Área Foliar e Produtividade de Grãos de Cultivares de Milho, Submetidas à Déficit Hídrico, em Sete Lagoas, MG

Camilo L.T. Andrade¹, Tales A. Amaral², Reinaldo L. Gomide¹, Paulo E. P. Albuquerque¹, Alexandre B. Heinemann³, Ana P. Mendes⁴, Fernando F. Alves⁵ e Samira G. Araujo⁶

¹Pesquisador, Embrapa Milho e Sorgo, Rod. MG 424, Km 45, Zona Rural, 35701-970 – Sete Lagoas, MG, e-mail: camilo@cnpms.embrapa.br; ²Biólogo, MSc Fisiologia Vegetal, Bolsista Fapemig, e-mail: tales_aamaral@yahoo.com.br; ³Eng. Agrônomo, Embrapa Arroz e Feijão; ⁴Geografa, Bolsista Embrapa; ⁵Tec. Eletrônica, Bolsista Embrapa; ⁶Graduanda Engenharia Ambiental, Bolsista Embrapa

Palavras-chave: Zea Mays L., fitomassa, déficit hídrico, índice de área foliar.

Quase todo o estado de Minas Gerais apresenta-se com duas estações bem definidas: uma chuvosa, que vai de outubro até março e outra caracterizada por um período de seca, que se estende de abril a setembro. É durante o período chuvoso que as principais culturas anuais são cultivadas e são dependentes somente da precipitação pluvial, como fonte de água (Castro Neto e Villela, 1986). A água é um dos fatores que mais influenciam no rendimento das culturas, o sucesso da produção agrícola, principalmente em áreas não irrigadas, depende das características do regime pluviométrico local. A precipitação total do período chuvoso é suficiente para o desenvolvimento da agricultura na zona intertropical, porém ela é afetada pelo veranico, fenômeno que se caracteriza por períodos de interrupção da precipitação durante a estação chuvosa. A influência do veranico sobre a produtividade das culturas pode ser acentuada, principalmente quando coincide com a fase na qual a planta é mais sensível à deficiência hídrica.

A cultura do milho apresenta alta variabilidade, dada a ocorrência de déficits hídricos causados pelas variações da precipitação pluvial. Bergamaschi et al. (2004) constataram que pode haver redução de rendimento mesmo em anos climaticamente favoráveis, se o deficit hídrico ocorrer no período crítico, ou seja, da pré-floração ao início de enchimento de grãos. Durante o período vegetativo, o deficit hídrico reduz o crescimento do milho, em função de decréscimos da área foliar e da biomassa. No Brasil, trabalhos abordando estudo de caracterer com ênfase ao melhoramento para estresse hídrico têm sido pouco relatados, desse modo, é necessário priorizar o desenvolvimento de cultivares tolerantes à deficiência hídrica nos programas de melhoramento de milho.

O objetivo deste trabalho foi analisar os efeitos do déficit hídrico sobre o índice de área foliar, e a produtividade de grão em seis cultivares de milho.

A área onde foi conduzido o experimento localize-se no Município de Sete Lagoas - MG, (latitude 19° 27' 17 S, longitude 44° 10' 19 W e altitude 730.7m). A classificação do clima, segundo Köeppen é Cw ??????????? rever, ou seja, clima de savana, com inverno seco, temperatura do mês mais frio menor que 18°C. A temperatura média anual (dos últimos 60 anos) é de 22,1°C e amplitude térmica em torno de 5°C. A precipitação pluvial média anual é de 1300 mm e a estação chuvosa se apresenta num período bem definido, ocorrendo a precipitação máxima em dezembro (média de 290 mm) e a mínima em agosto (menos de 8 mm), o solo representativo do sítio é classificado como Latossolo Vermelho, distrófico, de textura muito argilosa, (Albuquerque et al., 2005). O plantio foi realizado no dia 06 de março de 2007 para que o período de estresse por deficiência hídrica coincidisse com o período seco do Centro de Minas

Gerais. Empregou-se um espaçamento de 0,80 m entre fileiras com média de 6,6 (PE01), 6,4 (PE02), 6,4 (BR106), 6,4 (Sintético TS), 6,4 (BRS 1010) e 6,5 (BRS 3003), plantas por m², totalizando uma população de 63,0 (PE01), 61,7 (PE02), 61,5 (BR106), 61,7 (Sintético TS), 61,5 (BRS 1010) e 62,7 (BRS 3003) mil plantas por hectare, respectivamente. A adubação consistiu de 300 kg ha⁻¹ da forma 8-28-16+Zn aplicado no sulco de plantio e 40 Kg ha⁻¹ de nitrogênio na primeira cobertura aos 29 dias após plantio e 45 Kg ha⁻¹ de nitrogênio na segunda cobertura aos 38 dias após plantio, ambas aplicações na forma de uréia. Utilizou-se um sistema de aspersão convencional para irrigar o ensaio. A Figura 1 mostra as lâminas de irrigação aplicadas ao longo do ciclo. O manejo da irrigação foi realizado empregado-se uma planilha eletrônica (Albuquerque e Andrade, 2001). A irrigação foi suspensa quando a cultura apresentava uma média de 10 folhas totalmente desenvolvidas. O período de estresse por deficiência hídrica prolongou-se até quanto 50% das plantas apresentaram florescimento feminino. Todas as irrigações foram medidas utilizando-se coletores de água instalados junto às parcelas experimentais. Foram realizadas quatro amostragens para determinação da área foliar ao longo do ciclo (V6, V8, no florescimento entre pendoamento e embonecamento e na maturidade fisiológica). As amostras consistiram de plantas de milho contidas em um metro de fileira. O índice de área foliar (IAF) foi calculado dividindo-se a área de folhas verdes pela área de solo da parcela, ambas em m². A colheita foi realizada aproximadamente 15 dias após a maturação fisiológica, tendo sido colhidas duas fileiras centrais de seis metros de comprimento. Contou-se o número de plantas, de espigas e procedeu-se a pesagem de folhas, colmo, espiga, palha, sabugo e grãos. A produção de grãos foi ajustada para estande médio e umidade de 13%. O delineamento experimental foi o de blocos casualizados com quatro repetições, tendo sido utilizadas seis cultivares de milho: PE01, PE02, BR106, Sintético TS, BRS1010 e BRS 3003. As parcelas foram constituídas por sete fileiras de 5,5 metros de comprimento com bordaduras de três linhas nas laterais e cinco metros nas extremidades. Foram feitas análises de variância, tendo as médias sido comparadas pelo teste de Scott-Knott, a 5% de probabilidade.

Embora muitos autores afirmem que o número de espigas é um dos caracteres mais importantes para a tolerância à seca, neste experimento não houve diferença significativa para o número de espigas por planta, entre as cultivares submetidas ao teste de médias, podendose inferir que a produtividade de grão esta relacionada ao índice de área foliar.

O IAF no estádio V6 (por volta de 20 dias após o plantio) foi maior nas cultivares BRS 1010 e BRS 3003 seguidos das cultivares e BR106 e Sintético TS, no estádio V8 (por volta de 40 dias após o plantio) o IAF foi significamente maior nas cultivares BR106, BRS 1010 e BRS 3003 seguidos da cultivar Sintético TS, no florescimento o IAF foi maior nas cultivares BRS 1010 e BRS 3003 (Tabela 1). O déficit hídrico afeta praticamente todos os aspectos relacionados ao desenvolvimento das plantas, principalmente reduzindo a área foliar, diminuindo a área fotossinteticamente ativa, levando a um decréscimo na produção de fotoassimilados, e afetando assim a produtividade de grãos em milho, os efeitos causados pelo déficit hídrico são devidos às modificações na anatomia, morfologia, fisiologia e bioquímica das plantas. Este efeito do déficit hídrico sobre a área foliar é de caráter permanente e, no caso das culturas de hábito de crescimento determinado, não há possibilidade de compensação via um aumento do número de folhas (Begg e Turner, 1976). Por apresentarem maior área foliar, as cultivares Sintético TS, BRS 1010 e BRS 3003, seguidas da cultivar BR106 também apresentaram um maior peso seco de grão (Tabela 2). O período após o início da formação do grão é por demais dependente do suprimento de fotoassimilados, simplesmente porque a planta

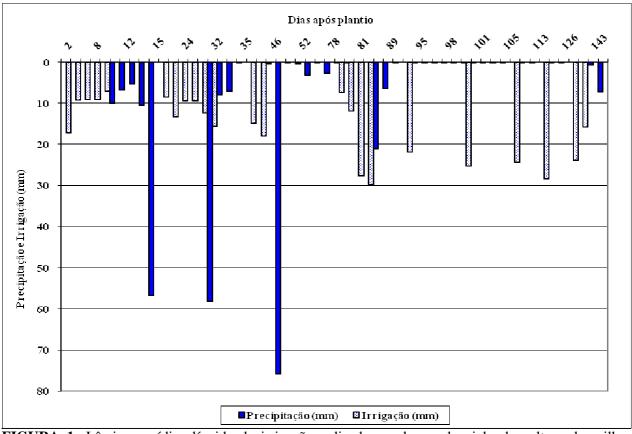
não tem reservas suficientes para manter o desenvolvimento dos grãos. Esse desenvolvimento dos grãos é altamente dependente de um contínuo suprimento de fotoassimilados para a espiga, decorrente da fotossíntese (Kiniry e Ritchie, 1985; Shussler e Wesgate, 1991). As plantas que apresentaram IAF menor durante o seu desenvolvimento, PE01 e PE02 (Tabela 1), tiveram uma área fotossinteticamente ativa menor, o que resultou numa menor produção de fotoassimilados e numa menor produtividade de grão. Essa menor produtividade dessas cultivares, pode ser explicado pelo fato de estas serem linhagens e as demais híbridos.

Todas as cultivares mantiveram algum IAF até a maturidade fisiológica, sendo as cultivares BR106, BRS 1010 e BRS 3003 as que apresentaram maior índice, provavelmente devido a alguma característica de "stay-green", o que segundo Costa et al., (2008), é a capacidade de as folhas e colmos permanecerem verdes após o enchimento dos grãos.

As cultivares BRS1010 e BRS3003, apresentaram um peso maior de folha, pendão, espiga, palha, sabugo, palhada (soma do peso seco de toda fitomassa, menos peso seco do grão) e peso seco total (Tabela 2).

As cultivares BRS 1010, BRS 3003, Sintético TS e BR106 responderam melhor as condições de déficit hídrico, tendo desenvolvido uma maior área foliar no período vegetativo, o que lhes permitiu manter a produção de fotoassimilados mais elevada em relação às outras cultivares, isso propiciou a essas cultivares uma melhor distribuição dos fotoassimilados, garantindo a elas uma maior produção de grãos/ha.

TABELA 1: Índice de Área Foliar, medido nós estágios V6, V8, no Florescimento e na Maturidade Fisiológica e Número de Espigas por Planta, de seis cultivares de milho, submetidas a déficit hídrico. EMBRAPA, Sete Lagoas, MG, 2007.


Cultivar	IAF	IAF	IAF	IAF	No. de	
	V6	V8	Florescimento	MF	Espigas/Planta	
PE01	0.37 a	1.70 a	2.21 a	1.43 a	52.7 b	
PE02	0.31 a	1.47 a	2.07 a	1.28 a	33.2 a	
BR106	0.67 b	2.87 c	2.63 a	2.05 b	60.5 b	
Sintético TS	0.76 b	2.19 b	2.21 a	1.72 a	56.5 b	
BRS1010	0.85 c	2.95 c	3.20 b	2.33 b	58.5 b	
BRS 3003	0.98 c	2.94 c	3.19 b	2.31 b	60.2 b	

^{*}Médias seguidas pela mesma letra, na coluna, não diferem entre si pelo teste de Scott Knott a 5% de probabilidade.

TABELA 2: Peso seco (Kg/ha), de folha, pendão, espiga, palha, sabugo, palhada, grão e peso seco total, de cinco cultivares de milho, submetidas a déficit hídrico. EMBRAPA, Sete Lagoas, MG, 2007.

Cultivar	Peso Seco Kg/ha									
•	Folha	Pendão	Espiga	Palha	Sabugo	Palhada	Grão	Total		
PE01	947 b	1924 a	3702 a	802 a	565 b	4595 a	1315 a	5654 a		
PE02	512 a	2352 a	3492 a	815 a	373 a	4485 a	350 a	4776 a		
BR106	888 b	2986 с	5767 b	1140 b	717 b	6466 b	2409 b	8225 b		
Sintético TS	826 b	2493 b	5994 b	829 a	654 b	5843 b	3781 c	8452 b		
BRS1010	1253 c	3616 d	6857 b	1216 b	1068 c	8224 c	3249 c	10419 c		
BRS 3003	1182 c	3844 d	6877 b	1098 b	1037 c	8286 c	3679 с	10736 c		

^{*}Médias seguidas pela mesma letra, na coluna, não diferem entre si pelo teste de Scott Knott a 5% de probabilidade.

FIGURA 1: Lâminas médias líquida de irrigação aplicadas ao longo do ciclo da cultura do milho. EMBRAPA, Sete Lagoas, MG, 2007.

Referencias bibliográficas

- ALBUQUERQUE, P.E.P.; ANDRADE, C.L.T. Planilha eletrônica para a programação da irrigação de culturas anuais. Sete Lagoas: Embrapa Milho e Sorgo. 2001. 14p. (Embrapa Milho e Sorgo, Circular Técnica, 10).
- ALBUQUERQUE, P.E.P.; DURÃES, F.O.M.; GOMIDE, R.L.; ANDRADE, C.L.T. Estabelecimento de sítios-específicos experimentais visando imposição e monitoramento de estresse hídrico para fenotipagem de cereais. Sete Lagoas: Embrapa Milho e Sorgo. 2005. 10p. (Embrapa Milho e Sorgo, Circular Técnica, 61).
- BEGG, J.E.; TURNER, N.C Crop water deficits. **Advances in Agronomy**, v.28, p.161-217, 1976.
- BERGAMASCHI, H.; DALMAGO, G.A.; BERGONCI, J.I.; BIANCHI, C.A.M.; MÜLLER, A.G.; COMIRAN, F.; HECKLER, B.M.M. Distribuição hídrica no período crítico do milho e produção de grãos. **Pesquisa Agropecuária Brasileira**, v.39, p.831-839, 2004.
- CASTRO NETO, P.; VILLELA, E.A. Veranico: um problema de seca no período chuvoso. Informe Agropecuário, Belo Horizonte, v.12, n.138, p.59-62. 1986.
- COSTA, E.F.N.; SANTOS, M.F.; MORO, G.V.; ALVES, G.F.; JUNIOR, C.L.S. Herança da senescência retardada em milho. **Pesquisa Agropecuária Brassileira,** Brasília, v.43, n.2, p.207-213, fev. 2008.
- KINIRY, J.R.; RITCHIE, J.T. Shade-sensitive interval of kernel number of maize. **Agronomy Journal**, Madison, v.77, p.711-715, 1985.
- SCHUSSLER, J.R.; WESTGATE, M.E. Maize kernal set at low water potential. I. Sensitivity to reduced assimilates during early kernal growth. **Crop Science**, Madison,v.31, p.1189-1195, 1991a.