Adaptabilidade e Estabilidade de Cultivares de Milho na Zona Agreste do Nordeste Brasileiro no Biênio 2006/2007

Lívia F. Feitosa¹, Hélio W. L. de Carvalho², Ivênio R. de Oliveira³, Cleso A. P. Pacheco⁴, Leonardo M. P. da Rocha⁵, José N. Tabosa⁶, Marcelo A. Lira⁷ e Kátia E. de O. Melo⁸.

¹Bolsista PIBIC / CNPq / EmbrapaTabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: liu-se@hotmail.com; ^{2,3}Pesquisadores Embrapa Tabuleiros Costeiros. E-mail: ¹helio@cpatc.embrapa.br e ²ivenio@cpatc.embrapa.br.

Palavras-chave: Zea mays L., adaptação, interação variedades x ambientes, previsibilidade.

O desenvolvimento e a difusão de variedades de milho de melhor adaptação e portadores de atributos agronômicos desejáveis no agreste nordestino poderá propiciar mudanças substanciais na agricultura regional. Em virtude de essa região ter sido considerada ultimamente como uma nova fronteira agrícola para exploração do milho, a recomendação de variedades melhoradas e também de híbridos em substituição aos materiais locais é de fundamental importância para elevar a produtividade desse cereal.

Diversos trabalhos já foram realizados no Nordeste brasileiro procurando averiguar o comportamento de variedades e híbridos conforme ressaltaram Carvalho et al. (2004 e 2005), Souza et al. (2004) e Cardoso et al. (2005 e 2007). Nesses trabalhos foram identificados e recomendados híbridos e variedades de melhor adaptabilidade e estabilidade de produção para as regiões de cerrados e de algumas áreas de agreste do Nordeste brasileiro.

O objetivo desse trabalho foi o de averiguar a adaptabilidade e a estabilidade de produção de novas variedades de milho quando avaliados em diferentes ambientes do agreste nordestino, no biênio 2006-2007.

Foram avaliadas doze variedades e três híbridos (testemunhas) em dezesseis ambientes do agreste nordestino, no biênio 2006-2007, no delineamento em blocos ao acaso, com três repetições. As parcelas constaram de quatro parcelas de 5,0m de comprimento, espaçadas de 0,80m e com 0,40m entre covas dentro das fileiras. Foram colocadas três sementes por cova, deixando-se, após o desbaste, duas plantas por cova. Foram colhidas as duas fileiras centrais de forma integral, correspondentes a uma área útil de 8,0m². As adubações foram realizadas conforme análise de solo de cada área experimental.

Os pesos de grãos foram submetidos à análise de variância pelo modelo de blocos ao acaso. A análise de variância conjunta obedeceu ao critério de homogeneidade dos quadrados médios residuais (Gomes, 1990) e foram realizadas conforme Vencovsky & Barriga (1992), considerando-se aleatórios os efeitos de blocos e ambientes e, fixo, o efeito de cultivares. Para atenuar o efeito da interação cultivares versus ambientes, utilizou-se o método de Cruz et al., (1989).

A análise de variância conjunta para o peso de grãos mostrou diferenças significativas (p<0,01) para efeito de cultivares e interação cultivares versus ambientes, o que indica comportamento diferencial entre as cultivares e inconsistência no comportamento das cultivares em face das oscilações ambientais. Interações significativas têm sido registradas em

trabalhos similares de melhoramento no Nordeste brasileiro (Souza et al., 2004, Carvalho et al., 2005 e Cardoso et al., 2007). Tratando-se de uma região extensa, a interação cultivares versus ambientes assume papel preponderante na recomendação de cultivares, e é necessário minimizar o seu efeito, o que é possível através da identificação de cultivares com maior estabilidade fenotípica (Ramalho et al., 1993).

Em razão, portanto, da presença de interação cultivares versus ambientes, foram verificadas as respostas de cada uma delas nos ambientes considerados, pelo método proposto, o qual busca como cultivar ideal aquela que apresenta alta produtividade média de grãos, adaptabilidade em ambientes desfavoráveis (b_1 <1) e é capaz de responder à melhoria ambiental (b_1 + b_2 >1), além de apresentar a variância dos desvios da regressão próxima ou igual a zero. Ressalta-se que, aliado ao modelo proposto, considerou-se como materiais melhor adaptados aqueles que expressaram produtividades médias de grãos acima da média geral (Vencovsky & Barriga, 1992).

Os rendimentos médios de grãos (b₀) variaram de 4.671kg/ha (Assum Preto) a 7.486kg/ha (BRS 3003), destacando-se com melhor adaptação o híbrido BRS 3003, seguido dos híbridos SHS 4050 e BRS 2110. Entre as variedades, a Sintético Precoce 1 apresentou melhor adaptação.

As estimativas dos parâmetros de adaptabilidade e estabilidade estão na Tabela 1, verificando-se que as estimativas do coeficiente de regressão b_1 variaram de 0,67, nas variedades Assum Preto e Cruzeta a 1,31, no híbrido SHS 4050, sendo ambos estatisticamente diferentes da unidade. Considerando-se todo o conjunto avaliado, cinco cultivares apresentaram estimativas de b_1 diferentes das unidades, e dez mostraram estimativas de b_1 não significativa (b_1 =1), o que evidencia comportamento diferenciado dessas cultivares em ambientes desfavoráveis. O híbrido SHS 4050 e as variedades Sintético Precoce 1 e CPATC 4 mostraram ser muito exigentes nas condições desfavoráveis (b_1 >1); as variedades Assum Preto e Cruzeta, por outro lado, mostraram ser pouco exigentes nessas condições (b_1 <1). Com relação à resposta nos ambientes favoráveis, apenas a variedade CPATC 7 respondeu à melhoria ambiental (b_1 + b_2 >1). Sete cultivares mostraram os desvios da regressão estatisticamente diferentes de zero, o que indica baixa estabilidade nos ambientes considerados. Apesar disso, Cruz et al., (1989) consideram que aqueles materiais que apresentaram valores de R^2 >80% não devem ter os seus graus de previsibilidade comprometidos. Desta forma, as cultivares que mostraram valores de R^2 >80 % apresentaram bom ajuste às retas de regressão.

Verificando-se os resultados apresentados, infere-se que o híbrido SHS 4050 e as variedades Sintético Precoce 1 e CPATC 4 devem ser sugeridas para as condições favoráveis, por mostrarem média alta (b₀>média geral) e serem exigentes nas condições desfavoráveis (b₁>1). Para as condições desfavoráveis, deve ser sugerido o híbrido BRS 3003 por exibir alto rendimento de grãos nessas condições de ambiente. As cultivares que mostraram rendimentos médios de grãos acima da média geral (b₀>média geral) e estimativas de b₁ semelhantes à unidade evidenciaram adaptabilidade ampla, constituindo-se em excelentes opções para a agricultura regional, a exemplo dos híbridos BRS 3003 e BRS 2110 e das variedades CPATC 3, CPATC 7, CPATC 5 e Sertanejo. As variedades Assum Preto e Caatingueiro, de ciclo superprecoce, mostraram baixa adaptação (b₀<média geral). No entanto, essas variedades têm na superprecocidade forte justificativa para recomendação em áreas do semi-árido, onde são constantes as perdas de safras por déficit hídrico.

Tabela 1. Estimativas dos parâmetros de adaptabilidade e estabilidade de 15 cultivares de milho em 16 ambientes da Região Agreste do Nordeste brasileiro, no biênio 2006/2007.

Cultivares	Medias de grãos (kg/ha)			,			2	D2/0/3
	Geral	Desfavorável	Favorável	- b ₁	$\mathbf{b_2}$	$\mathbf{b_1} + \mathbf{b_2}$	$\mathbf{s^2_d}$	R ² (%)
BRS 3003	7486a	6621	8242	0,94ns	0,27ns	1,22ns	900892**	82
SHS 4050	6881b	5667	7944	1,31**	-0,03ns	1,27ns	829590**	89
BRS 2110	6430b	5579	7175	0,95ns	-0,10ns	0,85ns	817783**	82
Sintético Precoce 1	6611c	5498	7584	1,21*	0,05ns	1,26ns	643590*	90
CPATC 4	6358c	5306	7278	1,18*	-0,56**	0,61ns	571305ns	90
CPATC 3	6123d	5248	6890	0,94ns	0,01ns	0,96ns	148907ns	96
CPATC 7	6114d	5272	6852	0,98ns	0,44ns	1,42*	331338ns	93
CPATC 5	6093d	5115	6950	1,12ns	0,13ns	1,26ns	514400ns	91
Sertanejo	6158d	5325	6887	0,96ns	0,14ns	1,10ns	423212ns	90
São Francisco	6061d	5074	6925	1,15ns	0,24ns	1,39ns	245216ns	96
Asa Branca	5817d	4933	6590	0,84ns	-0,10ns	0,73ns	1183410**	70
Potiguar	5789e	4861	6600	1,00ns	0,36ns	1,36ns	408340ns	92
BR 106	5625e	4614	6509	1,07ns	-0,07ns	1,00ns	1091221**	81
Cruzeta	5413f	4784	5963	0,67**	0,45ns	0,71ns	509269ns	79
Caatingueiro	5234f	4449	5921	0,93ns	-0,84**	0,08**	662794**	82
Assum Preto	4671g	4147	5129	0,67**	0,02ns	0,69ns	439422ns	81

*e** significativamente diferente da unidade, para b₁ e b₁+b₂, e de zero, para b₂. Significativamente diferentes de zero, pelo teste F, para s²_d. As médias seguidas pela mesma letra não diferem entre si pelo teste de Scott-Nott, a 5% de probabilidade.

Referências bibliográficas

CARDOSO, J. M.; CARVALHO, H. W. L. de; LEAL, M. de L da S.; Guimarães, P. E. de O.; SOUZA, E. M. de. Performance fenotípica de cultivares de milho no Meio-Norte Brasileiro. **Revista Agrotrópica**, Ilheús, Bahia, V. 17, P. 39-46, 2005.

CARDOSO, M. J.; CARVALHO, H. W. L. de; GAMA, E. E. G. e; SOUZA, E. M. de. Estabilidade do rendimento de grãos de variedade de *Zea mays* L. no meio-norte brasileiro. **Revista Ciência Agronômica**, Fortaleza, v. 38, n. 1, p. 78-83, 2007.

CARVALHO, H. W. L. de.; CARDOSO, M. J.; .; LEAL, M. de L da S.; SANTOS, M X. dos.; SANTOS, D.M. dos.; TABOSA, J. N.; LIRA, M.A.; SOUZA, E. M. de. Adaptabilidade e

estabilidade de híbridos de milho no Nordeste brasileiro. **Revista Científica Rural,** Bagé, RS v.9, n.1, p.118-125, 2004.

CARVALHO, H. W. L. de; SANTOS, M. X. dos; LEAL, M. de L da S.; SOUZA, E. M. de. Estimativas de parâmetros genéticos após três ciclos de seleção na variedade de milho BRS 5033-Asa Branca no estado de Sergipe. **Revista Científica Rural**, Bagé, RS v.10, n.1, p.95-101, 2005.

CRUZ, C. D.; TORRES, R. A. de.; VENCOVSKY, R. An alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**, v. 12, p.567 a 580, 1989.

GOMES, M. de S. Interação genótipos x épocas de plantio em milho (Zea mays L.) em dois locais do oeste do Paraná. Piracicaba, ESALQ, p. 148. 1990. Dissertação (Mestrado em Genética e Melhoramento de Plantas).

RAMALHO, M A. P.; SANTOS, J. B. dos.; ZIMMERMANN, M. J de O. **Genética quantitativa em plantas autógamas**: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG, 1993. cap. 6, p.131-169. (Publicação, 120).

SOUZA, E. M. de. CARVALHO. H. W. L. de.; LEAL, M. de L. da S.; Adaptabilidade e estabilidade de variedades e híbridos de milho no Estado de Sergipe no ano agrícola de 2002. **Revista Ciência Agronômica,** Fortaleza, v. 35, n. 1 p. 52-60, 2004.

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.