ACEITAÇÃO DO LEITE DE CABRAS SUPLEMENTADAS COM DIFERENTES FONTES DE ÔLEO NA DIETA

LISA PRESLEY DA SILVA PEREIRA (2), MARCO A. D. BOMFIM (3), GEÓRGIA MACIEL DIAS DE MORAES (4), MIRLA DAYANNY PINTO FARIAS (5), LUIS EDUARDO LAGUNA (6), RAIMUNDO NONATO BRAGA LOBO (7), GIL MÁRIO F. GOMES (8)

1 Projeto financiado com recursos da Embrapa
2 Estudante de Zootecnia, UVA, bolsista de iniciação científica Embrapa Caprinos – PIBIC/CNPq
3 D.Sc. Pesquisador da Embrapa Caprinos, Orientador, mbomfim@cnpc.soberal.br
4 D.Sc. Pesquisador da Embrapa Caprinos, Orientador, mgm@cnpc.soberal.br
5 D.Sc. Pesquisador da Embrapa Caprinos, Orientador, malmigo@gmail.com

Resumo: Objetivou-se com este trabalho avaliar a aceitação do leite de cabras suplementadas com diferentes fontes de óleo na dieta. O experimento foi conduzido na Faculdade Centro de Ensino Tecnológico do Ceará com as amostras obtidas no setor de caçarolaite leiteira da Embrapa Caprinos, em ensaio experimental em duplo quadrado latino 4 x 4. Os tratamentos avaliados consistiram na adição de fontes de óleo à dieta animal: óleo de soja (OS) ou óleo de palmitste (OPA) e um leite controle, produzido sem a adição de óleo à dieta (FO). A aceitação do leite foi avaliada por Diferença do Controle segundo as normas da ABNT-NBR 13.526, utilizando uma escala de um a cinco. Os julgadores não observaram diferença significativa entre os leites produzidos com a adição de óleo de soja ou de palmitste em relação ao controle pelo teste SNK (P<0,05), cujas médias foram: 4,17, 4,17 e 3,53, respectivamente. Esta observação foi confirmada pela comparação do leite de cada tratamento com aquele da dieta controle, pelo teste de Dunnet (P<0,05). Os óleos de soja e de palmitste pode ser utilizado em níveis de 2,5% da matéria seca das dietas, sem alterar a aceitação do leite de cabra para os consumidores.

Palavras-Chave: ácidos graxos, lípidos, sabor

ACEITABILITY OF MILK FROM GOATS SUPPLEMENTED WITH DIFFERENT OIL SOURCES IN THE DIET

Abstract: This experiment was assigned to evaluate the acceptance of the goat’s milk produced from goats supplemented with different oil sources in the diet. The experiment was done at Technologic Institute of Ceará with samples obtained in the milk goat sector of Embrapa Goat, in an experimental double Latin Square 4 x 4. The treatments consisted of two types of milk produced with the addition of oil sources to the animal diet: soybean oil (SO) or palmitste oil (OPA) and a milk controls produced without the oil addition to the diet (FO). The acceptance of the milk was evaluated by Difference of the Control according to the norms of ABNT-NBR 13526 using a scale from one to five. The judges didn’t observe significant difference among the milks produced with the addition of soybean oil or of palmitste oil in relation to the control using SNK test (P>0,05), whose averages were; 4,17, 4,17 and 3,53, respectively. This observation was confirmed by the comparison of the milk of each treatment with that of the controls diet, using the Dunnet test (P <0,05). The soybean oil and the palmitste oil can be used in levels of 2,5% of the dry matter of the diets without altering the acceptance of the goat milk for the consumers.

Keywords: Fatty Acids, Flavor, Lípidos

Introdução

Os lípidos apresentam uma densidade energética 2,25 vezes superior à dos carboidratos e por isso têm sido utilizados como suplementos na alimentação de ruminantes, principalmente para animais em lactação, que depositam grande quantidade de gordura em seus produtos e, consequentemente, necessitam de maior aporte energético dietético. Em adição a isto, o conhecimento sobre o metabolismo de ácidos graxos em ruminantes e a possibilidade de manipulação desta fração na gordura do leite, resultou em um interesse na inclusão de óleos à dieta de ruminantes, relacionado à melhoria da qualidade e agregação de propriedades funcionais a este produto. Por outro lado, os ácidos graxos da gordura do leite estão implicados na origem de odor e sabor agradáveis ou desagradáveis. No caso do leite de cabra, os ácidos graxos de cadeia curta (capróico – C 6:0, caprílico – C8:0 e cáprico – C10:0), têm sido considerados responsáveis pelo sabor característico da espécie (Haenen, 2004). Portanto, estratégias relacionadas à utilização de gorduras em dietas de ruminantes destinadas à produção de leite devem estar acompanhadas de avaliações sensoriais do produto, uma vez que isto pode resultar em alteração na aceitabilidade e/ou na ingestão desse alimento pelo consumidor.
Sendo assim, objetivou-se com este trabalho avaliar a aceitação do leite de cabras suplementadas com diferentes fontes de óleo na dieta.

Material e Métodos
A avaliação foi conduzida na Faculdade Centro de Ensino Tecnológico do Ceará-CENTEC/Sobral. Foram selecionados trinta julgadores, não treinados, de faixa etária variando entre 18 e 30 anos, sendo 16 homens e 14 mulheres, que avaliaram o leite de cabra, através do teste de Diferença do Controle. Para os testes sensoriais, 20ml de cada amostra foram servidas em recipientes codificados com números de três dígitos. As amostras foram servidas a uma temperatura aproximada de 8°C e avaliadas sob luz natural. Foi incluída uma amostra igual ao padrão entre as amostras codificadas e as posições das amostras foram casualizadas entre os julgadores. O teste de Comparação Múltipla ou Diferença do Controle foi realizado segundo a ABNT-NBR 13526, conforme Faria & Yotsuyanagi (2002). As amostras foram obtidas de um experimento conduzido na Embrapa Caprinos, no qual foram utilizadas oito cabras leiteiras em um delineamento em duplo quadrado latino 4 x 4. Os tratamentos avaliados consistiram da adição de duas fontes de óleo ao concentrado: óleo de soja (OS) ou óleo de palmitse (OPA), e uma dieta controle (FO), sem a adição de óleo. Outra fonte de óleo a ser estudada foi o óleo de peixe (OP), mas devido à proibição do Ministério da Agricultura, Pecuária e Abastecimento “MAPA” pelo uso de gorduras de mamíferos na alimentação de ruminantes, somente as fontes de origem vegetal estão apresentadas neste estudo.

As dietas foram calculadas para apresentar baixa concentração de fibra de forragem (25% de FDN) e teores de extrato etéreo de 3% (2,3% de óleo na MS). As amostras depois de obtidas foram pasteurizadas a 65°C por 30 minutos, resfriadas em seguida a 5°C e encaminhadas ao CENTEC para os testes que foram realizados no mesmo dia da coleta, ou seja, não houve conglomeramento das mesmas. Foram coletadas, durante dois dias consecutivos, amostras de leite no turno da manhã e da tarde, constituindo-se uma amostra composta representativa da produção diária para quantificação da gordura e do perfil de ácidos graxos. A determinação do teor de gordura foi feita por espectrofotometria de infravermelho em um aparelho B2300 Combì (BentlyC), realizada no laboratório de qualidade do leite na Embrapa Gado de Leite. Para identificação e quantificação dos ácidos graxos do leite, foi realizada a extração da gordura, a metilação, a identificação e quantificação em aparelho de cromatografia gasosa, no Laboratório de Nutrição e Crescimento Animal da Universidade de São Paulo (USP/ESALQ). O efeito dos tratamentos foi avaliado através de teste de médias SNK e teste de Dunnet, utilizando o pacote estatístico SAS (SAS, 1999).

Resultados e Discussão

Tabela 1 - Efeito da adição do óleo de soja (OS) ou óleo de palmitse (OPA) na dieta de cabras sobre a diferença sensorial em relação ao leite produzido sem óleo na dieta (FO)

<table>
<thead>
<tr>
<th>Tratamento</th>
<th>Médias ± Desvio padrão*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>3,53 ± 2,30 a</td>
</tr>
<tr>
<td>OPA</td>
<td>4,17 ± 2,73 a</td>
</tr>
<tr>
<td>OS</td>
<td>4,17 ± 2,41 a</td>
</tr>
</tbody>
</table>

Comparações pelo teste de Dunnet

<table>
<thead>
<tr>
<th>Comparação</th>
<th>Coeficientes (significância)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA – FO</td>
<td>0,6333 (P>0,05)*</td>
</tr>
<tr>
<td>OS – FO</td>
<td>0,6333 (P>0,05)*</td>
</tr>
</tbody>
</table>

*Medias seguidas pela mesma letra na coluna não diferem pelo teste SNK (P>0,05)

Apesar das evidências da participação de muitas moléculas voláteis como compostos carbonila, álcoois, ácidos graxos livres, compostos sulfurados, dentre outros e de ácidos graxos ramificados como o estibutanolico e estibexanóico como formadores do sabor caprino (Coulon & Prioio, 2002), os ácidos graxos de cadeia curta (caprílico - C6:0, caprítico - C8:0 e cáprico - C10:0) são aqueles que têm sido mais relacionados com o flavour de produtos caprinos (Haenlein, 2004). A inclusão do óleo de soja ou de palmitse nas dietas reduziu os teores de ácidos graxos saturados e aumentou aqueles de ácidos graxos insaturados, particularmente dos polinsaturados, de ácido graxo linoléico conjugado (CLA) e de ácidos graxos C18:1 trans (Bomfim et al., 2006) na gordura do leite das cabras, no entanto, estas alterações não demonstraram exercer qualquer influência sobre a aceitação do leite de cabra em relação àquele produzido sem a adição destas fontes de óleo. Por outro lado, como pode ser observado na Tabela 2, não houve efeito significativo dos tratamentos sobre o teor dos ácidos graxos caprílico (C6:0), caprítico (C8:0) e cáprico (C10:0) na gordura do leite das cabras, que tem sido relacionados como as principais moléculas envolvidas no flavour característico do leite de cabra. Esta pode ser a principal razão da ausência de efeito significativo na avaliação de aceitação das amostras no presente trabalho.
Tabela 2 - Efeito da adição de óleo de palmiste ou de soja na dieta de cabras leiteiras sobre o teor de ácidos graxos capróico (C6:0), caprílico (C8:0) e cáprico (C10:0) na gordura do leite de cabras (% do total de ácidos graxos)

<table>
<thead>
<tr>
<th>Ácido Graxo</th>
<th>Controle</th>
<th>Palmiste</th>
<th>Soja</th>
<th>Significância¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6:0</td>
<td>2,54</td>
<td>2,49</td>
<td>2,51</td>
<td>NS</td>
</tr>
<tr>
<td>C8:0</td>
<td>2,58</td>
<td>2,47</td>
<td>2,57</td>
<td>NS</td>
</tr>
<tr>
<td>C10:0</td>
<td>8,91</td>
<td>7,90</td>
<td>8,28</td>
<td>NS</td>
</tr>
</tbody>
</table>

¹ NS: Não significativo pelo teste de Tukey (P>0,05)

Segundo a descrição de González & Silva (2003), os ácidos graxos de cadeia curta são sintetizados pela glândula mamária a partir do ácido acético produzido na fermentação ruminal, sendo sua concentração dependente da quantidade de fibra fermentada neste compartimento. Uma vez que o nível de fibra foi o mesmo entre os tratamentos (25% de fibra de forragem), não era de se esperar influência dos tratamentos sobre a concentração destes ácidos graxos na gordura do leite.

Conclusões

O óleo de soja ou óleo de palmiste pode ser utilizado em níveis de 2,5% da matéria seca das dietas sem alterar a aceitação do leite de cabra para os consumidores.

Referências Bibliográficas

