Adaptabilidade e Estabilidade de Variedades de Milho no Meio-Norte do Brasil: Período de 1999 a 2003

Milton J. Cardoso¹, Hélio W. L. de Carvalho², Cleso A. P. Pacheco³ e Evanildes M. de Souza²

¹Embrapa Meio-Norte, Caixa Postal 01, CEP 64.006-220, Teresina, PI.E-mail: milton@cpamn.embrapa.br , ² Embrapa Tabuleiros Costeiros, Caixa Postal 44, CEP 49.025-040, Aracaju, SE, ³ Embrapa Milho e Sorgo, Caixa Postal 151, CEP 35.701-970, Sete Lagoas, MG.

Palavras-chave: Cultivares, interação genótipo x ambiente, produção de grãos

Diversas áreas da região Meio-Norte do Brasil, onde predominam os sistemas de produção de pequenos e médios proprietários rurais, apresentam aptidão para o desenvolvimento de variedades de milho. A utilização de variedades melhoradas e de melhor adaptação poderá proporcionar melhorias substanciais nesses sistemas de produção em virtude de serem tecnologias de fácil adoção. O objetivo desse trabalho foi avaliar a adaptabilidade e a estabilidade de produção de variedades de milho visando à recomendação desses materiais para as condições ambientais da região Meio-Norte do Brasil. No período de 1999 a 2003 foram realizados 41 ensaios de milho na região Meio-Norte do Brasil. Dentro de cada ano agrícola esses ensaios foram distribuídos em ambientes dos estados do Maranhão e do Piauí. Foram avaliadas quinze variedades e dois híbridos (testemunhas) em blocos ao acaso, com três repetições. Os dados de produtividade de grãos foram submetidos a uma análise de variância por ambiente, obedecendo-se ao modelo em blocos ao acaso, e a uma análise de variância conjunta, obedecendo ao critério de homogeneidade dos quadrados médios residuais, considerando aleatórios os efeitos de blocos e ambientes, e fixo, o efeito de cultivares. Os parâmetros de adaptabilidade e estabilidade foram estimados segundo a metodologia proposta por Cruz et al., (1989) e estão apresentados na Tabela 1. As produtividades médias de grãos (b₀) oscilaram de 4.280 kg ha⁻¹ a 6.839 kg ha⁻¹, o que mostra o bom desempenho produtivo das cultivares avaliadas nas diferentes condições ambientais do Meio-Norte do Brasil. As estimativas dos coeficientes de regressão (b₁) variaram de 0,68 a 1,17, respectivamente, em relação à variedade CMS 47 e ao híbrido Pioneer 3021, sendo ambos estatisticamente diferentes de zero. Considerando as nove cultivares que expressaram melhor adaptação (b₀>média geral), o híbrido Pioneer 3021 e as variedades AL 25, AL 30 São Vicente e Sintético Dentado, apresentaram estimativas de b₁ significativamente diferentes da unidade e, o híbrido BRS 3123 e as variedades Sertanejo, AL 34 e Asa Branca apresentaram estimativas de b₁ não significativas (b₁=1), o que evidencia comportamento diferenciado dessas cultivares em ambientes desfavoráveis. O híbrido Pioneer 3021 e as variadades AL 25, AL 30, e Sintético Dentado mostraram ser muito exigentes nas condições desfavoráveis (b₁>1). A variedade São Vicente mostrou ser pouco exigente nas condições desfavoráveis (b₁<1). Todos os genótipos avaliados, à exceção da variedade Assum Preto, mostraram os desvios da regressão estatisticamente diferentes de zero, o que mostra o comportamento imprevisível nos ambientes considerados. Entretanto, as estimativas de R² obtidas para as variedades AL 30, AL 34, Sintético dentado, São Francisco, BRS 4150, Cruzeta, Sintético Duro e Assum Preto foram iguais ou superiores a 80%, o que não compromete

seus graus de previsibilidade, segundo Cruz et al.,(1989). Considerando-se o grupo de cultivares que expressou melhor adaptação (b₀>média geral), não foi encontrada qualquer cultivar que atendesse a todos os requisitos necessários para adaptação nos ambientes desfavoráveis (b₀>média geral, b₁ e b₁+b₂<1 e desvio da regressão igual a zero). Apesar disso, a variedade São Vicente por apresentar média alta (b₀>média geral) e ser pouco exigente nas condições desfavoráveis (b₁<1), pode ser sugerida para essa condição de ambiente, apesar de mostrar-se responsiva à melhoria de ambiental (b₁+b₂>1). Os híbridos Pioneer e BRS 3123 e a variedade Sertaneio por mostrarem altos rendimentos médios de grãos nas condições desfavoráveis devem ser também sugeridas para essa classe de ambiente. O híbrido Pioneer 3021 e as variedades AL 25, Al 30 e Sintético Dentado atenderam a um maior número de requisitos para recomendação nas condições favoráveis. O híbrido BRS 3123 e as variedades Sertanejo, AL 34, Asa Branca e São Francisco, com estimativas de b₀>média geral e de b₁=1, evidenciaram adaptabilidade ampla, justificando suas recomendações para as diferentes áreas do Meio-Norte do Brasil. As variedades Assum Preto e Cruzeta, apesar de demonstrarem baixa adaptação (estimativas de b₀ < média geral), sua superprecocidade constitui forte justificativa para seu uso em áreas de semi-árido da Região, por reduzirem os riscos de frustrações de safras.

Literatura Citada

CRUZ, C. D.; TORRES, R. A. de; VENCOVSKY,R. A alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**, v. 12, p.567 a 580, 1989.

Tabela 1. Estimativas dos parâmetros de adaptabilidade e estabilidade de 17 cultivares de milho em 41 ambientes da região Meio-Norte do Brasil: período 1999 a 2003.

Cultivares	Produtividades médias de grãos			L	I.	h ih	1	R ²
	Geral	Desfavorável	Favorável	$\mathbf{b_1}$	$\mathbf{b_2}$	b ₁ + b ₂	s ₂ d	K
Pioneer 3021	6839a	5766	7966	1,17**	-0,50**	0,67**	2778953,1**	61
BRS 3123	6787a	5823	7799	1,09ns	-0,29*	0,79ns	1744624,1**	69
Sertanejo ^V	6083b	5210	7000	1,09ns	0,10ns	1,19ns	1086713,0**	79
$AL 25^{V}$	6023c	5119	6972	1,11*	0,08ns	1,19ns	1367379,5**	76
$\mathrm{AL}\ 30^{\mathrm{V}}$	5948c	4933	7013	1,15**	-0,07ns	1,07ns	800864,8**	85
$AL 34^{V}$	5871c	5025	6759	1,00ns	-0,07ns	0,93ns	836656,6**	81
São Vicente ^V	5763c	5004	6561	0,89*	0,60**	1,50**	1147246,4**	75
Asa Branca ^V	5706d	4865	6588	1,02ns	-0,23ns	0,78ns	1129414,8**	75
Sintético Dentado ^V	5636d	4668	6652	1,14**	0,07ns	1,21ns	616167,2**	88
São Francisco ^V	5613d	4844	6419	0,90ns	-0,39**	0,51**	662997,5**	80
BRS 4150 ^V	5419e	4441	6465	1,10*	0,16ns	1,27*	736356,4**	86
BR 106 ^V	5381e	4636	6163	0,85ns	0,48**	1,37*	1429583,2**	68
Cruzeta ^V	5375e	4690	6095	0,89*	-0,05ns	0,83ns	693110,4**	80
Sintético Duro ^V	5291f	4508	6112	0,90ns	0,12ns	1,03ns	700473,5**	81
Assum Preto ^V	5149f	4260	6082	1,04ns	-0,15ns	0,89ns	426215,8ns	90
Caatingueiro ^V	4672g	3855	5531	0,90ns	0,05ns	0,95ns	906103,3**	76
CMS 47 ^V	4280h	3622	4971	0,68**	0,08ns	0,77ns	987865,7**	63

Os cultivares cujos nomes são seguidos da letra V são variedades e os demais são híbridos.

Produtividades médias genótipicas ao logo de todos os ambientes (geral), nos ambientes com médias de produtividade abaixo da média geral dos ambientes (desfavorável) e nos ambientes com produtividades acima da média geral (favorável).

^{*}e** significativamente diferente da unidade, para b₁ e b₁+b₂, e de zero, para b₂. Significativamente diferentes de zero, pelo teste F, para s²_d.