Adaptabilidade e estabilidade de híbridos e variedades de milho na região Meio-Norte do Brasil na safra 2006/2007

Milton J. Cardoso¹, Hélio W. L. de Carvalho², Cleso A. P. Pacheco³, Paulo E. O. Guimarães³, Leonardo M. P. da Rocha³ e Lívia F. Feitosa⁴.

¹ Pesquisador, Embrapa Meio-Norte, CP 01, CEP 64.006-220, Teresina-PI. miltoncardoso@cpamn.embrapa.br ² Pesquisdor, Embrapa Tabuleiros Costeiros, CP 44, CEP 49.025-040, Aracaju-SE. helio@cpatc.embrapa.br ³ Embrapa Milho e Sorgo, CP 151, CEP 35701-970, Sete Lagoas, MG. ⁴ Estagiária Embrapa Tabuleiros Costeiros/UFS e UNIT.

Palavras-chave: Zea mays L., cultivar, produtividade grãos.

Na Região Meio-Norte do Brasil, onde ocorrem diferentes condições ambientais, é de fundamental importância o estudo da adaptabilidade e estabilidade de produção para que os agricultores alcancem a autonomia em relação ao recurso sementes, utilizando materiais de melhor adaptação e de melhor estabilidade de produção, justificando, dessa forma, a ação de pesquisa voltada para a avaliação de variedades e híbridos de milho.

Vários métodos têm sido utilizados para obtenção de estimativas de parâmetros de adaptabilidade e estabilidade. Eberhart & Russell (1966) e Lin & Binns (1988) empregaram métodos baseados no coeficiente de regressão linear e na variância dos desvios da regressão estimados em relação a cada cultivar. Cruz et al., (1989) utilizaram um modelo de regressão composto de dois segmentos de reta, a regressão bilinear.

No Nordeste brasileiro tem sido utilizada a metodologia proposta por Cruz et al. (1989), conforme assinalam Carvalho et al. (2005) e Cardoso et al. (2007). Os autores mencionados têm procurado minimizar o efeito da interação genótipos versus ambientes mediante a seleção de materiais com melhor estabilidade fenotípica (Ramalho et al., 1993).

O objetivo deste trabalho foi verificar a adaptabilidade e a estabilidade de diferentes cultivares de milho, quando submetidas a diferentes condições ambientais da região Meio-Norte, para fins de recomendação.

Os ensaios foram instalados na safra 2006/2007, nos municípios de Mata Roma, São Raimundo das Mangabeiras, Colinas e Paraibano, no Maranhão, e Teresina, Uruçuí e Bom Princípio, no Piauí. Foram avaliadas 38 cultivares (22 variedades e 16 híbridos), no delineamento em blocos ao acaso, com três repetições. As parcelas foram formadas por quatro fileiras de 5 m de comprimento, espaçadas de 0,80m e com 0,25m, entre covas, dentro das fileiras. Após o desbaste, ficou uma planta por cova, colhendo-se as duas fileiras centrais de forma integral. As adubações realizadas obedeceram às recomendações das análises de solo de cada área experimental.

Os dados de peso de grãos foram submetidos a análise de variância por local. A seguir, realizou-se a análise de variância conjunta, seguindo-se o critério de homogeneidade dos

quadrados médios residuais (Gomes, 1990) e foram realizadas conforme Vencovsky & Barriga (1992), sendo processadas com o auxílio do aplicativo Genes (Cruz, 2001). As estimativas dos parâmetros de adaptabilidade e estabilidade foram feitas pelo método de Cruz et al., (1989).

Os rendimentos médios de grãos nos ambientes foram de 4.616 kg ha⁻¹ (Mata Roma/MA), 5.084 kg ha⁻¹ (Colinas/MA), 5.140 kg ha⁻¹ (Paraibano/MA), 6.495 kg ha⁻¹ (São Raimundo das Mangabeiras/MA), 4.283 kg ha⁻¹ (Bom Princípio/PI), 5.767 kg ha⁻¹ (Teresina/PI) e 3.945 kg ha⁻¹ (Uruçuí/PI), destacando-se os ambientes Teresina e São Raimundo das Mangabeiras como mais favoráveis ao cultivo do milho.

Os parâmetros de adaptabilidade e estabilidade estão na Tabela 1, verificando-se que o rendimento médio de grãos das cultivares variou de 3.808 kg ha⁻¹ (Assum Preto) a 6.220 kg ha⁻¹ (BRS 1035), apresentando melhor adaptação aquelas variedades com rendimentos médios de grãos acima da média geral (Vencovsky & Barriga (1992). Observando-se o comportamento das cultivares dotadas de melhor adaptação (b₀>média geral) e a estimativa de b₁ que avalia seus desempenhos nas condições desfavoráveis, verificou-se que os híbridos BRS 1035, BRS 3003, BM 1120, Agromen 31 A 31, BN 0313, BN 0229, BN 0913 e Agromen 35 A 42 mostraram ser muito exigentes nessas condições (b₁>1). O híbrido SHS 4080 e a variedade SHS 3035 mostraram ser pouco exigentes nessas condições (b₁<1). A estimativa de b₁+b₂, que avalia a resposta das cultivares nas condições favoráveis, evidenciou os híbridos BRS 1035, BM 1120 e SHS 4080 como responsivos à melhoria ambiental(b₁+b₂>1).

Observando-se todo o conjunto avaliado apenas dez cultivares apresentaram os desvios da regressão estatisticamente diferentes de zero, indicando baixa estabilidade desses materiais nos ambientes estudados. Entretanto, as estimativas de R² obtidas para BM 1120, BN 0209, SHS 4080 e Agromen 34 A 11 foram superiores a 80%, o que, segundo Cruz et al. (1989), não compromete seus graus de previsibilidade.

Considerando-se os resultados apresentados infere-se que os híbridos BRS 1035, BM 1120 e SHS 4080 destacaram-se para os ambientes favoráveis (b₀>média geral, b₁e b₁+b₂>1); os híbridos BRS 3003, Agromen 31 A 31, BN 0313, BN 0229, BN 0913 e Agromen 35 A 42, por serem exigentes nas condições desfavoráveis e mostrarem boa adaptação, também se destacaram para os ambientes favoráveis. O híbrido SHS 4080 e a variedade SHS 3035, por serem pouco exigentes nas condições desfavoráveis (b₁<1) e mostrarem boa adaptação (b₀>média geral), devem ser recomendados para essa classe de ambientes. Infere-se, ainda, que todas as demais cultivares que expressaram boa adaptação (b₀>média geral) e estimativas de b₁ semelhantes à unidade evidenciaram adaptabilidade ampla, consubstanciando-se em opções importantes para a agricultura regional, por justificarem seus usos em sistemas de produção tecnificados e em sistemas e produção com pouca ou nenhuma tecnificação, comuns em pequenas propriedades rurais do Meio-Norte brasileiro.

Referências Bibliográficas

CARDOSO, M. J.; CARVALHO, H. W. L. de; GAMA, E. E. G. e; SOUZA, E. M. de. Estabilidade do rendimento de grãos de variedade de *Zea mays* L. no meio-norte brasileiro. **Revista Ciência Agronômica**, Fortaleza, v. 38, n. 1, p. 78-83, 2007.

CARVALHO, H. W. L. de; SANTOS, M. X. dos; LEAL, M. de L da S.; SOUZA, E. M. de. Estimativas de parâmetros genéticos após três ciclos de seleção na variedade de milho BRS 5033-Asa Branca no estado de Sergipe. **Revista Científica Rural**, Bagé, RS v.10, n.1, p.95-101, 2005.

CRUZ, C. D.; TORRES, R. A. de.; VENCOVSKY,R. An alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**, v. 12, p.567 a 580, 1989.

CRUZ, C. D. Programa Genes: Versão Windows; aplicativo computacional em genética e estatística. Viçosa: Universidade Federal de Viçosa, 2001.

EBERHART, S. A.; RUSSELL, W. A. Stability parameters for comparing varieties . Crop Science, Madison, v. 6, n.1, p. 36-40, 1966.

GOMES, F. P. Curso de estatística experimental. 8ª Ed. São Paulo. Nobel, 1990. 450p.

LIN, C. S.; BINNS, M. R. A superiority measure of cultivar performance for cultivar x location data. **Canadian Journal of Plant Science**, Ottawa, v. 68, n. 1, p. 193-198, 1988.

RAMALHO, M A. P.; SANTOS, J. B. dos.; ZIMMERMANN, M. J de O. **Genética quantitativa em plantas autógamas**: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG, 1993. cap. 6, p.131-169. (Publicação, 120).

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.

Tabela 1. Estimativas dos parâmetros de adaptabilidade e estabilidade de 38 cultivares de milho em sete ambientes do Meio-Norte brasileiro. Safra 2006/2007.

Cultivares ¹	Médias de grãos (kg ha ⁻¹)			_	_		2	-2.01
	Geral	Desfavorável	Favorável	- b ₁	$\mathbf{b_2}$	b_1+b_2	s^2_d	$R^2(\%)$
BRS 1035 ^H	6220a	4964	7162	1,57**	0,96ns	1,76**	570620ns	94
BRS 3003 ^H	6021a	4830	6915	1,51**	-0,35ns	1,15ns	266253ns	96
BM 1120 ^H	6014a	4556	7107	1,74**	-0,17ns	1,56*	943211*	92
Agromen 31 A 31 ^H	6005a	4878	6851	1,38*	-1,05**	0,32*	297799ns	96
BN 0313 ^H	6002a	4694	6630	1,36**	-1,21**	0,14**	642675ns	88
BN 0209 ^H	5917a	4522	6963	1,81**	-0,68*	1,12ns	909579*	92
BN 0913 ^H	5898a	4759	6753	1,47**	-0,97**	0,49ns	103965ns	98
BN 0305 ^H	5835a	4859	6568	1,15ns	+0,01ns	1,17ns	643792ns	88
Agromen 35 A 42 ^H	5781a	4695	6596	1,36*	-1,22**	0,13**	18552586**	72
Agromen 3150 ^H	5752a	4887	6401	1,13ns	0,20ns	1,33ns	173714ns	97
SHS 4050 ^H	5693a	4923	6271	1,05ns	0,04ns	1,10ns	382507ns	91
Agromen 2012 ^H	5510b	4600	6147	1,02ns	-0,33ns	0,69ns	371803ns	90
BRS 2110 ^H	5402b	4789	5863	0,86ns	0,28ns	1,14ns	284731ns	92
CEPAF 2 ^H	5320a	4845	5677	0,70ns	0,59ns	1,30ns	427982ns	87
SHS 4080 ^H	5284b	4862	5601	0,64*	1,22**	1,86**	1060968**	80
Agromen 34 A 11 ^H	5282b	4291	6025	1,27ns	-0,37ns	0,89ns	907658*	85
SHS 3035 ^V	5098c	4672	5418	0,61*	0,16ns	0,78ns	1783776*	67
Fortuna ^V	5055c	4444	5513	0,87ns	0,62ns	1,50ns	468984ns	90
Sintético Precoce ^V	5017c	4216	5619	0,96ns	0,03ns	1,00ns	135398ns	96
CPATC 3 ^v	4947c	4387	5366	0,79ns	-0,24ns	0,54ns	368239ns	84
UFV 8 ^V	4941c	3200	5363	2,02**	-1,06**	0,95ns	7151651**	62
CPATC 7 ^v	4745d	3865	5405	1,06ns	-0,14ns	1,20ns	336479ns	93
Cruzeta ^v	4702d	4339	4974	0,55**	-0,09ns	0,45*	297077ns	77
CPATC 13 ^V	4686d	4370	4922	0,45**	0,47ns	0,92ns	353658ns	79
Sertanejo ^V	4566e	3734	5190	1,02ns	-0,01ns	1,01ns	339750ns	91
CPATC 6 ^V	4517e	3658	5162	0,94ns	0,36ns	1,30ns	867468*	82
CPATC 5 ^V	4508e	4249	4702	0,46**	0,87**	1,34ns	803843*	74
São Francisco ^V	4502e	3917	4941	0,72ns	0,08ns	0,81ns	192151ns	91
BR 473 ^V	4493e	3758	5045	0,88ns	0,22ns	1,51ns	598838ns	88
Asa Branca ^V	4420e	3839	4855	0,71ns	0,26ns	0,97ns	340404ns	87
BR 106 ^V	4387e	3890	4759	0,57*	0,04ns	0,61ns	394903ns	76
Potiguar ^V	4371e	3252	5209	1,21ns	-0,81*	0,40*	1363089**	74
CPATC 4 ^V	4353e	3669	4867	0,88ns	0,38ns	1,26ns	567404ns	86
Caatingueiro ^V	4287e	3739	4699	0,67ns	-0,22ns	0,45*	335689ns	81
CPATC 10 ^V	4243e	3647	4690	0,66*	0,48ns	1,15ns	301171ns	89
CPATC 8 ^V	4186f	3700	4551	0,54**	0,37ns	0,91ns	292681ns	85
BRS 4150 ^V	4025f	3483	4431	0,60*	1,39**	1,99**	356047ns	93
Assum Preto ^V	3808f	3185	4275	0,65ns	-0,04ns	0,61ns	634759ns	70

 $^{^1}$ H: híbrido; V: variedade. *e** significativamente diferente da unidade, para b_1 e b_1+b_2 , e de zero, para b_2 . Significativamente diferentes de zero, pelo teste F, para s_d^2 . As médias seguidas pela mesma letra não diferem entre si pelo teste de Scott-Nott, a 5% de probabilidade.