Consumo voluntário e digestibilidade aparente da matéria seca, energia bruta, energia digestível e energia metabolizável das silagens de quatro genótipos de girassol (*Helianthus annuus*) (Rumbosol 91, Victoria 627, Victoria 807 e Mycogen 93338)

Alex de Matos Teixeira¹, Diogo Gonzaga Jayme⁴, Lúcio Carlos Gonçalves², José Avelino Santos Rodrigues³, Flávia Cardoso Lacerda Lobato¹, Fernanda Samarini Machado¹

¹Graduando em Medicina Veterinária EV-UFMG

Resumo: Foram avaliados os consumos voluntários e as digestibilidades aparentes das silagens de quatro genótipos de girassol (Rumbosol 91, Victoria 807, Victoria 627 e Mycogen 93338) em ovinos. O delineamento utilizado foi o inteiramente casualizado com quatro tratamentos e cinco repetições. Os valores de consumo de matéria seca em g/unidade de tamanho metabólico (CMSUTM) oscilaram ente 59,9 (Mycogen 93338) a 85,0 g/UTM/dia (Victoria 627). Quanto aos teores de digestibilidade aparente da matéria seca (DAMS) não houve diferença (p>0,05) entre os materiais. Os consumos de energia bruta variaram de 120,0 g/UTM/dia para a silagem do genótipo Rumbosol 91 a 200,8 g/UTM/dia para a silagem do Victoria 627. Já os valores de digestibilidade aparente da energia bruta (DAEB) variaram de 44,9 % para o Rumbosol a 55,58 % para o Victoria 627, sem diferenças entre os genótipos (p>0,05). Entretanto para os consumos de energia digestível (CED) e metabolizável (CEM) os maiores valores foram observados para o genótipo Victoria 627. As silagens dos genótipos avaliados neste experimento apresentaram boa composição química e consumos satisfatórios, permitindo indicar o girassol como opção para utilização na forma de silagem na época da safrinha.

Palavras chave: consumo voluntário, digestibilidade, energia, ruminantes, silagem

Voluntary intakes and apprent digestibility of the dry matter, brute energy, degestive energy and mtaoli energy of of four sunflower genotypes silages (*Helianthus annuus*) (Rumbosol 91, Victoria 627, Victoria 807 and Mycogen 93338)

Abstract: Voluntary intakes and apparent digestibilities of four sunflower genotypes silages (Rumbosol 91, Victoria 807, Victoria 627 e Mycogen 93338) were evaluated in castrateds adults sheeps. The statistical design was completely randomized with four treatments and five replicates. The dry matter intake in grams per metabolic weight (g/MW) ranged from 59.9 (Mycogen 93338) to 85.0 g/MW/day (Victoria 627). There weren't differences (p>0.05) among the genotypes to dry matter apparent digestibilities. The gross energy intakes of silages ranged from 120.0 g/MW/day to Rumbosol 91 genotipe silage to 200.8 g/MW/day to Victoria 627 silage. Already the values of gross energy apparent digestibilities varied from 44.9 % to Rumbosol silage to 55.58 % to Victoria 627 silage, there weren't differences (p>0,05) among the four genotypes studied (p>0.05). However the highest values of digestible energy intake and metabolizable energy intake it was observed to Victoria 627 genotype silage. The silages to studied genotypes in this experiment presented a good quemicae composition and satisfactory intakes, may be indicated the sunflower as an option for production of conserved forage as silage post-harvesting of summer.

Keywords: digestibility, energy, ruminant, silage, voluntary intake.

Introdução

O plantio de culturas na época da safrinha, semeadura realizada entre janeiro e março, vem aumentando consideravelmente nos últimos anos. Como opções, vêm sendo utilizados o milho, o sorgo e mais recentemente o girassol, devido às suas características de se adaptar bem em regiões onde a umidade é um fator limitante. Ribeiro et al. (2002) encontraram valores de consumo de matéria seca por unidade de tamanho metabólico maiores para ovelhas alimentadas com silagem de milho (83,25g/UTM/d), intermediários para as alimentadas com silagem de girasol (76,75g/UTM/d) e inferiores para as alimentadas com silagem de sorgo (69,75g/UTM/d). Vários são os trabalhos que comprovaram o potencial da cultura do girassol em

²Professor Adjunto do Departamento de Zootecnia da EV-UFMG

³Pesquisador da Embrapa Milho e Sorgo em Sete Lagos – MG

⁴Doutorando em Ciência Animal EV-UFMG

produzir silagens de boa qualidade, entretanto, experimentos que avaliem a resposta animal (digestibilidade, consumo) ainda precisam ser realizados. Este trabalho teve como objetivos determinar o valor nutritivo das silagens de quatro genótipos de girassol, através da determinação do consumo voluntário, da digestibilidade aparente da matéria seca (MS), energia bruta, energia digestível e energia metabolizável.

Material e Métodos

Foram utilizados neste experimento quatro genótipos confeiteiros de girassol (Rumbosol 91, Mycogen 93338, Victoria 627, Victoria 807) plantados, colhidos e ensilados nas dependências da EMBRAPA Milho e Sorgo, localizada em Sete Lagoas/MG. A colheita ocorreu quando 100 % dos grãos apresentavam-se maduros. O material foi imediatamente picado a 2 centímetros em picadeira estacionária e ensilado em tambores metálicos com capacidade de 200 litros. Os animais passaram por um período inicial de adaptação às gaiolas e alimentação de 21 dias, seguido de um período de coleta de amostras de cinco dias. A silagem foi oferecida em quantidade suficiente de modo a obter aproximadamente 20% de sobras no cocho, caracterizando-se dessa forma, a ingestão voluntária pelos animais. A água e a mistura mineral comercial foram administradas ad libitum. Diariamente foram mensuradas as quantidades de silagens (oferecidas e sobras), e somente no período de coleta foi mensurada a produção de fezes e urinas de cada animal. Para as silagens foi coletado aproximadamente 300g por tratamento por dia. As sobras foram recolhidas diariamente e armazenadas por animal por dia; já nas fezes foram recolhidos 20% do peso total diário; e a amostragem de urina foi obtida no período da manhã equivalente a 10% do volume total. Nos baldes coletores de urina foram adicionados, diariamente, 100ml de HCl 2N para se evitar perda de nitrogênio por volatilização e decomposição. As diversas amostras do dia, após devidamente etiquetadas, foram armazenadas a temperatura de -17 °C. Ao fim do período experimental foram feitas amostras compostas dessas frações por animal (repetição). Cada amostra composta foi retirada do congelador e colocada para descongelar sob temperatura ambiente, procedendo-se então o processo de pré-secagem e posteriormente a moagem, em peneira de 1,0 mm, e sua estocagem em frascos de vidro para análises subsequentes. Foram executadas as análises de matéria seca em estufa a 105°C (OFFICIAL, 1980), proteína bruta (Método Kjeldhal, de acordo com OFFICIAL, 1980) e energia bruta (EB) por combustão em bomba calorimétrica adiabática modelo PARR 2081 (OFFICIAL, 1995). As amostras de urina foram analisadas para determinação dos teores de energia bruta, nitrogênio e proteína bruta seguindo as metodologias já mencionadas. Os valores de energia digestível (ED) foram obtidos pela diferença entre a EB dos alimentos e das fezes. Os valores de energia metabolizável (EM) foram obtidos através da diferença entre energia digestível e perda de energia sob a forma de metano e energia da urina. Para cálculo das perdas em metano (cm) ao nível de mantença, foi utilizada a fórmula sugerida por Blaxter & Clapperton (1965) em que cm = 3,67 + 0,062D, e D representa a digestibilidade aparente da energia bruta do alimento. O delineamento experimental utilizado foi o inteiramente casualizado com 4 tratamentos e 5 repetições. Para a análise de variância utilizou-se o pacote estatístico SAEG versão 8.0, 1998, sendo as médias comparadas a 5 % de probabilidade, utilizando-se o teste de SNK.

Resultados e discussão

Na Tabela 1 estão os valores de consumo voluntário de matéria seca em gramas por dia (g/dia) e gramas por unidade de tamanho metabólico por dia (g/UTM/dia), digestibilidade aparente da matéria seca e consumo de matéria seca digestível das silagens dos quatro genótipos de girassol.

Tabela 1 – Valores médios de consumo de matéria seca (CMS) em g/dia, consumo de matéria seca em g/UTM/dia (CMSUTM), digestibilidade aparente da matéria seca (DAMS) em percentagem (%) e consumo de matéria seca digestível em g/UTM/dia (CMSDUTM) das silagens de quatro genótipos de girassol

	Genótipos								
Parâmetros	Rumbosol 91	Victoria 807	Victoria 627	Mycogen 93338	CV (%)				
CMS	$900,5^{B}$	1093,8 ^{AB}	$1472,8^{A}$	946,1 ^B	27,72				
CMSUTM	$63,26^{B}$	$67,8^{B}$	$85,0^{A}$	59,9 ^B	17,1				
DAMS	48,69 ^A	49,52 ^A	57,42 ^A	$50,70^{A}$	10,9				
CMSDUTM	$31,1^{B}$	$33,75^{B}$	48,63 ^A	30.4^{B}	20,55				

Médias seguidas por letras maiúsculas idênticas significam semelhança estatística em uma mesma linha;

Os valores de consumo de matéria seca (CMS) em g/dia variaram de 1472,8 para o genótipo Victoria 627 a 900,5 g/dia para o genótipo Rumbosol 91. O maior consumo de matéria seca em gramas por unidade de tamanho metabólico por dia (CMSUTM) foi observado para o genótipo Victoria 627 com 85g/UTM/dia, sendo superior aos demais (p<0,05). Não foi observada diferença entre os valores de digestibilidade aparente da matéria seca (DAMS) para os genótipos estudados, que apresentaram valor médio de 51,58 %, o qual segundo a classificação de silagens proposta por Paiva (1976) permite classificar estas silagens como de qualidade mediana para este parâmetro. O consumo de matéria seca digestível por unidade de tamanho metabólico (CMSDUTM) seguiu o mesmo padrão do CMSUTM. A média de CMSDUTM foi de 35,97g/UTM/dia.

Na Tabela 2 são apresentados os valores de consumo de energia bruta, digestibilidade da energia bruta, consumo de energia digestível e energia metabolizável.

Tabela 2 – Valores médios de consumo de energia bruta em Kcal/UTM/dia (CEB), digestibilidade aparente da energia bruta (DAEB) em %, consumo de energia digestível (CED) em Kcal/UTM/dia, consumo de energia metabolizável (CEM) em Kcal/UTM/dia, consumo de energia digestível por grama de MS consumida em Kcal ED/gMS (CED/CMS) e consumo de energia metabolizável por grama de MS consumida em Kcal EM/gMS (CEM/CMS) das silagens de quatro genótipos de girassol

	Genótipos						
Parâmetros	Rumbosol 91	Victoria 807	Victoria 627	Mycogen 93338	CV (%)		
CEBUTM	$261,2^{B}$	315,1 ^{AB}	363,1 ^A	$263,6^{B}$	15,8		
DAEB	$44,90^{A}$	50,43 ^A	55,58 ^A	50,63 ^A	12,77		
CEDUTM	$120,0^{B}$	159,9 ^{AB}	$200,8^{A}$	133,8 ^B	15,43		
CEMUTM	95,1 ^B	$132,6^{AB}$	168,3 ^A	110.8^{B}	17,15		
CED/CMS (Kcal ED/gMS)	1,84 ^A	2,34 ^A	2,37 ^A	2,23 ^A	26,42		
CEM/CMS(Kcal EM/gMS)	$1,46^{B}$	1,94 ^A	1,99 ^A	1,85 ^A	27,45		

Médias seguidas por letras maiúsculas idênticas significam semelhança estatística em uma mesma linha.

Assim como para os valores de CMS, o genótipo Victoria 627 apresentou o maior consumo de energia bruta por unidade de tamanho metabólico (CEBUTM) com 363,1 Kcal/UTM/dia. Não houve diferença estatística (p>0,05) para o parâmetro digestibilidade aparente da energia bruta. Os consumos de energia digestível por unidade de tamanho metabólico (CEDUTM) e energia metabolizável por unidade de tamanho metabólico (CEMUTM), seguiram o mesmo padrão do CEBUTM, apresentando variação de 120,0 a 200,8 Kcal/UTM/d e 95,1 a 168,3Kcal/UTM/d, respectivamente. Quanto aos valores de consumo de energia digestível em relação ao CMS (CED/CMS), não foram observadas diferenças entre os genótipos estudados. No entanto para o consumo de energia metabolizável em relação ao CMS, o genótipo Rumbosol 91 foi diferente (p<0,05) dos demais apresentando o menor valor com 1,16 Kcal EM/gMS.

Conclusões

As silagens dos genótipos avaliados neste experimento apresentaram boa composição química e consumos satisfatórios, permitindo assim se indicar o girassol como uma opção para utilização na forma de silagem na época da safrinha.

Referências bibliográficas

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMIST (A.O.A.C.). Official methods of analysis of the association of analytical chemits. 13° ed. Washingt, D.C.: AOAC, 1980.1015p.

BLAXTER, K.L., CLAPPERTON, J.L. Prediction of the amount of methane produced by ruminants. *British Journal of Nutrition*, v. 19, n.4, p.511-522, 1965.

OFFICIAL methods of analysis of AOAC International, 16ed. Arlington: AOAC International, 1995. v.1.

PAIVA, J.A.J. <u>Qualidade da silagem da região metalúrgica de Minas Gerais</u>. 1976, 85f. Dissertação (Mestrado em Zootecnia). Escola de Veterinária da UFMG. Belo Horizonte, 1976.

RIBEIRO, E.L.A., ROCHA, M.A., MIZUBUTI, I.Y., SILVA, L.D.F. Silagens de girassol (*Helianthus annuus* L.), milho (*Zea mays* L.), sorgo (*Sorghum bicolor* (L.) Moench) para ovelhas em confinamento. <u>Ciência Rural</u>, v.32, n. 2, p. 299-302. Santa Maria, 2002.