ e Agna R. dos S. Rodrigues¹

¹Embrapa Tabuleiros Costeiros, Cx.P. 44, Aracaju, SE, helio@cpatc.embrapa.br; ²Embrapa Meio Norte, milton@cpamn.embrapa.br; ³EMPARN, marcelo-emparn@rn.gov.br; ⁴IPA- PE, anabrand@elogica.com.br.

Palavras-chave: interação cultivares x ambientes, parâmetros e adaptação.

O milho vem sendo cultivado em várias condições ambientais do Nordeste brasileiro, em áreas de cerrados, tabuleiros costeiros, agreste e sertão. Espera-se, nessas condições, uma resposta, diferenciada dos cultivares frente às avaliações ambientais, gerando uma interação cultivares x ambientes. Ramalho et al. (1993) ressaltam que a interação não só interfere significativamente na recomendação de cultivares, mas também dificulta o trabalho do melhorista na seleção das melhores cultivares. Assim, para minimizar os efeitos da interação cultivares x ambientes é necessário identificar cultivares com melhor estabilidade fenotípica. Considerando-se esses aspectos desenvolveu-se o presente trabalho visando conhecer a adaptabilidade e estabilidade de variedades e híbridos de milho quando submetidos a diferentes condições ambientais no Nordeste brasileiro. Foram avaliados 30 cultivares (11 híbridos e 19 variedades), em 21 ambientes do nordeste brasileiro, distribuídos em áreas do cerrados, tabuleiros costeiros e sertão, no ano agrícola de 2005. Utilizou-se o delineamento experimental em blocos ao acaso, com três repetições. As parcelas constaram de quatro fileiras de 5,0 m de comprimento, espaçadas de 0,80 m, com 0,40 m entre covas, nas fileiras. Os dados de pesos de grão foram submetidos à análise de variância obedecendo ao modelo em blocos ao acaso, em nível de ambiente. Fez-se, posteriormente, a análise de variância conjunta, considerando-se aleatórios os efeitos de blocos e ambientes e, fixo, a efeito de cultivares, conforme Vencovsky & Barriga (1992). Os parâmetros de adaptabilidade e estabilidade foram estimados conforme Cruz et al. (1989). A análise de variância conjunta mostrou significância (p<0,01) em relação aos efeitos de ambientes, cultivares e interação cultivares x ambientes, as cultivares e respostas diferenciadas das cultivares diante das variações ambientais. Os parâmetros de adaptabilidade e estabilidade constam na Tabela 1, verificando-se que a produtividade média (b₀) de grãos das cultivares variou de 4.200 kg/ha a 6.587 kg/ha, com média geral de 5.238 kg/ha, revelando bom comportamento produtivo das cultivares. Os híbridos, com média de 5.882 kg/ha, mostraram uma superioridade de 21% em relação à média das variedades, que foi de 4.866 kg/ha, corroborando resultados relatados por Carvalho et al. (2005). Os coeficientes de regressão (b₁) oscilaram de 0,52, na variedade Sintético Elite Flint a 1,30, mas híbridos BRS 1010 e BRS 3150, sendo ambos estatisticamente diferentes da unidade. Considerando-se as 12 cultivares que expressaram melhor adaptação (b₀>média geral), seis apresentaram estimativas de b₁ estatisticamente diferentes da unidade e as outras seis apresentaram estimativas de (b₁=1), revelando comportamento diferenciado desses cultivares em ambientes desfavoráveis. Os híbridos BRS 1010, BRS 1001, BRS 3003, AS 3466, BRS 3150 e BRS 2110 e a variedade CPATC-3, mostraram ser muito exigentes nas condições desfavoráveis (b₁>1). Em relação à resposta nos ambientes favoráveis, os híbridos BRS 1010, BRS 1001, BRS 3003, AS 3466, BRS 3150, BRS 2110 e PL 6880 responderam à melhoria ambiental. No que se refere à estabilidade, 18 cultivares mostraram baixa previsibilidade nos ambientes considerados ($s^2_d \neq 1$); mesmo assim, aqueles materiais que apresentaram valores de $R^2>80\%$, não devem ter seus graus de previsibilidade comprometendo (Cruz et al., 1989). Analisando-se o comportamento das cultivares que mostraram melhor adaptação ($b_0>$ média geral) espera-se que os híbridos BRS 1010, BRS 1001, BRS 3003, AS 3466 e BRS 3150 devem ser recomendados para as condições favoráveis (b_1 e $b_1+b_2>1$). Nesse conjunto de melhor adaptação, os materiais com estimativas de b_1 semelhantes à unidade, expressaram adaptabilidade ampla, constituindo-se uma alternativa importante para os diferentes sistemas de produção prevalecentes nos diferentes ecossistemas do Nordeste brasileiro.

Referências

CARVALHO, H. W. L. de; ; CARDOSO, M. J.; LEAL, M. de L. da S.; SANTOS, M. X. dos;. TABOSA, J. N.; SOUZA, E. M. de. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro. **Pesquisa Agropecuária Brasileira**, Brasília,DF, v. 40, n. 5, p. 471-477, 2005.

CRUZ, C. D.; TORRES, R. A. de; VENCOVSKY, R. An alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**, v. 12, p. 567-580, 1989.

RAMALHO, M A. P.; SANTOS, J. B. dos.; ZIMMERMANN, M. J de O. **Genética quantitativa em plantas autógamas**: aplicação no melhoramento do feijoeiro. Goiânia: UFG, 1993. Cap. 6. P.131-169. (Publicação, 120).

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto, SP: Sociedade Brasileira de Genética, 1992. 496 p.

Tabela 1. Estimativas dos parâmetros de adaptabilidade e estabilidade de 30 cultivares de

milho em 21 ambientes do Nordeste Brasileiro, no ano agrícola de 2005.

Cultivares	Médias de grãos (kg/ha)							
	Geral	Desfavorável	Favorável					
BRS 1010 ¹	6587 a	5350	7349	1,30 **	0,79 **	2,10 **	1074048,8 **	84
BRS 1001 ¹	6409 a	5099	7215	1,23 **	1,01 **	2,24 **	931314,6 **	86
BRS 3003 ²	6272 b	5088	7000	1,22 **	0,82 **	2,04 **	680182,4 **	88
BRS 1030 ¹	6227 b	5180	6870	1,11 ns	-0,58 **	0,52 *	1370539,8 **	70
$AS 3466^2$	5815 c	4594	6567	1,27 **	0,35 ns	1,63 **	493685,0 ns	91
BRS 2020 ³	5772 c	4876	6324	0,88 ns	0,07 ns	0,95 ns	899237,9 **	72
BRS 3150 ²	5681 c	4450	6438	1,30 **	0,21 ns	1,51 *	865966,7 **	85
BRS 2110 ³	5612 d	4408	6353	1,22 **	0,28 ns	1,50 *	1145104,7 **	80
BRS 2223 ³	5538 d	4638	6092	0,97 ns	0,11 ns	1,09 ns	548292,1 *	83
BRS 2114 ³	5486 d	4372	6171	1,11 ns	0,23 ns	1,35 ns	876550,6 **	81
SHS 3031 ⁴	5373 e	4296	6036	1,13 ns	0,21 ns	1,34 ns	541399,2 *	88
$PL 6880^3$	5303 e	4502	5797	1,05 ns	0,47 *	1,53 *	1169311,7 **	76
CPATC 3 ⁴	5287 e	4229	5937	1,16 *	-0,00 ns	1,15 ns	671057,8 **	85
UFVM 100 ⁴	5256 e	4219	5895	1,01 ns	-0,04 ns	0,97 ns	290935,0 ns	91
AL Manduri ⁴	5234 e	4254	5838	0,98 ns	0,011 ns	0,99 ns	218084,4 ns	92
AL Piratininga ⁴	5206 e	4138	5863	1,12 ns	-0,39 ns	0,72 ns	470210,7 ns	87
CPATC 4 ⁴	5189 e	4317	5726	0,95 ns	-0,22 ns	0,72 ns	224686,2 ns	91
Sertanejo ⁴	5114 e	4202	5675	1,00 ns	-0,06 ns	0,94 ns	622743,5 **	82
Asa Branca ⁴	5078 e	4135	5659	1,01 ns	-0,32 ns	0,69 ns	221133,7 ns	92
São Francisco ⁴	4892 f	4104	5376	0,88 ns	0,04 ns	0,93 ns	408643,9 ns	85
AL Ipiranga ⁴	4860 f	3945	5424	0,93 ns	-0,22 ns	0,70 ns	909039,5 **	72
AL Bandeirantes ⁴	4838 f	3951	5384	1,01 ns	-0,44 *	0,57 *	691117,6 **	79
Bamari ⁴	4825 f	4048	5303	0,79 *	0,19 ns	0,99 ns	329845,5 ns	85
AL Bianco ⁴	4805 f	3716	5475	1,10 ns	-0,44 *	0,66 ns	421679,9 ns	88
Sintético 5x ⁴	4721 g	3983	5175	0,61 **	-0,36 ns	0,25 **	1611625,5 **	37
Cruzeta ⁴	4496 h	3503	5107	1,01 ns	-0,67 **	0,33 **	456504,3 ns	85
Sintético 105 ⁴	4481 h	3817	4890	0,77 **	-0,26 ns	0,50 *	419140,8 ns	79
BRS 4150 ⁴	4339 i	3645	4765	0,65 **	-0,20 ns	0,45 **	326606,9 ns	78
Sintético El. Flint ⁴	4261 i	3762	4568	0,52 **	-0,07 ns	0,45 **	840151,1 **	48
Caatingueiro ⁴	4200 i	3732	4487	0,56 **	-0,52 *	0,04 **	547828,3 *	59

^{*} e **significativamente diferente da unidade, para b₁ e b₁ + b₂, e de zero, para b₂ a 5% e a 1% de probabilidade pelo teste t de Student, respectivamente. ** significativamente diferente de zero, pelo teste F, Q.M. do desvio. Híbrido simples, ²híbrido triplo, ³híbrido duplo e ⁴variedade. As médias seguidas pelas mesmas letras não diferem entre si pelo teste Scott-Knott.