ADAPTABILIDADE E ESTABILIDADE DE CULTIVARES DE MILHO EM DIFERENTES AMBIENTES DOS ESTADOS DE SERGIPE E ALAGOAS

Evanildes Menezes de Souza¹, Hélio Wilson Lemos de Carvalho, Maria de Lourdes da Silva Leal, Manoel Xavier dos Santos², Denis Medeiros dos Santos, Manoel Henrique Bonfim Cavalcante³

¹Embrapa Tabuleiros Costeiros, Caixa Postal 44, 49001-970, Aracaju, Sergipe, Brasil. E-mail: eva@cpatc.embrapa.br.

²Embrapa Milho e Sorgo, Caixa Postal 152, 35701-970, Sete Lagoas, Minas Gerais, Brasil.

³Secretaria da Agricultura do Estado de Alagoas, Rua Domingos Correia, 1150, Bairro São Luiz, 57301-070, Arapiraca, Alagoas, Brasil.

Avaliaram-se, no ano agrícola de 2003, variedades e híbridos de milho, em duas redes experimentais, em diversos ambientes dos ecossistemas dos tabuleiros costeiros e agreste dos estados de Sergipe e Alagoas, visando conhecer a adaptabilidade e a estabilidade desses materiais, para fins de recomendação. Os ensaios foram realizados em blocos ao acaso, com três repetições e os parâmetros de adaptabilidade e estabilidade foram estimados conforme Cruz et al., (1989). Foram constatadas, em ambas as redes, diferenças entre os materiais avaliados e, inconsistência desses materiais em face das oscilações ambientais. Os híbridos mostraram melhor adaptação que as variedades e aqueles que evidenciaram melhor adaptação e adaptabilidade ampla consubstanciaram-se em alternativas importantes para a agricultura regional. As variedades que mostraram boa adaptação e revelaram adaptabilidade ampla tornam-se de importância relevante para a região, principalmente, para os sistemas de produção dos pequenos e médios proprietários rurais.

Palavras-chave: Zea mays L., interação genótipos x ambientes, previsibilidade, variedades, híbridos.

Adaptability and stability of maize cultivars in different environments of Sergipe and Alagoas states. In the season 2003, maize vaieties and hibrids were evalueted in two experimental networks, in several ecosytems of the coastal tablelands and agreste of the Sergipe States in order to know the adaptability and stability for ends of cultivars recommendation. The trials were carried out using a randomized complete block design, with three replications and the adatability and stability were estimated according to Cruz et al., (1989). Were observed, in both experimental networks, differences among the evalueted materials and inconsistency of those materials due to the environmental oscillations. The hybrids showed better adaptation than the varieties and those that evidenced better adaptation and wide adaptability are important alternatives for the regional agriculture. The varieties that showed good adaptation and wide adaptability are very important for the region, mainly, for the cropping systems of the small and medium farmers.

Key word: Zea mays L., genotype x environment interaction, cultivars, previsibility.

Introdução

As diferentes condições edafoclimáticas presentes nos ecossistemas dos Tabuleiros Costeiros e Agreste dos Estados de Sergipe e Alagoas (Silva et al., 1993) permitem, com sucesso, o desenvolvimento do cultivo do milho, conforme ressaltaram Carvalho et al. (1999, 2000 e 2002). Nessas áreas nota-se uma demanda considerável tanto por variedades melhoradas quanto por híbridos, os quais têm se constituído em alternativas importantes para a agricultura regional, provocando aumentos substanciais na produtividade do milho, com conseqüente redução nos custos de importação desse cereal de outras partes do país, para atender a demanda regional.

Em função dessa diversidade de ambientes em que o cultivo do milho é cultivado, espera-se a ocorrência de uma forte interação genótipos x ambientes. Ramalho et al., (1993) enfatizam que a interação genótipos x ambientes interfere no processo de recomendação de cultivares, dificultando a seleção dos melhores materiais. Diversos trabalhos de competição de cultivares realizadas em diferentes regiões do Brasil (Arias, 1966; Carneiro, 1998; Gama et al., 2000; Ribeiro et al., 2000; Vendruscolo et al., 2001; Carvalho et al., 2002 e Cardoso et al., 2003) procuraram atenuar o efeito dessa interação, recomendando materiais de melhor estabilidade fenotípica (Ramalho et al., 1993).

Vários métodos têm sido utilizados para caracterização das cultivares quanto à adaptabilidade e estabilidade. Alguns empregaram métodos baseados no coeficiente de regressão linear e na variância dos desvios da regressão estimados em relação a cada cultivar (Arias, 1996). Verma et al., (1978) e Cruz et al., (1989) utilizaram um modelo de regressão composto por dois segmentos de reta, a regressão bilinear.

Os Tabuleiros Costeiros do Nordeste, com suas áreas planas ou levemente onduladas, que favorecem práticas de agricultura mecanizada, com temperaturas amenas e um período chuvoso constante, têm mostrado grande potencial para o desenvolvimento do milho, destacandose os Tabuleiros Costeiros de Sergipe, Alagoas, Pernambuco, Rio Grande do Norte e Piauí. As produtividades médias registradas têm oscilado de 5t/ha a 7t/ha (Carvalho et al., 1999 e 2001). No ecossistema do Agreste, o milho exerce grande importância econômica por ser, juntamente com o feijão, a base de sustentação familiar da maioria dos agricultores. Nesse ecossistema, em razão da regularidade climática, a ocorrência de frustração de safras é menos freqüente.

O objetivo desse trabalho foi avaliar a adaptabilidade e a estabilidade de variedades e híbridos de milho, quando submetidos a diferentes condições ambientais dos Tabuleiros Costeiros e Agreste dos Estados e Alagoas, para fins de recomendação.

Material e Métodos

Foram realizadas duas redes experimentais no ano agrícola de 2003, sendo os ambientes localizados nos ecossistemas dos tabuleiros costeiros e agreste dos estados de Sergipe e Alagoas. No Agreste, região de clima mais ameno, o período chuvoso vai de janeiro a junho. De modo geral, segundo Silva et al., (1993), a precipitação média anual, nessa zona, é de 500mm a 800mm. Os Tabuleiros Costeiros acompanham todo o litoral do Nordeste brasileiro, e apresentam superfícies planas a ligeiramente onduladas. A precipitação média anual varia de 500mm a 1500mm. As temperaturas médias anuais oscilam em torno de 26°C.

Os ensaios, de ambas as redes, foram instalados em três ambientes localizados no município de Nossa Senhora das Dores e dois ambientes no município de Simão Dias, no estado de Sergipe, e nos municípios de Arapiraca e Teotônio Vilela, em Alagoas. Os municípios de Nossa Senhora das Dores e Teotônio Vilela situam-se nos Tabuleiros Costeiros, e Simão Dias e Arapiraca, na zona Agreste.

Uma das redes foi constituída de variedades (26) e híbridos (17), totalizando 43 cultivares. A outra rede foi formada por 45 híbridos. Em ambos os casos utilizou-se o delineamento experimental em blocos ao acaso, com três repetições. Cada parcela constou de 4 fileiras de 5,0m de comprimento, a espaços de 0,80m e 0,40m entre covas, nas fileiras. Foram mantidas, após o desbaste, duas plantas/cova. Foram colhidas as duas fileiras centrais, de forma integral. As adubações realizadas nesses ensaios obedeceram aos resultados das análises de solo de cada área experimental.

Os dados de produtividade foram submetidos a análise de variância por local, obedecendo ao modelo em blocos ao acaso, e a uma análise de variância conjunta, seguindo o critério de homogeneidade dos quadrados médios residuais (Pimentel-Gomes, 1990), e foram efetuadas conforme Vencovsky e Barriga (1992), considerando como aleatório os efeitos de blocos, anos e locais e, fixo, o efeito de cultivares. As referidas análises foram processadas utilizando-se o Statiscal Analysis System (SAS Institute, 1996) para dados balanceados (PROCANOVA).

Os parâmetros de adaptabilidade e estabilidade foram estimados pelo método de Cruz et al., (1989), o qual baseiase na análise de regressão bissegmentada, tendo como parâmetros de adaptabilidade a média (b_0) , a resposta linear aos ambientes desfavoráveis (b_1) e aos ambientes favoráveis (b_1+b_2) . Foi utilizado o seguinte modelo:

$$\begin{split} Y_{ij} &= b_{oi} + b_{1i}I_J + b_{2i}T(I_j) + \sigma_{ij} + e_{ij} \\ \text{onde} \quad Y_{ij} &: \text{média da cultivar i no ambiente j;} \\ I_j &: \text{indice ambiental; } T \ (I_j) = 0 \text{ se } I_j < 0; \ T \ (I_J) = I_j - I_{\downarrow} \text{ se} \\ I_j > 0, \text{ sendo } I_{\downarrow} \text{ a média dos indices } I_{\downarrow} \text{ positivos;} \end{split}$$

 b_{0i} : média geral da cultivar i; b_{1i} : coeficiente de regressão linear associado 'a variável I_j ; b_{2i} : coeficiente de regressão linear associado à variável T (I_j);

 σ_{ii} : desvio da regressão linear; e_{ii} : erro médio experimental.

Resultados e Discussão

Verificando-se os resultados referentes à rede formada por variedades e híbridos (Tabela 1), nota-se que foram constatadas diferenças significativas (p<0,01), o que revela comportamento diferenciado entre as cultivares, a nível de ambientes. Os coeficientes de variação oscilaram de 8,0% a 14,0%, conferindo boa precisão aos experimentos, conforme critérios de Scapim et al., (1995). A média de rendimentos de grãos nos ensaios variou de 2.706 kg/ha, no município de Arapiraca, no agreste alagoano, a 7.302 kg/ha, no município de Simão Dias, no Agreste sergipano. Os ambientes localizados no Estado de Sergipe apresentaram melhores rendimentos,

Tabela 1. Resumo das análises de variância de rendimentos de grãos (kg/ha) de cada ensaio⁽¹⁾, referente à rede de variedades e híbridos. Estados de Sergipe e Alagoas, 2003.

	Quadrado				
Local	Híbridos Resíduo		Média	C.V. (%)	
N. Sra. Das Dores 1/SE	1523651,6**	424362,2	5864	11	
N. Sra. Das Dores 2/SE	3198864,8**	426986,4	5342	12	
N. Sra. Das Dores 3/SE	2054497,0**	600820,5	5607	14	
Simão Dias 1/SE	2858612,7**	563268,0	7302	10	
Simão Dias 2/SE	2315338,0**	345520,0	7258	8	
Toetônio Vilela/AL	1455255,4**	423948,0	4731	14	
Arapiraca / AL	658987,4**	132064,0	2706	13	

⁽¹⁾ Graus de liberdade: 2 (blocos), 43 (cultivares) e 86 (resíduo). ** Significativo a 1% de probabilidade pelo teste F.

Tabela 2. Resumos das análises de variância de rendimento de grãos (kg/ha) de cada ensaio⁽¹⁾. Sergipe e Alagoas, 2003.

Local	Quad	3.67.11		
	Híbridos	Resíduo	Média	C.V. (%)
Dores 1	2233814,9**	779722,1	6818	
Dores 2	1686537,9**	1686537,9** 672193,3		13
Dores 3	1854080,1**	600645,6	6334	12
Simão Dias 1	1166701,8**	450879,6	6726	10
Simão Dias 2	1326253,1**	367339,0	8815	7
Arapiraca	622902,1**	138076,8	3255	11
Teotonio Vilela	665624,4**	376637,6	4786	13

⁽¹⁾ Graus de liberdade: 2 (blocos). 44 (híbridos) e 88 (resíduo). ** Significativo a 1% de probabilidade pelo teste F.

destacando-se como mais favoráveis ao desenvolvimento do milho. Essa performance dos Tabuleiros Costeiros de Sergipe e, principalmente, da Zona Agreste desse Estado, vem sendo evidenciada, nos últimos anos, conforme assinalam Carvalho et al., (2002). As elevadas produtividades médias de grãos registradas nessas áreas fazem dessa região importante celeiro para a produção de milho no Nordeste brasileiro.

Os resultados encontrados na rede experimental formada por híbridos (Tabela 2) mostraram, também, comportamento diferenciado (p<0,01) entre os materiais avaliados a nível de ambientes. De igual maneira, os coeficientes de variação obtidos mostraram a boa precisão dos experimentos. As médias de produtividades obtidas com os híbridos, a nível de ambientes, revelaram a mesma tendência observada na rede anterior (Tabela 1), registrando-se uma oscilação de 3.258 kg/ha, em Arapiraca, a 8.815 kg/ha, em Simão Dias (ambiente 2). Os Tabuleiros Costeiros e Agreste sergipanos mostraram-se bastante propícios ao cultivo de híbridos

de milho, obtendo-se produtividades semelhantes àquelas registradas em áreas de cerrados do Oeste baiano, do Sul do Maranhão e do Sudoeste piauiense (Carvalho et al., 2000 e 2001). Essa boa adaptação dos híbridos nessas áreas tem provocado um incremento considerável na procura por esse tipo de material genético, observando-se, a nível de produtores rurais, rendimentos médios acima de 7 t/ha. Os coeficientes de variação obtidos conferiram boa precisão aos ensaios (Scapim et al., 1995).

As análises de variâncias conjuntas realizadas nas duas redes experimentais (Tabelas 3 e 4) evidenciaram significâncias (p<0,01) no que se refere aos efeitos de ambientes, cultivares e interação cultivares x ambientes, revelando diferenças entre os ambientes e as cultivares e inconsistência no comportamento dessas cultivares ante às variações ambientais.

Detectada a presença da interação cultivares x ambientes, procurou-se verificar as respostas de cada uma delas nos ambientes considerados. Além do preconizado pelo modelo de Cruz et al., (1989), considerou-se

Souza et al.

Tabela 3. Resumo da análise conjunta de variância de rendimentos de grãos (kg/ha) de 43 cultivares de milho em 7 ambientes dos Estados de Sergipe e Alagoas, no ano agrícola de 2003.

Fonte de variação	Graus de liberdade	Quadrados médios		
Ambientes (A)	6	318018601,36**		
Cultivares (C)	42	8468987,9**		
Interação (A x C)	252	934311,71**		
Resíduo	588	416239,67		

Tabela 4. Análise de variância conjunta de rendimento de grãos (Kg/ha) de 45 híbridos de milho em sete ambientes dos Estados de Sergipe e Alagoas, no ano de 2003.

Fonte de variação	Graus de liberdade	Quadrados médios
Ambiente (A)	6	411031673,7**
Híbridos (H)	44	4348030,9**
Interação (A x II)	264	867980,6**
Resíduo	616	483642,0

^{**} Significativo a 1% de probabilidade pelo teste F.

como cultivar melhor adaptada aquela que expressou rendimento médio de grãos superior à media geral (Vencovsky e Barriga, 1992). Os rendimentos médios de grãos (b₀), nos ensaios envolvendo variedades e híbridos (Tabela 5) oscilaram de 4.297 kg/ha a 7.595 kg/ha, com média geral de 5.342 kg/ha, o que revela o bom desempenho produtivo das cultivares avaliadas na região. As cultivares de rendimentos médios superiores à média geral, (b₀> média geral) mostraram melhor adaptação. Os híbridos apresentaram melhor adaptação que as variedades, produzindo, em média, 6.0256 kg/ha, superando em 18,60%, o rendimento das variedades (5.080 kg/ha).

Ao analisar na Tabela 5, o comportamento dos materiais de melhor adaptação (b_0 > média geral), verificase estimativas de b_1 , que avaliam seus desempenhos em condições desfavoráveis, revela que os híbridos Pioneer 30 F 90 e SHS 4060 e a variedade AL Bandeirante mostraram ser muito exigentes nessas condições (b_1 >1). As estimativas de b_1 + b_2 , que avaliam as respostas das cultivares nos ambientes favoráveis, evidenciaram nesse grupo de materiais de melhor adaptação, que apenas os BRS 3050, SHS 4060 e BRS 3003 e a variedade Asa Branca responderam à melhoria ambiental (b_1 + b_2 >1). No tocante à estabilidade de produção, dezesseis

materiais apresentaram os desvios da regressão estatisticamente diferentes de zero, o que indica comportamento imprevisível ou errático desses materiais nos ambientes considerados. No entanto, as estimativas de R² obtidas nessas cultivares, à exceção daquelas encontradas no híbrido BR 201 e nas variedades São Vicente e BR 473, foram superiores a 80%, revelando boa estabilidade nos ambientes considerados.

Relacionado-se a estabilidade das cultivares avaliadas (Tabela 5), com suas respectivas bases genéticas, observa-se que, à exceção do híbrido BR 201 e das variedades São Vicente e Br 473, todas as demais apresentaram a mesma resposta à estabilidade (R²>80%), independentemente de suas bases genéticas (híbridos simples, híbridos triplos, híbridos duplos e variedades). Resultados de diversos trabalhos com cultivares de milho permitem inferir não haver uma relação fixa entre a homogeneidade ou heterogeneidade de determinada cultivar e sua estabilidade, sendo possível selecionar cultivares mais estáveis em qualquer grupo, quer sejam, híbridos simples, híbridos triplos, híbridos duplos ou variedades (Carneiro, 1998; Ribeiro et al., 2000; Carvalho et al., 2002 e Cardoso et al., 2003), o que também foi constatado no presente trabalho.

Considerando-se os resultados apresentados na rede de avaliação de variedades e híbridos (Tabela 5), notase que a cultivar ideal preconizada pelo modelo bissegmentado não foi encontrada nesse conjunto. Para isso o material teria que exibir b_o>média geral, b₁<1, b₁+b₂ >1 e desvios da regressão não significativos. Da mesma forma, não foram encontradas cultivares com adaptação específica a ambientes desfavoráveis (b₀>média geral, b₁<1, b₁+b₂<1 e desvios da regressão nulos). Entretanto, o híbrido BR 201 pode ser recomendado para essa condição de ambiente, por apresentar boa adaptação (b₀> média geral) e ser pouco exigente nas condições favoráveis (b₁<1). Também, pela posição de sua média nessa classe de ambiente, destacou-se o híbrido Pioneer 30 F 90, que embora exigente nas condições desfavoráveis (b,>1), apresentou a maior média nesse tipo de ambiente, com boa estabilidade ($S_d^2 = 0$). No tocante aos ambientes favoráveis, mereceu destaque o híbrido SHS 4060, por mostrar boa adaptação (b₀> média geral), ser exigente nas condições desfavoráveis (b₁>1) e ser também responsivo à melhoria ambiental (b, +b,>1), exibindo ainda variância dos desvios da regressão igual a zero. O híbrido Pioneer 30 F 90 e a variedade AL Bandeirante, de estimativas de b₀>média geral e de b₁>1, justificaram suas recomendações para os ambientes favoráveis. Também, os híbridos BRS 3150 e BRS 3003 e a variedade Asa branca por mostrarem médias altas (b₀> média geral)

^{**} Significativo a 1% de probabilidade pelo teste F.

Tabela 5. Estimativas das médias e dos parâmetros de adaptabilidade e estabilidade de 43 cultivares de milho em 7 ambientes do Estado de Sergipe e Alagoas, segundo o modelo de Cruz et al., (1989), no ano agrícola de 2003. (Media = 5.547 kg/ha.

Cultivares	Médias de grãos (kg/ha)							
	Geral	Desfavorável	Favorável	b ₁	b ₂	$b_1 + b_2$	S ² _d	R ² (%
Pioneer 30 F 90 ¹	7595a	6043	8758	1,34**	-0,85 **	0,50 **	209654,52 **	89
Agromen 3050 ²	6526b	5098	7597	0,99 ns	0,07 ns	1,06 ns	842778,56 ns	93
BRS 3150 ²	6377b	5028	7388	1,10 ns	0,91 **	2,02 **	819294,62 ns	95
SHS 4060 ³	6324b	4441	7730	1,33 **	0,33 ns	1,67 **	350108,20 ns	98
Pioneer 30 K 75 ¹	6320b	5292	7097	0,96 ns	0,01 ns	0,98 ns	1307659,13 **	88
SHS 5050 ²	6318b	5024	7291	0,95 ns	0,23 ns	1,18 ns	343811,38 ns	96
AS 15331	6148b	4550	7180	1,11 ns	-048 ns	0,64 ns	626779,81 ns	95
SHS 4050 ³	6093b	4837	7035	1,01 ns	0,02 ns	1,04 ns	1074009,33 *	91
SHS 30314	6014b	4569	6481	1,01 ns	-0,76 **	0,26 **	1797868,30 **	84
Asa Branca ⁴	6004c	4653	7184	1,18 ns	0,27 ns	1,46 *	169335,45 ns	99
BRS 3003 ³	5968c	4929	6829	0,86 ns	0,66 **	1,52 *	1421818,72 **	88
CPATC - 44	5933c	4681	6884	1,10 ns	-0,25 ns	0,84 ns	686938,53 ns	94
SHS 4080 ³	5794c	4446	6943	1,06 ns	0,13 ns	1,21 ns	787752,54 ns	94
SHS 4040 ³	5777c	4376	6863	1,01 ns	0,24 ns	1,26 ns	600314,01 ns	95
CPATC - 3 ⁴	5770c	4791	6650	0,99 ns	0,15 ns	1,14 ns	1306956,02 **	89
São Francisco ⁴	5767c	4248	6701	1,07 ns	0,18 ns	1,26 ns	523511,71 ns	96
A 3575 ²	5733c	4113	6872	1,16 ns	-0,23 ns	0,94 ns	447408,90 ns	97
Sertanejo⁴	5685c	4202	6776	1,10 hs	-0,25 ns	1,01 ns	1055260,71 *	93
AL Bandeirante ⁴	5670c	4139	6757	1,12 118				
					-0,26 ns	0,94 ns	692046,50 ns	96
AL Ipiranga ⁴ BRS 3101 ³	5649c	4455	6608	1,05 ns	-0,18 ns	0,86 ns	460402,55 ns	96
	5636c	4600	6412	0,93 ns	0,04 ns	0,96 ns	556473,94 ns	95
AL 25 ⁴	5512d	3967	6814	1,23 *	-0,11 ns	1,12 ns	571149,53 ns	97
Bozn Amarilo ⁴	5505d	4085	6559	1,08 ns	0,45 ns	1,53 *	882002,33 ns	95
A 4646 ³	5442d	3938	6570	1,10 ns	-0,35 ns	0,74 ns	429273,30 ns	97
Sintético Elite4	5415d	4018	6464	0,99 ns	-0,59 *	0,40 **	770482,66 ns	92
AL Alvorada ⁴	5376d	3980	6420	1,06 ns	-0,51 *	0,55	315444,38 ns	97
AL 34 ⁴	5375d	3930	6474	1,05 ns	-0,05 ns	0,99 ns	887452,50 ns	93
3R 201 ³	5370d	4870	5755	0,62 **	0,60 *	1,23 ns	2191587,24 **	74
Sintético Duro4	5326d	3831	6411	1,01 ns	0,26 ns	1,27 ns	578943,21 ns	96
AL 30 ⁴	5305d	4335	5869	0,77 *	0,05 ns	0,82 ns	1602302,95 **	80
São Vicente ⁴	5215d	4018	6112	0,88 ns	-0,41 ns	0,46 *	2931535,45 **	72
3R 473 ⁴	5177d	4457	5717	0,75 **	-0,15 ns	0,59 ns	1850038,36 **	76
3R 205 ³	4975e	3175	6220	1,13 ns	-0,24 ns	0,90 ns	1380072,77 **	90
Caatingueiro4	4918e	4149	5596	0,65 **	0,18 ns	0,84 ns	1194401,59 **	81
3RS 4150 ⁴	4915e	3593	5986	0,99 ns	-0,33 ns	0,66 ns	166188,00 ns	98
Sintético Dentado4	4877e	3414	5973	1,00 ns	0,02 ns	1,02 ns	849903,93 ns	93
Assum Preto ⁴	4856e	3869	5720	0,82 ns	0,24 ns	1,06 ns	439028,01 ns	94
Cruzeta4	4807e	3791	5569	0,83 ns	0,29 ns	1,13 ns	66812,06 ns	99
Bozm Blanco ⁴	4773e	3461	5757	0,95 ns	-0,02 ns	0,93 ns	443540,02 ns	96
3R 1064	4700e	3316	5737	0,93 ns	0,12 ns	1,04 ns	1359718,02 **	. 88
Sintético Elite Flint ⁴	4679e	3482	5576	0,81 ns	-0,08 ns	0,73 ns	528280,11 ns	93
BA 183 ⁴	4609e	3226	5646	0,96 ns	0,39 ns	1,35 ns	1628488,26 **	88
CMS 474	4297e	3398	4971	0,73 **	0,10 ns	0,83 ns	1349870,18 **	82

^{*} e ** significativamente diferente da unidade, para b₁ e b₁+b₂, e de zero, para b₂ a 5% e a 1% de probabilidade pelo teste t de Student, respectivamente. ** significativamente diferente de zero, pelo teste F, Q.M. do desvio.

e serem responsivos à melhoria ambiental $(b_1 + b_2 > 1)$, devem ser sugeridos para esse tipo de ambiente. Os demais materiais (variedades e híbridos) que apresentaram boa adaptação e expressaram adaptabilidade ampla $(b_1=1)$ tornam-se de grande interesse para a agricultura regional.

Os parâmetros de adaptabilidade e estabilidad: estimados com relação aos híbridos estão na Tabela 6, observando-se que as produtividades médias (b₀) variaram de 5.163 kg/ha a 7.082 kg/ha, com média geral de 6.175 kg/ha, o que evidencia bom potencial para a produtividade

¹Híbrido simples, ²híbrido triplo, ³híbrido duplo e ⁴variedade. As médias seguidas pelas mesmas letras não diferem entre si pelo teste Scott-Nott.

28 Souza et al.

Tabela 6. Estimativas das médias e dos parâmetros de adaptabilidade e estabilidade de 45 híbridos de milho em 7 ambientes dos Estados de Sergipe e Alagoas, segundo o modelo de Cruz et al., (1989), no ano agrícola de 2003. (Media = 6.175 kg/ha).

Híbridos	Médias de grãos (kg/ha)						D2 (01)	
	Geral	Desfavorável	Favorável	b ₁	$\mathbf{b_2}$	$b_1 + b_2$	S ² _d	R ² (%)
DKB 350 ²	7082a	4649	8048	1,13ns	-0,06ns	1,07ns	608174,9ns	97
2 C 5991	6855a	4205	7974	1,22*	-0,36ns	085ns	216272,2ns	99
Agromen 31 A 31 ¹	6854a	4481	7803	1,09ns	0,02ns	1,11ns	2429438,3**	87
SHS 5070 ²	6792a	4650	7649	0,92ns	-0,05ns	0,87ns	1438457,0*	88
Agromen 3150 ²	6666a	4233	7638	1,07ns	-0,06ns	1,01ns	1165036,6*	93
DAS 85501	6643a	4473	7511	1,01ns	-0,12ns	0,89ns	1298820,0*	91
BRS 10101	6642a	4229	7501	1,16ns	0,05ns	1,21ns	933720,0ns	95
DAS 8460 ¹	6557b	3994	7583	1,23*	-0,47*	0,76ns	2068880,2**	89
Agromen 2012 ³	6515b	4195	7443	1,06ns	0,26ns	1,32ns	728688,3ns	96
2 C 5771	6510b	3870	7562	1,20ns	-0,22ns	0,97ns	283945,3ns	98
BRS 10011	6485b	4615	7232	0,84ns	-0,03ns	0,81ns	1964476,0ns	98
Agromen 3100 ³	6485b	4014	7473	1,12ns	-0,16ns	0,96ns	348746,3ns	97
Agromen 30 A 00 ¹	6467b	4456	7272	0,91ns	-0,16ns	0,74ns	780761,0ns	93
Colorado 32 ²	6428b	3883	7446	1,14ns	-0,16ns	0,98ns	1650896,3**	91
BA 8517 ³	6417b	4309	7261	1,04ns	0,08ns	1,12ns	1369061,3*	91
Pioneer 3021 ³	6411b	3577	7545	1,31**	-0,62ns	0,69ns	1203149,3*	94
Agromen 35 M 42 ²	6403b	4264	7218	0,94ns	0,15ns	1,08ns	1150084,0ns	91
Pioneer 30 F 881	6373b	4144	7264	1,05ns	0,20ns	1,26ns	372800,7ns	98
DAS 84201	6368b	4104	7273	1,08ns	-0,08ns	0,99ns	641532,4ns	96
PL 6880 ²	6367b	3991	7317	1,10ns	-0,20ns	0,84ns	151594,0ns	99
Agromen 3180 ³	6337b	4461	7128	0,90ns	0,36ns	1,26ns	213772,4ns	98
DAS 6571	6292b	3796	7290	1,15ns	-0,11ns	1,04ns	11184,0ns	99
AS 3466 ²	6275b	4084	6611	0,87ns	0,23ns	1,11ns	3527276,3**	77
DAS 8330 ²	6271b	3853	7239	1,15ns	0,12ns	1,28ns	1590237,0*	92
Agromen 25 M 23 ¹	6184b	3953	7128	1,07ns	0,19ns	1,27ns	231412,6ns	98
DAS 7661	6181b	4177	6974	0,96ns	0,04ns	1,01ns	570721,6ns	95
DAS 8480 ¹	6174b	3782	7131	1,06ns	-0,34ns	0,72ns	1378630,0*	90
Agromen 32 M 31 ²	6170b	4455	6700	0,76*	0,04ns	0,80ns	1570034,0*	84
AS 3430 ²	6134b	3905	7025	1,00ns	-0,01ns	0,99ns	110380,0ns	99
A 24841	6005c	3670	6938	1,11ns	-0,50*	0,61*	1304477,4*	92
Agromen 32 M 43 ²	5984c	4183	6703	0,79*	0,37ns	1,16ns	1040390,7ns	91
BRS 22233	5942c	4117	6671	0,85ns	0,59**	1,44*	829565,0ns	94
SHS 5060 ²	5924c	3896	6734	0,93ns	0,42ns	1,34ns	395891,0ns	97
AS 32 ³	5804c	3671	6649	0,98ns	0,11ns	1,30ns	2444215,4**	85
A 22881	5788c	3206	6857	1,18ns	-0,37ns	0,80ns	797251,4ns	95
A 23451	5729c	3506	6617	1,01ns	-0,45*	0,55*	108621,3ns	99
AS 5233	5686c	3676	6489	0,94ns	-0,34ns	0,60*	1199604,3*	89
BRS 2110 ³	5654c	4009	6311	0,78*	0,36ns	1,14ns	541999,0ns	96
A 3680 ²	5615d	3663	6397	0,89ns	-,03ns	0,86ns	145334,6ns	99
BRS 3060 ²	5586d	3346	6481	1,02ns	-0,27ns	0,74ns	1193654,7*	91
BRS 2114 ³	5530d	4016	6135	0,73*	0,38ns	1,11ns	1286328,4*	88
A 25551	5518d	3577	6308	0,94ns	0,19ns	1,13ns	1696775,4**	81
97 HT 129 ²	5420d	4084	5953	0,67**	0,33ns	1,00ns	474611,0ns	94
Agromen 22 M 22 ²	5184d	3880	5719	0,68**	0,31ns	0,99ns	877016,0ns	90
BR 206 ³	5163d	3372	5879	0,81ns	0,46ns	1,28ns	370728,4ns	97

^{*} e ** significativamente diferente da unidade, para b₁ e b₁+b₂, e de zero, para b₂ a 5% e a 1% de probabilidade pelo teste t de Student, respectivamente. ** significativamente diferente de zero, pelo teste F, Q.M. do desvio.

¹Híbrido simples, ²híbrido triplo, ³híbrido duplo. As médias seguidas pelas mesmas letras não diferem entre si pelo teste Scott-Nott.

do conjunto avaliado, especialmente, daqueles que apresentaram rendimentos médios acima da média geral, os quais mostraram melhor adaptação. Verificou-se que, dentre os mais produtivos (b₀>média geral), os híbridos 2 C 599, DAS 8480 e Pioneer 3021 mostraram-se exigentes nas condições desfavoráveis (b₁>1). Nesse grupo de melhor adaptação, à exceção dos Agromen 31 A 31, SHS 5070, Agromen 3150, DAS 8550, DAS 8460, Colorada 32, BA 8517, Pioneer 3021, AS 3466 e DAS 8330, todos os outros mostraram desvios da regressão não significativos, expressando, segundo o modelo, boa estabilidade nos ambientes estudados. Entretanto, segundo o critério de Cruz et al., (1989), dentre os híbridos mais produtivos apenas o AS 3466 mostrou baixa estabilidade (R²<80%).

Nessa rede de híbridos (Tabela 6) não foram identificados materiais com adaptação específica tanto para ambientes favoráveis, quanto desfavoráveis. Mesmo assim, para os ambientes favoráveis devem ser sugeridos os 2 C 599, DAS 8460 e Pioneer 3021, por apresentarem médias altas e serem exigentes nas condições desfavoráveis. Todos os híbridos pertencentes ao grupo de melhor adaptação, à exceção dos 2 C 599, DAS 8460 e Pioneer 3021, evidenciaram adaptabilidade ampla (b₁=1) consubstanciando-se em alternativas importantes para a agricultura regional, justificando suas recomendações para os diferentes sistemas de produção vigentes na região.

Conclusões

- 1. Os híbridos mostram melhor adaptação que as variedades e na sua maioria evidenciam adaptabilidade ampla. consubstanciando-se em alternativas importantes para a agricultura regional.
- 2. As variedades de melhor adaptação e que também evidenciam adaptabilidade ampla tornam-se de importância para os diferentes sistemas de produção prevalecentes na região, especialmente, para os sistemas de produção dos pequenos e médios proprietários rurais.

Literatura Citada

- ARIAS, E. R. A. 1996. Adaptabilidade e estabilidade de cultivares de milho no Estado do Mato Grosso do Sul e avanço genético obtido no período de 1986/87 a 1993/94. Tese de Doutorado. Lavras, ESAL. 118p.
- CARDOSO, M. J.; et al. 2003. Desempenho de híbridos de milho na Região Meio-Norte do Brasil. Revista Brasileira de Milho e Sorgo 2 (1): 43-52.

- CARNEIRO, P. C. S.1998. Novas metodologias de análise de adaptabilidade e estabilidade de comportamento. Tese de Doutorado. Lavras, ESAL.168p.
- CARVALHO, H.W. L. de et al. 2001. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 1998. Pesquisa Agropecuária Brasileira 36 (4): 637-644.
- CARVALHO, H.W.L. de et al. 2002. Adaptabilidade e estabilidade de cultivares de milho no nordeste brasileiro no triênio 1998 a 2000. Pesquisa Agropecuária Brasileira 37 (11): 1581-1588.
- CARVALHO, H. W. L. de et al. 2000. Estabilidade de cultivares de milho em três ecossistemas do Nordeste brasileiro. Pesquisa Agropecuária Brasileira 35 (9): 1773-1781.
- CARVALHO, H. W. L. de et al. 1999. Adaptabilidade e estabilidade de produção de cultivares de milho no Nordeste brasileiro. Pesquisa Agropecuária Brasileira 34 (9): 1581-1591.
- CRUZ, C. D.; TORRES, R. A. de; VENCOVSKY, R. 1989. An alternative approach to the stability analisis by Silva and Barreto. Revista Brasileira de Genética 12: 567 - 580.
- GAMA, E. E. G. et al. 2000. Estabilidade de produção de germoplasma de milho avaliado em diferentes regiões do Brasil. Pesquisa Agropecuária Brasileira 36 (6): 1143-1149.
- PIMENTEL-GOMES, F. 1990. Curso de Estatística Experimental. São Paulo, Nobel. 450p.
- RAMALHO, M A. P.; SANTOS, J. B. dos.; ZIMMERMANN, M. J de O. 1993. Genética quantitativa em plantas autógamas: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG. pp.131-169. (Publicação, 120).
- RIBEIRO, P. H. E.; RAMALHO, M, A. P.; FERREIRA, D. F. 2000. Adaptabilidade e estabilidade de cultivares de milho avaliadas em diferentes condições ambientais do Estado de Minas Gerais. *In:* Reunion Latinoamericana del Maiz, 28°, Sete Lagoas, M. G. *Memórias*. Sete Lagoas, EMBRAPA MILHO E SORGO/CIMMYT. pp.251-260.
- SAS INSTITUTE. 1996. SAS/STAT user's Guide: version 6. 4. Ed. Cary, Vol. 1.
- SCAPIM, C. A.; CARVALHO, C. G. P de.; CRUZ, C. D. 1995. Uma proposta de classificação dos coeficientes de variação para a cultura do milho. Pesquisa Agropecuária Brasileira 30 (5): 683-686.
- SILVA, F.B.R. de et al. 1993. Zoneamento ecológico do Nordeste: diagnóstico do quadro natural e

- agrossocioeconômico. Petrolina, EMBRAPA-CPATSA/EMBRAPA-CNPS. vol.1.
- VENCOVSKY. R.; BARRIGA, P. 1992. Genética biométrica no fitomelhoramento. Ribeirão Preto, Sociedade Brasileira de Genética. 496p.
- VENDRUSCOLO, E. C. G. et al. 2001. Adaptabilidade e estabilidade de produção de cultivares de milho-
- pipoca na região centro-sul do Brasil. Pesquisa Agropecuária Brasileira 36 (1): 123-130.
- VERMA, M. M.; CHAHAL, G. S.; MURTHY, B. R. 1978. Limitations of conventional regression analysis: a proposed modification. Theoretical and Applied Genetics 53: 89-91.